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This paper provides a statistical framework for estimating higher-order characteristics of the re- 
sponse time distribution, such as the scale (variability) and shape. Consideration of these higher order 
characteristics often provides for more rigorous theory development in cognitive and perceptual psychol- 
ogy (e.g., Luce, 1986). RT distribution for a single participant depends on certain participant characteris- 
tics, which in turn can be thought of as arising from a distribution of latent variables. The present work 
focuses on the three-parameter Weibull distribution, with parameters for shape, scale, and shift (initial 
value). Bayesian estimation in a hierarchical framework is conceptually straightforward. Parameter es- 
timates, both for participant quantities and population parameters, axe obtained through Markov Chain 
Monte Carlo methods. The methods are illustrated with an application to response time data in an abso- 
lute identification task. The behavior of the Bayes estimates are compared to maximum likelihood (ML) 
estimates through Monte Carlo simulations. For small sample size, there is an occasional tendency for the 
ML estimates to be unreasonably extreme. In contrast, by borrowing strength across participants, Bayes 
estimation "shrinks" extreme estimates. The results are that the Bayes estimators are more accurate than 
the corresponding ML estimators. 
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The time taken to complete a task in a psychology experiment is called the response time 
(RT). RT is a popular dependent measure; for example, it is the dominant measure in paradigms 
for assessing human memory (Ratcliff, 1978; Sternberg, 1966; Wixted & Rohrer, 1993), atten- 
tion, (Heathcote, Popiel, & Mewhort, 1991; Posner, 1978; Spieler, Balota, and Faust, 2000; Treis- 
man & Gelade, 1980), word identification (Andrews & Heathcote, 2001; Madden et al., 1999; 
Plourde & Besner, 1997), learning (Logan, 1988, 1992), perceptual judgments (Petrusic, Baran- 
ski, & Kennedy, 1999, Rouder, 2000), and object recognition (Cave & Squire, 1992; Mitchell & 
Brown, 1988). Most researchers tend to analyze mean RT. But, a growing number of researchers 
are examining whole RT distributions as a means of providing more extensive and insightful 
tests of cognitive and perceptual theories. (An incomplete and selective list includes the work of 
Andrews & Heathcote, 2000; Ashby, Tien, & Balakrishnan, 1993; Hockley, 1984; Logan, 1992; 
Ratcliff, 1978; Ratcliff & Rouder, 1998, 2000; Rouder, 2000; Spieler, Balota, & Faust, 1996; 
Smith, 1995; and Van Zandt, Colonius, & Proctor, 2000). In this paper, we propose a Bayesian 
framework for estimating the shift, scale (variability), and shape of RT distributions. 

Although estimating higher order properties is always more difficult than estimating the 
mean, there is an additional complication for RT distributions. In typical applications, researchers 
collect a limited number of observations from each of several participants. Researchers seeking 
to increase power can often increase the number of participants, but not the number of obser- 
vations per participant. In these applications, RT distributions vary with the participants. Some 
participants respond relatively quickly while others respond relatively slowly. To gain accurate 
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estimates of distributional properties such as shift, scale, and shape, it is critically important to 
take account of this variability across participants. If this variability is ignored and all observa- 
tions are treated as from a common source, then the estimates will be grossly distorted. 

If researchers were solely interested in the mean RT across several conditions or popula- 
tions, then general linear model-based techniques such as ANOVA or regression would be appro- 
priate. There has been steady and continued development in advanced techniques to account for 
the hierarchical structure of data within the Generalized Linear Model (GLM) framework (e.g., 
Dey, Ghosh, & Mallick, 2000; Kreft & de Leeuw, 1998). With these techniques, researchers can 
increase efficiency in estimation and power in inference. The drawback is that these techniques 
do not provide direct information about shift, scale (variability) or shape of distributions. To fill 
this void, we propose a statistical framework for estimating these distributional properties while 
still accounting for participant variability in RT distributions. 

Our framework, hierarchical parametric Bayesian framework (HPBF), has three key fea- 
tures. First, the framework is parametric; each observation is assumed to be from a three- 
parameter Weibull distribution (Johnson, Kotz, & Balakrishnan, 1994). Second, it is hierarchical. 
At the first level, the Weibull parameters vary from participant to participant. But these sets of 
Weibull parameters are assumed to come from a common trivariate distribution that depends on 
the condition or context. For example, suppose there are ten participants in an experiment with 
five college-aged and five elderly. Then each of the ten participants will have their own sets of 
Weibull parameters. The five sets of Weibull parameters for the five college-aged participants 
are assumed to come from one distribution while the five sets of Weibull parameters for the five 
elderly are assumed to come from a possibly different distribution. A schematic of the framework 
is shown in Figure 1. In the schematic, the shift parameter for each participant is a sample from 
one of two distributions. If the participant is college-aged, then the shift parameter is from the 
distribution on the left. If  the participant is elderly, then the shift parameter is from the distribu- 
tion on the right. Although each participant has his or her own parameters (indicated by X's for 
college-aged participants and by O's for elderly participants), the distribution of shift parameters 
for the college-aged participants is smaller than that for the elderly participants. Figure 1 only 
depicts the hierarchical structure for the shift parameter. But, in general, all three parameters 
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FIGURE 1. 
The Hierarchical Framework. Each curve depicts the density from which the shift parameters are sampled. College-aged 
participants' shift parameters are denoted with X's while elderly participants' shift parameters are denoted with O's. 
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may have a hierarchical structure. The third feature of the framework is that it is Bayesian. Prior 
distributions are assumed on parameters and the calculation of the posterior distributions is done 
through Monte Carlo Markov Chain integration. 

