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C O E F F I C I E N T S  F O R  M E T R I C  SCALES 

FRITS E. ZEGERS 

UNIVERSITY OF GRON1NGEN 

A chance-corrected version of the family of association coefficients for metric scales proposed 
by Zegers and ten Berge is presented. It is shown that a matrix with chance-corrected coefficients 
between a number of variables is Gramian. The members of the chance-corrected family are 
shown to be partially ordered. 
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A family of association coefficients for metric scales was derived by Zegers and ten 
Berge (1985), with coefficients of the form 

2 ~ Uix Uiy (1) 
2 ~ 

g(x, Y) E u ,x + E u,, 

where, as in the remainder  of the present paper, summat ion  runs  from i = 1 to N, and  the 
symbol  U denotes a "uniforming" t ransformat ion of the original variables. The form of 
the t ransformat ion  U depends on the scale type of the variables. For  each of the four 
metric scale types the general formula (1) results in a specific association coefficient. 

In  the present paper  a chance-corrected version of the g-coefficient defined by (1) will 
be proposed. The matrix with g-coefficients between a number  of variables is G r a m i a n  
(positive semi-definite; Zegers & ten Berge, 1985). It will be shown that the chance- 
corrected g-coefficient has the very same property. It  will also be shown that  as a result of 
the opt imal i ty  properties of the uni forming t ransformat ions  the four members  of the 
chance corrected g-coefficient family are partially ordered. 

The Chance-Corrected g-Coefficient 

A wel l -known approach to chance-correction of an association or agreement  coef- 
ficient A is to define 

A o -- A c 
A' = (2) 

A m -- A c' 

where A' is the chance-corrected coefficient, A 0 is the observed coefficient, A c is the coef- 
ficient under  chance and  A m is the m a x i m u m  value of the coefficient regardless of the 
marginals .  Cohen 's  kappa (Cohen, 1960) is an example of a coefficient of this type. 

Given  the sample dis t r ibut ions of X and Y, and  therefore of U x and  Uy, the value of 
g(X, Y) under  chance, go(X, Y), is by definition the expectation of g(X,  Y) over all permu-  
ta t ions  of the scores on X. The denomina to r  of (1) is invar ian t  under  permuta t ions  of this 
kind. The expectation of the numera to r  of (1) over permuta t ions  of the X-scores is given 
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by 

E (2 E U,x U,y) = 2N-1 ~U,x  ~ U~. (3) 
P 

(Kendall & Stuart, 1961, p. 474). This yields 

2N-1 E Ux E Ue (4) 
oo(x, Y )=- -E5~  + E v~ ' 

where the index i has been dropped for convenience. Correcting the g-coefficient accord- 
ing to (2), with one as the maximum value of 9 and (4) as the value under chance, we 
obtain 

2(Z vx tJ~ - u - '  Z vx E v~) (5) 
¢ (x ,  Y) = Z Ux ~ + E v ,  ~ - 2N-~ Z vx E v /  

It can easily be verified that for the difference scale and the interval scale the correct- 
ed O-coefficients are identical to the corresponding 0-coefficients; that is, for the additivity 
coefficient (axr) and the product-moment  correlation (r~y), respectively. 

For  the absolute scale the corrected identity coefficient is 

2(Z X,  Yi -- N - t  y" X ,  E Y~) 
e ~ y = E  X2 + E  y 2 _ 2 N - X E X ,  E Y/ 

2S~e .... (6) 
s~ + s~ + (M~ - M~) ~' 

where S~y is the sample covariance of X and Y, S 2 and S~ are the sample variances, and 
M x and Mr are the sample means of X and Y, respectively. It  may be noted that e 'y is 
identical to the coefficient of equality proposed by Jobson (1976). 

For  ratio scales the corrected proportionality coefficient is 

Z x, Y , -N- '  y x, Z Y, 
e'xy = (~, x 2 Z y2)1/2 _ N - x  Z Xi  Z Yi 

Sx~ (7) 
( u - t  y~ x~)x/~(N-~ E Y,~)': - Mx M, 

In order to prove that the matrix with g'-coefficients between a number of variables 
is Gramian,  a temma on Gramian  matrices will be proved first. 

A Lemma on Gramian  Matrices 

Lemma. If Z is a Gramian  matrix of order k, with elements z u in the range ( -  1, 1), 
i, j = 1, 2 . . . . .  k, then also the k x k matrix Z* with elements z~ = (1 - zu)-t ,  i, j = 1, 2, 
. . . .  k, is Gramian. 

Proof By applying the binomial expansion to the elements of Z* (Abramowitz & 
Stegun, 1972, Equation 3.6.10), it is clear that Z* is an infinite sum of k x k matrices Z t") 
with elements z~, p = 0, 1 . . . .  Obviously, Z t°) = 11' is Gramian.  The matrix Z tl) = Z is 
Gramian  by definition, and for p > 1, Z ~v), being the Hadamard  (element-wise) product of 
Gramian  matrices, is Gramian  (Schur, 1911). Therefore, Z*, being an infinite sum of Gra-  
mian matrices, is Gramian.  

