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A plausible s-factor solution for many types of psychological and educational tests is one 
that exhibits a general factor and s - 1 group or method related factors. The bi-factor solution 
results from the constraint that each item has a nonzero loading on the primary dimension and 
at most one of the s - 1 group factors. This paper derives a bi-factor item-response model for 
binary response data. In marginal maximum likelihood estimation of item parameters, the 
bi-factor restriction leads to a major simplification of likelihood equations and (a) permits 
analysis of models with large numbers of group factors; (b) permits conditional dependence 
within identified subsets of items; and (c) provides more parsimonious factor solutions than an 
unrestricted full-information item factor analysis in some cases. 

Key words: bi-factor model, marginal maximum likelihood, EM algorithm, item analysis, di- 
chotomous factor analysis. 

Introduction 

Consider a set of n test items for which an s-factor solution exists with one general 
factor and s - 1 group or method related factors. The bi-factor solution constrains each 
item j to have a nonzero loading ajl on the primary dimension and a second loading 
(o~jk, k = 2, . . .  , s) on not more than one of the s - 1 group factors. For  four items, 
the bi-factor pattern matrix might be 

Otll Oil2 ] 
0~21 Ol22 00 

= OZ31 0 0~33 " 

or41 0 c~43J 

This structure, which Holzinger and Swineford (1937) termed the "bi - fac tor"  solution, 
also appears in the inter-battery factor analysis of  Tucker  (1958) and is one confirma- 
tory factor  analysis model considered by JOreskog (1969). In these applications, the 
model is restricted to test scores assumed continuously distributed. But it is easy to 
conceive of  situations where the bi-factor pattern might also arise at the item level 
(Muthrn,  1989). It is plausible for paragraph comprehension tests, for  example,  where 
the primary dimension describes the targeted process skill and additional factors de- 
scribe content  area knowledge within paragraphs. In this context ,  items would be 
conditionally independent between paragraphs, but conditionally dependent  within 
paragraphs. Tests consisting of  items tapping different content  areas also are suitable 
for this type of  analysis. 

The purpose of  this paper is to derive an item-response model for binary response 
data exhibiting the bi-factor structure and to develop a practical parameter  estimation 
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method. As we show, the bi-factor restriction leads to a major simplification of likeli- 
hood equations that (1) permits analysis of models with large numbers of group factors, 
(2) permits conditional dependence among identified subsets of items, and (3) provides 
more parsimonious factor solutions than an unrestricted full-information item factor 
analysis in some cases (e.g., Bock & Aitkin, 1981). In the following sections, the 
marginal likelihood and its first derivatives will be derived so that an EM solution to 
item bi-factor analysis may be obtained. 

Likelihood Evaluation 

To begin, consider Thurstone's  (1947) multiple factor model for item j ,  ( j  = 
1, . . . ,  n) 

y j  = OtjlO 1 + Otj202 - } - ' '  " +  OtjsO s + ej.  (1) 

The latent variable yj is assumed to be distributed N(0, 1) and the underlying abilities 
(0) as N(0, I). These assumptions imply uncorrelated underlying abilities and residuals 
distributed as 

Subject i is assumed to score xij = I on i t e m j  if 

$ 

Y6 = ~ OlJ kOik "{" E~j 
k = l  

exceeds the threshold 39 ; otherwise, xij = 0. The bi-factor restriction requires that only 
one of the k = 2 , . . .  , s values of ajk be nonzero in addition to a j l .  As will be shown, 
this restriction remarkably simplifies the numerical integration that is required in the 
marginal maximum likelihood solution of the unrestricted multiple item-factor model. 