The main reason to postulate a hierarchical structure is to provide for better estimation. The 
gains from "borrowing strength" in a hierarchical, Bayesian framework have been well estab- 
lished in a number of contexts (Gelman, Carlin, Stem, & Rubin, 1995; Tanner, 1993). One recent 
example of the success of Bayesian analysis in Psychology is that in item response theory (Fox 
& Glas, 2001; Wang, Bradlow, & Wainer, 2002). In HPBF, parameter estimation and inference 
are done with Bayesian Monte Carlo Markov Chain methods. As will be shown, the hierarchical 
framework offers significant advantages over a nonhierarchical framework. 

Motivation 

In HPBF, we use a parametric distribution. This is a common approach because of the well- 
known instability of higher order sample moments: sample skew and sample kurtosis require 
thousands of observations and are very sensitive to outliers (see Heathcoate et al., 1991; and 
Ratcliff, 1979). Researchers have used standard parametric forms including the Weibull (Lo- 
gan, 1992) and the log-normal (Ulrich & Miller, 1993), as well as a less-known form termed 
the ex-Gaussian (Hohle, 1965). The shape of the ex-Gaussian, a convolution of a normal and an 
exponential density, is sometimes fairly similar in form to the Weibull distribution. The reason 
we chose the Weibull is four-fold: (a) RT distributions and the Weibull are bounded from below, 
(b) RT distributions and the Weibull have an elongated right tail, (c) the Weibull is computation- 
ally tractable for this application, and (d) the Weibull has broad applicability in statistics--our 
research is informed by and informs others working with the Weibull. 

A major problem with the current state-of-the-art is a lack of powerful tools for estima- 
tion and inference about distributional characteristics with small sample sizes. As discussed 
previously, in many applications, psychologists collect a few observations from each of sev- 
eral participants per experimental condition. In order to arrive at stable population parameter 
estimates, psychologists pool data across participants with a technique from Vincent (1912; see 
also Ratcliff, 1979). In this technique, referred to as Vincentizing, quantiles are averaged across 
participants to produce one composite distribution. For example, the tenth quantiles of the com- 
posite distribution is the average of the tenth quantiles across all of the participants. If individual 
participants' distributions are members of the same location-scale family, then (a) the compos- 
ite distribution is a member of that family and (b) the parameters of the composite distribution 
are the arithmetic means of the component distributions (Jiang, Rouder, & Speckman, in press; 
Thomas & Ross, 1980). 

In practice, response times are modeled from three-parameter families that are not location- 
scale families. For these cases, the large-sample, asymptotic properties of the composite distribu- 
tion are unknown. It is not at all clear what the Vincentized distribution represents or estimates. 
In spite of this critical drawback, Vincentizing is still commonly used with nonlocation-scale 
distributions because the method provides a composite distribution that "looks like" an average 
of the components (Ratcliff, 1979). The disadvantage of using vincentiles is severe. Since one is 
not sure what the composite distribution is estimating, inference and the ensuing interpretation 
of differences across populations or conditions are highly problematic. What is sorely lacking 
is a principled and powerful statistical platform for combining observations across participants. 
The HPBF fills this void by jointly modeling variability within and across participants simulta- 
neously. 

The Weibull and Its Psychological Interpretation 

Each participant provides a series of observations. Let Yij denote the response time of par- 
ticipant i on trial j (1 < i < I;  1 < j < Ji) .  Each observation is assumed to be independent and 
identically distributed from a three-parameter Weibull distribution with density 
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FIGURE 2. 
The Weibull parameters of shift, scale and shape. Each plot shows the effect of changing one parameter while holding 
the other two constant. 

13i (Yzj - ~'i ) ~ - 1  
f ( y i j  ] Oi, Oi,/~i) = Of i exp 

(Yij -- ~ i )  ~i I 
O-~i ~7 I , Y i j > O i . 

(1) 

Weibull parameters (~p, 0, #) are interpretable; they correspond to the heuristics of location (a 
shift parameter characterized as the lower bound), scale, and shape of the distribution, respec- 
tively. The role of these three parameters is shown in Figure 2. The Weibull is quite flexible 
encompassing any scale and shift. The shape can be varied from highly right skewed to nearly 
symmetric. 

The parameters of the Weibull have a psychological interpretation. In experimental psy- 
chology, there is a broad, long-standing distinction between two types of processes: central and 
peripheral 1 (Balota & Spieler, 1999; Dzhafarov, 1992; Luce, 1986). Peripheral processes are 
quick sensory processes which occur automatically, whereas central processes are processes that 
require conscious control and attention (e.g., Itasher & Zacks, 1979, Jacoby, 1991, Luce, 1986, 
Schnieder & Shiffrin, 1977). For example, moving your eyes to a location of a bright flash relies 
on peripheral processes while maintaining a ten digit phone number in memory relies mainly 
on central processes. It is common to assume that the latency of peripheral processes has little 
variability while the latency of central processes is variable and skewed. 