A Matrix With 9'-Coefficients is Gramian  

In order to prove that the k x k matrix G with O'-coefficients between k variables is 
Gramian  it will be shown that G can be expressed as two times the Hadamard  product of 
three Gramian  matrices G 1, G 2 and G 3 . 
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Define G~ as the matrix with h,j-th element (Z  U2 + Z U])-~ ,  G 2 as the matrix with 
h,j-th element So.h~, J and G 3 a s  the matrix with h,j-th element (1 - tih)-1, with 

2 N - '  Z Ch E Uj (8) 

= - Z  + z ' 

then it can be verified that G = 2G1 • G 2 • G 3 ,  where • denotes the H a d a m a r d  product.  
Matr ix  G~ is Gramian  (Zegers & ten Berge, 1985), and G2, being a symmetric covariance 
matrix, is Gramian  as well. It can be verified that the k × k matrix with elements tjn is 
Gramian  and that tZh < 1. Therefore, G 3 is a matrix of the type Z* defined in the L e m m a  
presented above, which shows that G 3 is Gramian.  This concludes the proof  of  the Gra-  
mian proper ty  of G. 

The matrix G is Gramian  with unit diagonal  entries. This means that the g'- 
coefficient is an E-correlation coefficient in the terminology of  Vegelius (1978) and Janson 
& Vegelius (1978). 

Optimali ty Properties of the Uniforming Transformat ions  

The uniforming transformations U defined by Zegers & ten Berge (1985) were chosen 
for reasons of  convenience. It can be shown, however, that  for each of  the four metric 
scales the uniforming t ransformat ion maximizes the absolute value of  the g'-coefficient 
within the class of permissible transformations.  

To verify the optimality properties of  the uniforming transformations,  consider the 
general linear t ransformations U x = b,,X + a,, and U r -- by Y + a r. Using these transfor- 
mat ions  in (5), we get, after some algebra 

2b x by Sxy (9) ' X  g(  • Y) = z 2 ~ 2 {bx(Mx ax ) L by(M r +  b x S x + by Sy + + ay)} 5" 

The constants  ax and a r only appear  in the last (squared) term of  the denomina tor  of  (9). 
Clearly, for every choice of b x and b r the absolute value of  g'(X, Y) is maximized by 
taking ax = --M~ and a~, = - - M  r .  Therefore, if the scale type permits an additive trans- 
formation,  centering the variables a round  zero is optimal. 

Furthermore,  rearranging the terms in (9) yields 

2sx~ (10) 
g'(X, Y) = {(bxby_ 1)1/2T ~ _ (bfflby)i/~Tr}2 + 2 L  ~ _ 2(Mx + ax)(M r + ay)' 

with T 2 = Sx z + (M~ + ax) 2 and T 2 defined in a parallel fashion. The constants b~ and by 
only appear  in the first (squared) term of  the denomina tor  of (10). For  every choice of a~ 
and a r the absolute value of  g'(X, Y) is maximized by taking (b~b~ 1)1/2T~ = (b~-lbr)l/ZT r, 
which can be simplified to b~ T~ = b r Ty, and hence bx = cT~ 1 and b r = cT~ t for arbi- 
trary c > 0. If  the scale type permits rescaling of  the variables the uniforming transforma- 
tion defined by Zegers and ten Berge (1985) implies taking b~ = T~-~ and b r = T 7 x, which 
is an optimal choice. 

As a result of  the optimizing properties of  the uniforming transformations the four 
g'-coefficients are partially ordered. Both  the additivity coefficient a 'y  = axr and the cor- 
rected proport ional i ty  coefficient p ' r  exceed or  equal (in absolute value) the corrected 
identity coefficient e'~y. The p roduc t -moment  correlat ion exceeds or  equals (in absolute 
value) the other three members of  the g'-coefficient family. 

Discussion 

Zegers and ten Berge (1985) advoca ted  using the identity coefficient exy as a measure 
of  profile similarity when both levels and dispersions are to be respected. Obviously,  the 
corrected identity coefficient e~,y is another  candidate for this situation. The two coef- 
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ficients, however, take account  of level in different ways. The e-coefficient is affected by 
any change in level of X and /o r  Y, whereas the e'-coefficient is only affected by differential 
changes of the X and  Y levels. It can be concluded that e'x~ should be chosen as a coef- 
ficient of profile similarity when dispersions and  differences in level are to be respected, 
whereas exy should be chosen when dispersions are to be respected as well as levels in an 
absolute sense. Similar considerat ions  play a role in choosing a coefficient to express the 
degree of interrater  agreement.  

Another  difference between exr and  e'x~. is impor t an t  in the context  of profile simi- 
larity. Like the H-coefficient of profile similarity (Sj6berg & Holley, 1967), which is identi-  

cal to Pxy, the identity coefficient e~, is insensitive to changing the polar i ty  (sign) of one or 
more variables in the profiles. It can readily be verified that e~,, is sensitive to such 
changes in polarity. 

Tucker ' s  congruence coefficient (Tucker, 1951) is often used as a measure of factorial 
invariance.  The congruence coefficient has been criticized because it cannot  be zero when 
both  factors have only positive loadings (P inneau  & Newhouse,  1964, p. 275). The cor- 
rected propor t ional i ty  coefficient p'~y does not  suffer from this shortcoming.  However,  P'xy 
has two drawbacks  as a measure of factorial invariance.  Firstly, the size of p~,y is affected 
by changing  the sign of one of the co lumns  of factor loadings and  secondly p~,y is sensitive 
to changing  the sign of one or more of the variables. 
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