Returning to the unrestricted case, the probability of a correct response for subject 
i to item j ,  conditional on abilities 0 is, 

P(xij  = ll0i) = (27r)1 n exp dt ~j (Oi) ,  (2) 
z~(0i) 

where 

s 

~J -- Z °l jkOki 
k = l  

- z ; ( O i )  = 
O'j 

Using the multidimensional extension of the conditional independence assumption 
(i.e., responses are independent conditional on all 0), the probability of subject i re- 
sponding in pattern xi = [xi l ,  xi2, . . .  , Xin] conditional on abilities 0 is 

t /  

P ( x  = x ;10)  = 1 ~  [ % ( 0 ) ] x ' ~ [ 1  - % ( o ) ]  ~ -x'J = t,(O). 
j = l  

(3) 
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For a random subject sampled from a population with continuous ability distributions 
9(0), the unconditional probability of response pattern x i is 

££ f: P(x = xi) . . . .  Li (O)g(o , ) (O1)  " " " g ( O s )  dOl  • "" d O s ,  (4) 

given the conditional independence assumption and taking 9(0) to be multivariate nor- 
mal N(0, I). We can employ an s-dimensional Gauss-Hermite quadrature to approxi- 
mate (4) as 

Q Q Q 

P ( x  = x , )  = ~ . . .  Y .  ~ ,  e ( x  = x ,  l X q , ,  X q 2 ,  . . . X q s ) a ( x q l ) a ( X q 2 )  " " A ( X q s ) .  
qs q2 ql 

(5) 

The multidimensional conditional independence assumption permits evaluation of 
the s integrals in (4) by a q s point quadrature for the unrestricted multiple factor model. 
Of course, as s gets larger than 4 or 5, this computation becomes intractable for even 
small numbers of quadrature points per dimension. This is not the case, however, for 
the bi-factor model. The unconditional probability in (4) is obtained by evaluating the 
probability of dimensions 2 , . . . ,  s, and integrating with respect to the distribution of 
01. The bi-factor restriction reduces the s-dimensional integral in (4) to a two-dimen- 
sional integral, one for 01 and one for 02, . . . ,  Os. The reduction formula is due to 
Stuart (1958), who showed that if n variables follow a standardized multivariate normal 
distribution where the correlation pj,j = ~ = I  °tj'k°Ljk and ajk  is nonzero for only one 
k, then the probability that respective variables are simultaneously less than yj is given 
by 

where cjk = 1 denotes a nonzero loading of i t emj  on dimension k (k = 1 . . . . .  s), and 
cjk = 0 otherwise. Note that for item j ,  cjk = 1 for only one k. 

Equation (6) follows from the fact that if each variate is related to a single dimen- 
sion only, then the s dimensions are unconditionally independent, and the joint prob- 
ability is the product o f s  unidimensional probabilities. In this context,  the result applies 
only to the s - ! "nu i sance"  dimensions (i.e., k = 2 , . . .  , s). I f  a primary dimension 
exists, it will not be unconditionally independent of the other s - 1 dimensions, since 
each item now loads on each of two dimensions. Therefore, this probability requires a 
two-dimensional generalization of Stuart 's (1958) original result for computation. 

To derive the two-dimensional result, we note that probability of  the primary 
dimension can be obtained using the unidimensional form of  (4), which is originally due 
to Dunnett  and Sobel (1955), and adapted to Item Response Theory (IRT) by Bock and 
Lieberman (1970). In this context, the unidimensional equation is 

P =  :1 (I) ~ - a z i ) l / 2  9(01) dOl, (7) 

which is valid as long as pj, j  = aj,  a j ,  as is assumed here for the primary dimension. 
Integration of  (6) over the probability distribution function in (7), leads to the desired 
unconditional probability, 
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} . . . . .  1 t [ IJ~ " -( i --- -~ f l  "-" ~ 2k51/"-2" ]] Jg~'Ok) d O k g ( O1) d O l " 

(8) 

Here ,  Cjk = 1 for only one k (k = 2 . . . .  , s) due to the bi-factor structure. Equation 
(8) can be approximated to any practical degree of accuracy using two-dimensional 
Gauss-Hermite  quadrature (Stroud & Sechrest ,  1966). As in the unrestr icted multiple 
factor  model,  an important  consequence of (8) is the implication that primary and 
secondary factors are distributed independently in the examinee population. In many 
instances, this assumption should prove to be reasonable. 