Differences in the structure of central processes across groups or conditions would be man- 
ifested as a difference in the shape parameter. Difference in the structure of central processes 
would include the insertion of stages (e.g., Ashby & Townsend, 1980; Balota & Chumbley, 1984) 
or changes in search strategy (such as those frequently encountered in visual search tasks, e.g., 
Treisman & Gelade, 1980). However if the central processes follow the same structure across 
different groups or conditions, but the speed of execution is different, then there would be dif- 
ferences in the scale parameter but not the shape parameter. Finally, differences in the speed 
of peripheral processes are manifested largely in changes in the shift parameter (e.g, Balota & 
Spieler, 1999; Hockley, 1984; Ratcliff, 1979). 

The shift parameter, ~Pi, connotes the quickest possible time for a stimulus-initiated re- 
sponse. This is the minimum time it takes for the stimulus to be converted to nervous system 
energy, propagate to the brain, and then to the part of the body making the response. Most sub- 
stantive theories incorporate the concept of a minimum RT in one way or another. For example, in 
stochastic process models of decision making (e.g., Busemeyer & Townsend, 1993; Link, 1975; 
Ratcliff, 1979; Rouder, 1996, 2001; ~Ibwnsend & Ashby, 1983), the predicted RT can be ex- 

1The terms central and peripheral do not necessarily refer to locations in the body or brain. It is known that central 
processes axe located in the cortex, but peripheral process may be cortical or subcortical. Peripheral processes include 
processes that may occur outside of the brain, for example, motor processes. 
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pressed as R T = a + D where a is a constant and D > 0 is a random variable denoting the time 
for central process completion. This constant denotes the minimum (it is also called the resid- 
ual, Luce, 1986, the time-for-encoding-and-response, Ratcliff, 1979; Ratcliff & Rouder, 1998, or 
the irreducible minimum, Dhzafarov, 1992; Hsu, 1999). Estimation of an irreducible minimum 
provides an important constraint on substantive theories. Substantive theories often make the 
prediction that the irreducible minimum does not Change across manipulations hypothesized to 
affect only central processing. 

Single Population Model 

The Model 

In this section, we implement the HPBF lbr a single population as a first step in model de- 
velopment. In the Weibull model, (1), the parameters ~Pi, Oi and ~i represent the i-th individual's 
shift, scale and shape parameters, respectively. The parameters OPi, Oi, fii) are assumed to come 
from a prior distribution. 2 In this model, the prior on each individual's shift parameter ~Pi is flat, 
for example, uniform over a finite range. ~Ille other two parameters, shape and scale, are assumed 
to be samples from a two-stage hierarchical prior distribution, whose first stage prior is given by 

(fii] rll, r12) ~ Gamma (rib rl2) restricted to fii > 0.01, (2) 

(07 fli I ~1, ~2) ~ Gamma (~1, ~2), (3) 

where Gamma (rll, rl2) denotes the gamma distribution with dmlsity 

f ( t l r l i ,  r12) = rJ~lt r/a-1 exp(-~12t)/F(~71) 

for t  > 0 .  
For the first stage, the prior for the shape parameter fli is a gamma disUibution with parame- 

ters rli and r12 restricted to the range/3i > 0.01. This somewhat unusual restriction is a technical 
one needed to insure that posterior moments exist t'or the Oi. The additional restriction is easily 
implemented in the MCMC simulation by sampling/3i from the posterior density in (c) below 
restricted to [0.01, oc). Although there is a theoretical problem with existence of the posterior 
mean of Oi with the more common gamma prior, the change in the sampling procedure for the fii 
had no effect at all on the data analyses reported below, labr given shape parameter fii, the con- 
ditional distribution of the scale parameter Oi is sampled so that 0/-k is from a Gamma(~l, ~2) 
distribution. Equivalently, 0 i is sampled from an inverse gamma distribution with parameters 
~1 and ~2, that is, t = 0~* has density g(t I ~1, ~2) = ~21e-~2/t/[t~+lF(~l)] for t > 0. This 
distribution will be called Inverse Gamma(~l, ~2). This choice of priors is quite general in the 
sense that it is flexible and can model a rea~sonably broad class of prior distributions. The setup 
is also convenient for computational reasons, as will be seen in the computational section below, 
and generalizes the lx'ior specification advocated by Berger and Sun (1993). 

Hierarchical priors are used for/3 and 0/~, but not for ~lj. ~Ille uniform prior on ~ is relatively 
uninformative and the model is computationally simple. This simplicity allowed us to explore 
more easily the properties of the Bayesian procedure through simulation. In the current model, 
the hierarchical priors in/3 and 0/~ yield shrinkage in all three parameters. It is not clear that a 
hierarchical prior on V* would yield any additional gain. 

The parameters (~1, ~2, rll, r12) of the first stage prior serve as hyper-parameters. These 
hyper-parameters describe how the shape and scale vary across individuals within the population. 
The second stage prior is given by mutually independent distributions: 

2We refer to distributions of parameters and hyper-parameters as prior distributions with no distinction between 
distributions of variables we regard as latent (such as shift shape and scale) and distributions reflecting a priori beliefs 
about a parameter. 
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;k ~ Gamma (ak, bk), k = 1, 2, (4) 

r~k ~ Gamma (ck, G),  k = 1, 2. (5) 

The main goal of practitioners is to do inference about differences in shift, scale and shape as 
a function of condition or population. In terms of HPBF, this means that practitioners will make 
statements about second-stage parameters, (rll, rl2, ;1, ;2). One critical benefit of the model is 
that it does indeed provide for inference on these second-stage parameters. That is, one is able 
to gather estimates and prediction intervals about the distribution of scale and shape across a 
population. 