For  example,  if yj = ~-,~=10tjkOk + ej and the above distribution assumptions 
apply, the unconditional probability of  observing score pattern x = x 1 is 

PI = 

[1 - q,j~(0~, 0~)] ~ -x'0c'~]g(0~) 

which can be approximated by 

dOk }9(Ol) dO1, (9) 

ql k=2 
[j l~  ([q)ik(Xq~, Xq~)] ~' 

=1 

[1 - q'jk(Xq~, X~k)] I -*'~)~"k A(Xqk)  I A ( X q l  ), (lO) 

where 

~jk (Ol ,  (1 2 2xl/2 / '  \ -- ajl  -- Otjk ) ] 

and Xq and A(Xq) are the nodes and corresponding weights of  a Gauss-Hermite  
quadrature.  

Marginal Maximum Likelihood Estimation 

The parameters of  the item bi-factor analysis model can be estimated by the mar- 
ginal maximum likelihood method using a variation of  the EM algorithm described by 
Bock and Aitkin (1981). The parameters of  this model include n " th resho lds"  (yj) ,  n 
primary factor  loadings (a j j )  and a total of  n factor loadings on the k = 2, . . .  , s 

,c s 2£ n = n). The likelihood additional dimensions (i.e., Otjk for k > 1, where z,k=2 j=l cjk 
equations are derived as follows. 

Denoting the k-th subset of  the components  of 0 as 0~ = [0,], let 
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Pl = P(x = Xl) = fO, So, [,o 

where 

[1 - ~jk(0~)] l -g°)c :  g(Ok) dOk 

= So, 

I) dOl 

Llk(O*k)9(O/¢) dOk i) dOt, (li) 

n 

Llk(O~) = 17-[ ([~jk(O~)]x"[1 -- ¢:I)j/¢(0~)] 1 -x,)cj, .  
j = l  

Then the log likelihood is 

S 

l o g L =  ~] rz logP#,  
I = l  

(12) 

where S denotes number of unique response patterns. The derivative of the log mar- 
ginal likelihood to a general item parameter uj follows. Let 

s 

1-[ fo Lth(O*h)g(Oh) dOh 
h = 2  ~, 

Etk(Ot) = , (13) 

fo, Ltk(O*k)g(Ok) dOk 

then 

0 log L = 

0 uj # 

s 

OPI = rl E CjkEIk(O1 ) 

dOl . (14) 

Following Bock and Aitkin (1981), marginal likelihood equations can be solved, 
using the EM algorithm of Dempster, Laird, and Rubin (1977), by replacing the inte- 
grals with Gauss-Hermite quadratures and rearranging terms into the two-dimensional 
form: 

0 log L Q s Q Fjk(X) -/Vk(X)CI)jk(X) (Ocbjk(X)]A(Xqk)A(Xq,), (15) 

ql  k = 2  qk 

where 



428 PSYCHOMETR1KA 

S Llk(Xql, Xqk) 
Yjk(X) = ~ rtxlj[Elk(Xql)] Pt ' 

I=1 
(16) 

S Lik(Xql, Xqk) 
/~k(X)  = E rl[Elk(Xql)] , (17) 

l =  1 PI 

and X = [x,, x~, ]- These equations are similar to those in the unrestricted case, except that 
in the bi-factor case, the conditional probability of response pattern xtk (i.e., responses 
to i temsj = 1 , . . .  , n k in subsection k for response pattern l) is weighted by the factor, 
Etk(Xq, ). Furthermore, since each item appears in one subsection only (k), f and ~7 now 
vary with k, in contrast to the unrestricted case./Vk denotes the effective sample size for 
subset k at quadrature point (Xql, Xqk) and ~k the corresponding expected number of 
positive responses. When weighted by A(X) and summed over quadrature nodes for each 
subsection, Nk yields total number of respondents, whereas corresponding weighting 
and summation for ~-jk yields total number of respondents answering item j correctly. 

From provisional parameter values, each E-step yields ~jk and Nk, (expectations 
of complete data statistics computed conditionally on incomplete data, see Bock, Gib- 
bons, & Muraki, 1988). The subsequent M-step solves (15) using conventional maxi- 
mum likelihood multiple probit analysis, substituting provisional expectations of ~k 
and ~7 k (see Bock & Jones, 1968). 

Illustration 

To illustrate application of the bi-factor IRT model, we have evaluated 20 items 
selected from an ACT natural science test for a random sample of 1000 examinees (we 
are indebted to Terry Ackerman and Mark Reckase for these data). This test involves 
a series of questions regarding each of four paragraphs. For this illustration, we se- 
lected the first five items from each of four paragraphs. Table 1 displays the unrestricted 
Promax-rotated 4-factor solution, which adequately fits these data (improvement in fit 
of a four-factor model over a three-factor model was X27 = 31.59, p < .02; improve- 
ment in fit of five factors over four factors was not significant (X26 = 18.44, p < .30)). 
In this size sample with 20 items, most patterns were realized only once, and expected 
frequencies are near zero. In such cases, the usual chi-square approximation for the 
distribution of the multinomial goodness of fit statistic is inaccurate (e.g., Table 4). 
Haberman (1977) has shown, however, that the difference in fit statistics for alternative 
models is distributed in large samples as chi-square, with degrees of freedom equal to 
the difference in numbers of degrees of freedom, even when the frequency table is 
sparse. These difference statistics will be used in the comparison of alternate models. 

Inspection of Table 1 reveals that each factor is dominated by items from a par- 
ticular paragraph. In contrast, the estimated factor loadings for the bi-factor model (see 
Table 2) with s = 5 (i.e., one primary dimension and four paragraph-specific dimen- 
sions) revealed a strong general ability dimension, as well as appreciable within para- 
graph associations. Fit of the restricted model was not significantly different from the 
fit of either the four-factor (X25 = 23.83, p < .99) or the five-factor (g6z0 = 43.22, 
p < .95) unrestricted models. Inspection of loadings within each paragraph reveals that 
intra-paragraph item associations are quite variable. 

The numerical precision of the bi-factor solution represents a major computational 
improvement over the unrestricted solution. Given the bi-factor solution requires only 
approximation of a two-dimensional integral, it was possible to use I00 quadrature 
points (i.e., ten in each dimension) instead of the 243 quadrature points used in the 
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TABLE 1 

Full-Information I tem Factor Analysis - Unrestr ic ted Promax Solution 
ACT Natural  Science Test - 20 items and 1000 subjects 

Item 7 j  °~jl °L j2 °L j3 ~ j 4  

1 -.215 .401 -.005 -.036 .216 
2 -.385 .185 -.019 -.007 .105 

3 -.356 .667 -.070 -.081 -.081 

4 -.098 .619 .013 .044 -.022 

5 -.029 .562 -.092 -.059 .119 

6 -.582 .129 .068 .256 .030 

7 -.585 .184 -.211 .419 .102 

8 -.137 -.037 -.061 .025 .172 

9 -.246 .238 .063 .362 -.284 

10 -.089 -.224 .t28 .620 .060 

11 -.049 .182 .135 -.034 .311 
12 -.407 -.024 -.065 .124 .320 
13 -.265 .247 .082 .020 .173 

14 -.051 .137 .005 .007 .585 

15 .040 .224 .129 -.045 .295 
16 .345 .153 .289 -.122 -.109 

17 .167 -.007 .682 .089 -.044 
18 .172 -.096 .520 -.024 .120 

19 .543 .008 .500 .067 .091 

20 .672 -.073 - .010 .004 .163 

unrestricted five factor solution (i.e., three in each dimension). Five factors probably 
represents the highest dimensional solution that is computational tractable at this time. 
Parameters of the unrestricted models were estimated using the TESTFACT program 
(Wilson, Wood, & Gibbons, 1984). This limitation of the unrestricted multiple factor 
model suggests that to some extent, the previously described comparison of chi-square 
statistics is questionable since it represents differences in model parameterization and 
accuracy in numerical approximation. Although Bock and Aitkin (1981) have shown the 
latter effect is reasonably small, it illustrates an additional benefit of the bi-factor 
restriction, where sufficiently large numbers of quadrature points per dimension are 
always available, and accuracy of numerical integration is never at issue. 