Parameter Estimation 

In Bayesian frameworks, the goal is to obtain posterior quantities such as the posterior mean, 
variance, and the marginal posterior distribution for a parameter. We implemented parameter 
estimation with Gibbs Sampling (see Gelfand & Smith, 1990) as follows. 

Full-conditional distributions. To implement Gibbs sampling, we need the full conditional 
posterior distributions, given here and derived in the Appendix. In the following, we use [tl.] to 
denote the conditional density of t given its argument, and (t I') is the corresponding conditional 
distribution. 

Fact 1. The full conditional posterior distributions of (qs, 0,/3, ~, ~q) given y are as follows. 

(a) For given (0,/3, ~, aq; y), the//-r i are independent, and the conditional posterior density of//-ri 
is 

[Oil 0,/3, ~, ~; y] cx (Yij -- Oi) exp -- 0¢ ~ , 
[ . j= l  

where 0 < Oi < minl_<j_<ji Yij. 
(b) For given (qs, 13, ~, ~q; y), the Oi are independent and the conditional posterior distribution 

of 0/~ is 

(0F ~ Iqs,/3, ~, ~q; y) ~ Inverse Gamma ;1 + Ji, ;2 + Z ( Y i j  - • 
j = l  

(c) For given (qs, 0, ~, ~q; y), the fii are independent and the conditional posterior density of fii 
is 

i" ~/i-}-t]l { ;2 q- ~_.jJi l(Yij _ } Ji 
[~i I I~, 0, ~, 1~; y] CK o(jiq_~l)fl i exp Oe ~ -- rl2fli H(Y i j  -- Oi) ~i. 

' j = l  

(d) For given (qs, 0,/3, ;2, aq; y), the conditional posterior density of ;1 is 

bl e-bill 
[;1 t qs, 0 , /3 ,  ;2, ~q; Y] cx \ 0 ~ , ]  {r ( ;1 ) } i  . 

(e) For given (qs, 0,/3, ;1, ~q; Y), the conditional posterior distribution of ;2 is 

( a2 / 1 )  (;2 I qs, 0,/3, ;1, aq; y) ~ Gamma + 1;1, b2 + ~ - -  
i=1 09 i 
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(f) For given (qs, 0,/3, g, r12; y), the conditional posterior density of rll is 

(1~]I 17 I 
2 1 1i=1 fli) ~]1 Cl 

[r~l I q~, 0,/3, ~, r~2; y] <x {F(r~l)} I rh -1 exp{-dlr~l}. 

(g) For given (qs, 0, 13, g, rll; y), the conditional posterior distribution of rl2 is 

I 

(rl2 I O, O, [3, ~, rll; y) ~ Gamma c2 + Irll, d2 + Z fii 
i=1 

Sampling full-conditional distributions. Sampling from the full conditionals given in (b), 
(e), and (g) in Fact 1 is relatively straightforward as they are functions of Gamma and Inverse 
Gamma densities. The method we used is the modified rejection technique of Ahrens and Dieter 
(1974, 1982). The sampling of the remaining full-conditionals is somewhat more complex. One 
advantage of the current choices of priors is that they yield full-conditional densities that are log 

d 2 
concave. (A density fit is log concave if 577 (log f ( t ) )  <_ 0 for all t.) 

Fact 2. 

(i) The conditional density in (a) is log-concave if fli ~> 1. 
(ii) The conditional posterior density in (c) is log-concave. 

(iii) If I + 2al - 2 > 0, the conditional posterior density in (d) is log-concave. 
(iv) If I + 2cl - 2 > 0, the conditional posterior density in (f) is log-concave. 

The proof of the above fact is also given in the Appendix. With log-concave full-conditionals, 
we can use the adaptive-rejection method of sampling due to Gilks and Wild (1992; Wild & 
Gilks, 1993; see also Berger & Sun, 1993). If the full conditional densities are not log-concave, 
the adaptive rejection technique can be replaced with a Metropolis-Hastings step. The advan- 
tage of the adaptive rejection technique (without a Metropolis-Hastings step) for log-concave 
distributions is that of computational speed. 

Software. The Gibbs Sampling technique was implemented as a C-language program for 
UNIX/Linux platforms. Random number generation was done through the ran2 routine (Press, 
Teukolsky, Vetterling & Flannery, 1992). Source code, including a version of the Gilks and Wild 
adaptive-rejection sampling, is freely available by request. 

Benchmarking the Single Population Model 

The above single-population model was benchmarked vis-a-vis a nonhierarchical maximum 
likelihood (ML) approach. A three-parameter Weibull distribution was fit to each individual par- 
ticipant. 3 The nonhierarchical ML approach is the best yardstick to benchmark the model because 
it typifies the state-of-the art in experimental psychology. 

Data Set 

For a test, we used an unpublished data set in implicit learning provided by Michael Stadler. 
The data we analyze were from a practice block in Stadler's experiment. Participants were given 
one of four simple stimuli (an asterisk at one of four locations on a computer screen) and had 

3The negative log-likelihood function was minimized with repeated applications of the simplex algorithm (Nelder 
& Mead, 1965). 
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to make one of four responses by pressing a key on a computer keyboard. Each stimulus was 
mapped to a unique response. Eighty participants responded to 120 such trials. 

Before analysis, we trimmed outlying RTs of less than 0.2 seconds and greater than 1.2 sec- 
onds. The justification is that responses less than 0.2s and greater than 1.2s are too fast or slow 
to be related to the stimulus onset. In Stadler's data, less than .25% of the observations were 
trimmed. For each participant, we used the last 80 trials with correct responses and RTs in the 0.2s 
to 1.2s range as our benchmark data set. The choice of using the last 80 trials that met the above 
criterion was motivated by the desire to minimize the impact of practice. The first 40 trials will 
be impacted to a larger degree by practice effects than will be the latter 80. The model was not 
adapted to include trimming. Given the extremely small number of trimmed observations, the 
lack of accounting for trimming is negligible. Future models will be more complex. 

A summary analysis of the data revealed great variability of response times both within par- 
ticipants and across participants. The mean of the sample standard deviations serves as an index 
of the amount of variability within participants while the standard deviation of the sample means 
serves as an index of the amount of variability between participants. The within-participants in- 
dex (.093s) is only about twice as big as the between-participants index (.055s). This means that 
between-participants variability is moderately large and such variability may affect estimation. 
To further illustrate the types of variability in the data, histograms from six participants are shown 
in Figure 3. The left column shows two participants who differ greatly in shift, especially with 
regard to the onset of the distribution. The following columns show differences among partici- 
pants in scale and shape. The data for these participants are fairly extreme and define the range 
of variability on these distribution characteristics. 
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FIGURE 3. 
Histograms of RTs for selected pairs of participants. The left column emphasizes differences in shift across participants. 
The middle and right columns emphasize differences in scale and shape, respectively. 
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Bayesian Estimation 

Choice of priors. To compute estimates with HPBF, a prior density must be placed on pri- 
mary parameters ~Pi as well as hyper-parameters r~k and ~k by choosing values for (ak, bk, Ck, dk), 
k = 1, 2. The prior for ~Pi is a uniform of finite range. All that is necessary is that the the top 
bound be greater than the value of the minimum observations. We used a uniform from 0 sec to 
1 sec. Indeed, the minimum observation for each participant was less than 1 sec. The choices for 
the hyper-parameters take some ingenuity as they specify priors (hyper-priors) for the parameters 
of the first level priors on the actual parameters (Oi, fii) of interest. The priors used were chosen 
to be "vaguely informative", that is, they are not so diffuse as to be completely noninformative, 
but they were designed with prior knowledge of the kinds of response times that are obtained in 
practice. 

The following computations will be used in choosing priors. To find the hyper-parameters 
(ak, bk) and (Ck, dk), k = 1, 2, we need the marginal priors of fii and Oi. Letting f ( ' l ' )  denote 
the gamma density as above, the marginal prior of fii is 

ml(fi) = f (filrll, rl2) f Oll l Cl, dl) f O12 ] c2, d2)drll drl2 (6) 

_ '12 t- '11 "2 e x p  - d l l ~ ] l  - (d2 q- fl)rl2 drll drl2 
U(Cl)U(c2) U0/1) 

for fi > 0. Using the Inverse Gamma density g(.].) given above and changing variables, the 
marginal prior for Oi is 

m2(0) = fiO~-lg(O ~ ] ~1, ~2)f(fi ] rll, rl2) (7) 

2 

x U f(~k ] ak, bk)f(rlk ] Ck, dk) dfi drll dr12 d~l d~2 
k = l  

= k=l F(ak)F(Ck) G d f i d ~  d~2d~ll d~12, 

where 

, ~ t l l ~ . a l - - l ~ . ~ l q - a 2 - - 1  c1--1 t/lq-C2--1 

exp{-bl~l  - b2~2 - dl~ll - (fi + d2)~12 - ~ }. 

To obtain these priors and judge the effects of the choice of hyper-parameters, we used 
the marginal priors given in (6) and (7). The marginal prior ml(fi) can be evaluated by a one 
dimensional numerical integration. By studying graphs of various combinations of parameters 
(Ck, dk), k = 1, 2, the parameters in Table 1 labeled "vague prior" were chosen. Priors were 
picked based on prior knowledge of response times to simple stimuli (without examining the 
data). RT typically range from about 200ms to perhaps 800ms. A uniform prior on [0, 1 sec] was 
taken for ~Pi because we wanted to supply very little prior information. Note that we allow ~Pi to 
be smaller than 0.2s even though we assume that response times must be larger than 0.2s. From 
inspection of previous research, the shape parameter for response times is generally between 1.4 
and 3.3 with a central tendency around 2.0 (see Logan, 1992). The marginal distribution on shape 
induced from the vague prior of Table 1 is graphed in the bottom panel of Figure 4. Because 
the marginal prior for 0, m2(O) given in (7), cannot be analytically reduced to less than three 
integrals, we used histograms of Monte Carlo simulations from potential marginal distributions 
to see the effects of the hyper-parameters on the marginal prior distribution. To simulate, we first 
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TABLE 1. 
Prior parameters for HPBF single-population model and four alternatives. 