A Simple Structure Model 

Consider an orthogonal simple structure factor model in which each item loads on 
only one ofs dimensions. This satisfies a complete simple structure model as defined by 
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T A B L E  2 

Ful l - Informat ion  I t em Bi-Factor  Analysis  
A C T Natura l  Science Test  - 20 i tems and  1000 subjec ts  

I t e m  "/j c~jl Olj2 O~j3 ¢:~j4 Olj5 

1 -.230 .524 
2 -.392 .232 
3 -.370 .411 

4 -.118 .548 
5 -.046 .489 
6 -.593 .311 
7 -.600 .376 
8 -.138 .087 
9 -.259 .207 

10 -.103 .226 
11 -.062 .484 
12 -.413 .261 
13 -.277 .423 
14 -.066 .573 
15 .025 .492 
16 .340 .112 
17 .150 .306 
18 .160 .240 
19 .528 .340 

20 .671 .061 

.129 

.115 

.427 

.278 

.338 
.277 
.314 

-.019 
.390 
.476 

.141 

.135 

.199 

.187 

.260 
.261 
.662 
.571 
.493 
.031 

Thurstone (1947), which could be evaluated using methods for confirmatory factor 
analysis for measurement data (J6reskog, 1969). This is a simplification of the bi-factor 
model in which there is no primary dimension. In this case, the unconditional proba- 
bility in (10) is reduced to the unidimensional form, 

e l  ~ ~I  ([+jk(gqk)]Xty[l _ ¢bjk(Xqk)]l-x,i)cik A (Xqk )  , (18) 
k = l  qk =1 

where 

yj  -- OtjkXqkt. 
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that is, (10) reduces to the product of the s independent unidimensional probabilities. 
The likelihood equations in (15) can then be approximated by 

0 log L 

Ovj 

where 

s Q ~k(Xuk) -- 1Vl~(Xq~)~jk(Xqk) [O~k(Xq , ) ]A(X  

= qk 
(19) 

S r l x t j L t k ( X q k  ) 
7jk(Xqk) = Z 

1= I elk 
(20) 

and 

S r l L l k ( X q k )  
Nk(Xqk)  -~ Z 

1 =  I elk 
(21) 

In this case, elk represents the constant 

a 

elk = ~ LIk(Xqk)A(Xqk), 
qk 

and 

s 

PI  ---- I-I e lk ;  
k = l  

Yjk and Nk now contain information from the specific subset of items (k) only, for which 
item j is a member. This is due to independence between subsets resulting from the 
simple structure. 

Application of the simple structure model to the ACT natural science test example 
yields item-parameters displayed in Table 3. Inspection of parameter estimates in Table 
3 reveals that removal of the primary factor increases the magnitude of loadings on the 
individual paragraph dimensions. For model fit, the bi-factor model (X220 = 336, p < 
.0001) and the unrestricted four-factor model (X625 = 361, p < .0001) provide signif- 
icant improvements in fit over the simple structure model, indicating the test in fact 
measures a primary ability dimension and not four independent knowledge realms. 

An Example from Psychiatric Research 

Psychometric properties of psychiatric symptom rating scales have not been rig- 
orously studied (see Gibbons, Clark, & Cavenaugh, 1985, for a review). Psychiatric 
symptom rating scales are inherently multidimensional. For example, the Hamilton 
Depression Rating Scale (HDRS) is a widely-used instrument for assessment of depres- 
sion severity, and contains symptom-items ranging from mild psychological impairment 
(e.g., depressed mood) to severe psychopathology (e.g., suicidal ideation and/or at- 
tempts). The HDRS includes several dimensions of depressive illness, including sleep 
disorder, vegetative signs such as motor retardation, and anxiety. Full-information item 
factor analysis of the 17-item version of the HDRS obtained from a sample of 351 
drug-free patients with major depression (see Table 4) revealed a five-factor structure. 
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T A B L E  3 