0-/~ fi 

~m ~2 ~] m ~]2 

a l  bl  a2 b2 cm dm c2 d2 

Vague Prior 2.0 O. 1 2.0 2.85 2.0 0.02 2.0 0.04 
Alternative Prior 1 2.5 1.0 2.5 1.0 0.3 0.01 0.28 0.02 
Alternative Prior 2 5.0 0.5 5.0 0.5 0.3 0.01 0.28 0.02 
Alternative Prior 3 2.0 0.1 2.0 2.85 1.0 1.0 1.0 1.0 
Alternative Prior 4 5.0 0.5 5.0 0.5 1.0 1.0 1.0 1.0 

drew" parameters (rim, rl2, ~m, ~2) from the second-level prior distributions specified by trial values 
of  the (ak, bk, ck, dk). Values of  fi and t = 0fi were then drawn from the respective Gamma and 
Inverse Gamma distributions, and finally 0 = t 1/~ was obtained. The values of  (a], b]) and 
(a2, b2) for the "vague prior" in Table 1 were chosen after considerable experimenting. The 
marginal prior as shown in Figure 4 is reasonably flat with a long right tail. Again, this is a rather 
noninformative choice as the prior experience suggested that mass should be between 50ms and 
400ms. 

To study the effect of  our choice of  prior hyper-parameters, we also analyzed the data using 
four other priors, listed in Table 1. The tbur alternative priors were chosen to be extreme alterna- 
tives to the vaguely informative prior of 'Ihble 1. The marginal prior on fi induced by Priors 1 and 

t- 
(1) 

£3 

4° I 30 fi 

20 ~'~l 

1 0 1  n ~ '~  U 

Scale Marginal prior ] 
- - Posterior for Participant 15 

Posterior for Participant 65 

T T T f ] 1"  
0.0 0.2 0.4 0.6 0.8 1.0 (in sec) 

2 . 5 -  

2 . 0 -  

1.5-  

1 . 0 -  
£3 

0 . 5 -  

0.0 

• i t :  

Shape - -  Marginal prior 
- - Posterior for Participant 15 
. . . .  Posterior for Participant 65 

I I I I I I I 
0 2 4 6 8 10 12 

FIGURE 4. 
Prior and posterior densities of the scale (0) and shape (fi) parameters for two representative participants. 
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2 has mass shifted toward zero; that induced by Priors 3 and 4 has mass shifted toward implau- 
sibly large values. The marginal prior on 0 induced by all four alternative priors is bimodal with 
a second mode around 1 sec. Priors 1, 3, and 4 have significant mass above 1 sec. Even though 
these priors are extreme, the resulting posterior estimates are very close to those obtained with 
the vague prior. Hence, for this model and data set, parameter estimates are not overly sensitive 
to specification of the prior. 

Figure 4 also depicts posterior density" estimates for two representative participants. As can 
be seen, the posterior densities have far less spread than the prior densities, indicating that the 
knowledge gained about the parameters has dramatically increased. 

Chain convergence. We conducted extensive experiments to determine MCMC convergence 
with respect to initial values. The primary parameters (,,/~ and 0 converge rapidly. Convergence 
is slower for the hyper-parameters in general; parameters ~2 and ~2 were the slowest to converge. 
To formally assess convergence, we followed Gelman and Rubin (1992) and estimated the scale 
reduction factor,/), of parallel sequences. We experimented with initial values 0.0001, 5.0, 80.0 
and 100.0 for r11; 0.1, 1, 2 and 4 for ~2; 0.0001, 5.0, 30.0, and 40.0 for ~1; 0.1, 1, 2 and 4 for 
~2; and 0.0001, 0.8, 2.5 and 3.0 for/3j. Because the posterior distribution of Oj must belong 
to the interval (0, 7*]), where 7*] = mink yjk, we tried initial values 7*~/5, 2 ~ ] / 5 ,  3~ ] /5 ,  and 
47*]/5. Since Oj can be simulated at the beginning of each of the Gibbs cycles, no initial values 
are needed. In all of these cases, the estimated scale reduction factors/~ for the hyper-parameters 
were less then 1.05 when the Gibbs sample sizes are larger than 3,000. This value compares 
favorably with Gelman and Rubin's recommendation that/~ be less than 1.20. These experiments 
resulted in convergence of the MCMC simulation regardless of starting values. 

For the comparisons described in the next section, we used a very conservative burn-in 
period of 10,000 cycles with an additional 50,000 for estimation. 

Comparing ME and HPBF estimates 

To obtain point estimates from HPBF, we estimated the means of the marginal posterior 
distributions by computing sample averages from the MCMC simulations. The point estimates 
from both ML and HPBF are displayed in Figure 5. The top row of the figure shows boxplots of 
the estimates across participants. The bottom row shows scatter plots in which the ML estimates 
are plotted on the x-axis and the Bayesian estimates are plotted on the y-axis. The Bayesian and 
ML estimates tend to have similar medians across participants. For participants with moderate 
estimates, the two estimators tend to be highly similar. Overall, there is less variability" in the 
Bayesian estimates as evidenced in both the boxplots as well as by a slope less than unity in 
the scatter plots. This effect is most noticeable for the shape parameter. The most extreme ML 
estimators tend to be more extreme than their Bayesian counterparts, especially for small values 
of shift and large values of shape. 

For several participants, ML and HPBF estimates are nearly identical. However, for some 
participants, there are differences. Figure 6 highlights these differences and also shows the effect 
of shrinkage in the HPBF estimates. In the figure, the Weibull density is fit to the empirical 
histograms. The solid lines denote the case in which the parameters are the MLEs; the dotted 
lines denote the case in which the parameters are the posterior-mean point estimates from HPBF. 
For the top two panels, Participants 3 and 5, the model fits and data show a fair amount of 
skew. But, the ML fit is more skewed than the IIPBF fit. In the bottom two panels, Participants 
38 and 63, the model fits and data show a fair amount of symmetlT. But, the ML fit is more 
symmetrical than the HPBF fit. In these cases, the differences in shape are accompanied by 
substantial differences in shift. As shown by the arrows, the shift estimate for the ML method is 
several tens of milliseconds lower than that of the HPBF method. 
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FIGURE 5. 
MLE arid Bayesian estimates for Stadler's data. 

Simulation Studies 

The question facing researchers is which method better estimates the true values of the 
parameters. To help answer this question, we performed a small Monte Carlo study in which 
the estimates from Stadler's data served as "true values". In Simulation 1, each participant's ML 
estimates served as the "true values" and were used to generate a set of 80 observations per 
participant. We then fit the simulated data set with both the ML and HPBF methods. A total of 
1055 such tests were performed. 

To speed convergence in the simulation experiments, we used starting values based on the 
ML estimates. For example, to determine a suitable set of starting values for qI and q2, we used 
the method of moments on the ML estimates 3j, equating the sample mean to rh/~12 andA the 

sample variance to ~t1/rJ~. A similar procedure was used with the estimates ,%j = Oj ~J. The 
sample mean and variance of ,%j were equated to ~1/~2 and ~1/~2 respectively to obtain initial 
values. With these carefully chosen starting values, a buru-in period of 3,000 cycles with an 
additional 3,000 samples for estimation were sufficient. 

Based on these simulations, we calculated the root mean squared error (RMSE) and mean 
absolute error (MAE) across all participants. The reported numbers are the average of these 
RMSEs and MAEs across tests. Simulation 2 was identical to Simulation 1 except that each 
participant's HPBF estimates were used as "true values". There were 854 tests. Because the 
HPBF Bayes estimates are optimal when data are actually sampled from a HPBF, we anticipated 
that the Bayesian estimates would do especially well in Simulation 2. 

Table 2 shows the results of the simulations. There is a substantial advantage for the HPBF 
estimators over their ML counterparts in terms of RMSE. This advantage is due in part to the 
fact that the actual sampling distributions of the MLEs ha~e rather heavy tails, and occasional 
extreme estimates are produced. RMSE tends to be more heavily influenced by outliers than mean 
absolute error. By borrowing strength, the Bayes estimates tend to be much better in samples 
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FIGURE 6. 
Histograms and fits for four different participants. The solid lines and dotted lines show Weibull densities with parame- 
ters from ML and HPBF estimates, respectively. These particular participants were selected to maximize the difference 
between estimation methods. 

where ML performs poorly. This effect is so pronounced that the ratio of RMSE of the MLE to 
the Bayes estimates is greater for "MLE truth" than for "Bayes truth". 

In the above simulation with 80 observations per participant, we showed an advantage of 
HPBF over ML. We further benchmarked the two approaches with small sample sizes. Instead of 
analyzing 80 observations per participant, we limited the data set to the last 20 observations per 
participant. Parameters were estimated as in the previous analysis. Figure 7 shows box plots and 
scatter plots for both Bayesian and ML estimates. One of the participants was removed because 
of extreme MLE estimates (shift of - 12 sec, shape of 250). Even after this outlying participant 
is removed, there is more variability in the MLE estimators for shift and scale and dramatically 
more variability for shape. 

We performed a small Monte Carlo simulation to help interpret these differences in estima- 
tion. The simulation was similar to those previously described. MLE estimates from all eighty 
observations for each of the eighty participants were used as "truth values". Then, data sets, 
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TABLE 2. 
Benchmark of MLE vs. HPBF 

M L E  as true values  H P B F  as true values  

R M S E  M A E  R M S E  M A E  

M L  Est imates  .0351 

H P B F  Est imates  .0221 

Ratio 1.59 

M L  Est imates  .0402 

H P B F  Est imates  .0273 

Ratio 1.47 

M L  Est imates  .5457 
H P B F  Est imates  .3896 

Ratio 1.40 

Shift  (~ )  
.0172 .0216 .0155 

.0148 .0152 .0116 

1.16 1.42 1.33 

Scale (0) 

.0228 .0274 .0207 

.0195 .0201 .0156 

1.17 1.36 1.34 

Shape  (/3) 

.2998 .3488 .2652 

.2739 .1944 .1525 

1.09 1.79 1.74 

RMSE: Root-mean-squared error. 
MAE: Mean absolute error. 
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FIGURE 7. 
MLE and Bayesian estimates for the last 20 trials in Stadler's data. Top row shows boxplots of estimates with one par- 
ticipant's estimates removed (MLE estimates were exceedingly extreme). Bottom row shows the scatter plot of Bayesian 
estimates as a function of MLE estimates with the outlying participant removed. 
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TABLE 3. 
Benchmark of MLE vs. HPBF for small sample sizes 

Shift (Vs) Scale (0) 

RMSE MAE RMSE MAE 

Shape (/3) 

RMSE MAE 

MLE 1.264 .226 1.269 .238 21.363 3.855 
HPBF .038 .027 .044 .032 .549 .397 
R ~  33.6 8.4 28.7 7.4 39.0 9.7 
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consisting of twenty observations for each of the eighty participants were generated. Based on 
these generated data sets, MLE and HPBF estimates were obtained. There were 866 such tests. 
The RMS-error between the true values and the estimates is shown in Table 3. As can be seen, 
HPBF estimates are dramatically more accurate than the ML estimates. The large RMS-error for 
the MLE reflects the presence of extreme estimates. The extreme estimates from the data are 
neither unexpected nor due to misspecification of the Weibull model; they are common even in 
estimates from data simulated from the Weibull distribution. Thus, the ML approach is flawed 
for estimating shift, scale, and shape Weibull parameters with small sample sizes. 

The difficulty of ML estimation with the three-parameter Weibull is well known in the 
statistics literature (e.g., Smith & Naylor, 1987) and is a result of violations of the regularity 
condition (see Johnson, Kotz, & Balikrishnan, 1994). Psychologists have also been aware of 
this problem with MLE estimation for the three-parameter Weibull (Dolan, van der Maas, & 
Molenaar, in press; Heathcote, 1996; Van Zandt, 2000). Even with these well-known problems, 
ML estimation is considered the gold-standard for estimation of RT distributions. Van Zandt, 
in her recent review of several estimation techniques, finds no method that performs as well as 
MLE. The hierarchical approach presented here is new and was not available to Van Zandt for 
evaluation. Clearly it greatly outperforms MI~ estimation for small-sample sizes and provides an 
attractive alternative for psychologists who need to pool data across participants. 

Concluding Points 

In this paper we presented a model of I~F distributions. The approach is hierarchical, ac- 
counting for variability within and between participants simultaneously. Estimation and infer- 
ence are done with Bayesian Monte Carlo Markov Chain sampling methods. Overall, estimation 
is superior to the nonhierarchical, maximum likelihood approach. We believe this statistical plat- 
form for higher-order distribution properties will aid in developing and testing psychological 
theory. 

The Appendix 

Proof of Fact 1. For (a), since [qt] ~x 1, we have 

[qs I O,/3, {7, aq; y] ~x [y [ qs, 0, 13] ~x E E[YiJ [ ~Pi, Oi, fli]. 
i=1 j = l  

The result follows. For (b), note that 

, i, { 
cx i=lE 0}~+11)/~i+1 exp 

~2 d- ~ j= l (Y i j  -- ~ri)~i 

O:i 
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The result is immediate. For (c), we get 

[/31 tO, o, ~', n; y] o~ [y I tO, o, /3]  [o I/3, ~] [/3 1 o]. 

Other conditional distributions can be proved similarly. D 

Proo f  o f  Fact 2. For (i), if  qzi ~ (0, minl_<j<_& Yij), the first derivative of the logarithm of  
the conditional posterior density of Oi is 

O log[Oi l O, /3, ~, ~q; y] ~ fii -- l fii ~ l  
O.~r i . . . .  (Yij -- Oi) ~i-1. 

j= l  Yij : ~:i + O: ~ .= 

The second derivative of the logarithm of this conditional density is 

02 log[0i I 0, /3,  ~, aq; Y] V"Js fii - 1 
a <  = - 

fli(fli_-- 1) ]~ (Yij - -  I~i ) ( f3*- : l ) ( f l i -2) ,  

which is negative if fii > 1. Part (i) holds. For (ii), we have 

a 2 log[fii I tO, 0, ~, ~1; Y] Ji -~- T]I 

ae? e? 
k (  y i j - ~ i  l o g 2 \  0 i ) < 0 ,  

for any ~i > 0. For (iii), we get 

0 2 log[~l I tO, 0 , / 3 ,  ~2, rl; Y] al -- 1 3 2 
a~2 -- ~2 I0~7  l°g r(~l)" 

It follows from Formula (1.46) of Bowman and Shenton (1988) that the second derivative of the 
log gamma function has the expression 

0 2 log F(ce) 1 

Oc~ 2 c~ 

1 2re f o c  x/Te2Zr ,/7 
+ ~ 2 + - - J o  1) 2dr '  f o r ~ > 0 .  ce (ce2 + t) (e2Zr,fi _ 

We have then, 

02 log[~l I tO, 0, /3,  ~2, aq y] _ I I + 2al - 2 2re [ t o  x/Te2ZC,/i 

a ~  ~l 2~ 2 ~l Jo (~2 + t)(e2:r~/i _ 1)2 

which is negative if I + 2al - 2 > 0. Finally, for (iv), 

02 log[~71 ] to, 0 , / 3 ,  ~,  ~]2;  Y] C l  - -  1 02 
I 

a,17 ,12 a,j2 
log F(Ol) 

dt ,  

which is negative if I + 2Cl - 2 > 0. 

I I + 2Cl -- 2 2re l o t  - -  ~=x/tee~r,/~ 
d t ,  

r]l 2tl 2 T]I Jo (tt 2 + t)(e 2~r'fi -- 1) 2 

D 
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