Fu l l - In format ion  Simple  S t r u c t u r e  I t e m  Fac to r  Analysis  

A C T  Na tu ra l  Science Test  - 20 i t ems  and 1000 s u b j e c t s  

I t e m  ~/j cu1 O/j2 Olj3 0¢j4 

1 -.224 

2 -.391 

3 -.368 

4 -.111 

5 -.O40 

6 -.592 

7 -.597 
8 -.138 

9 -.258 

10 -.102 

11 -.056 

12 -.412 

13 -.273 

14 -.058 

15 .031 

16 .341 

17 .157 

18 .163 

19 .534 

20 .671 

.482 

.251 

.571 

.612 

.585 

.408 

.467 

.032 

.429 

.509 

.489 

.297 

.449 

.591 

.566 

.282 

.732 

.616 

.597 

.057 

(We are grateful to David Kupfer of Western Psychiatric Institute at the University of 
Pittsburgh for providing us with these data). In addition to a primary depressive di- 
mension, there appear to be dimensions of sleep disorder, loss of insight, motoric 
retardation, and appetite disturbance. Table 5 presents results of a full-information item 
bi-factor analysis of these data using one primary dimension and 4 subdimensions. 
Bi-factor loadings were virtually identical to dominant loadings for the unrestricted 
five-factor solution. This is in part expected, since items comprising the four sub- 
dimensions were selected on the basis of dominant loadings of Factors 2 through 5 of 
the unrestricted five-factor solution. The difference in fit between the bi-factor and 
unrestricted five-factor models was significant (X21 = 111, p < .0001), which suggests 
some symptom-items load on more than one subdimension. Practically speaking, in- 
terpretation based on either model is highly similar, and the bi-factor solution provides 
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TABLE 4 

Five-Factor Model 
Hamilton Depression Rating Scale Data  (N = 3,51) 

433 

Symptom Threshold Factor 
1 2 3 4 5 6 

Depressed Mood -1.8 .5 .0 .2 .6 .2 
Guilt 0.0 .5 .1 .1 .2 .2 
Suicidal 0.4 .5 .1 .0 .2 .1 
Initial Insomnia -0.5 .1 .2 -.1 -.1 -.3 
Middle Insomnia -0.4 .0 .6 .0 -.1 -.1 
Late Insomnia -0.3 .0 .8 .2 .0 -.3 
Problem Working -1.0 .5 .2 .2 .5 -.1 
Motor Retardat ion  0.4 .1 -.1 -.2 .7 .0 
Agitation 0.0 .5 -.1 .0 .1 -.2 
Psychic Anxiety -0.8 .7 -.1 .0 .0 -.2 
Somatic Anxiety 0.0 .7 - .3 .0 -.1 .0 
Appet i te  -0.3 .0 -.1 .1 .1 .8 
Anergia -1.4 .1 .2 .2 .7 -.1 
Loss of Sex Interest -0.5 .4 .1 .3 .3 .1 
Hypochondriasis  0.3 .1 -.2 -.1 .0 .0 
Loss of Insight 1.0 .0 -.1 -.8 -.1 .0 
Weight Loss 0.5 .1 -.1 .5 .0 .5 

X 2 2616 2518 2466 2431 2401 2383 
df 316 300 285 271 258 246 
Change in X ~ 98 53 34 30 18 
df 16 15 14 13 12 
probabili ty .000 .000 .002 .004 .113 

enormous computational savings relative to the unrestricted solution (i.e., 2-dimen- 
sional versus s-dimensional quadrature approximation). 

The simple structure model was also fit to these data to determine if a primary 
depressive dimension exists (see Table 6). Dominant items on each dimension from the 
unrestricted five-factor solution were used to define five independent dimensions of the 
simple structure model. The bi-factor model provided a significant improvement in fit 
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TABLE 5 

Bi-Factor Model (Five-Dimensional) 
Hamilton Depression Rating Scale Data  (N = 351) 

Symptom Threshold Factor 
1 2 3 4 

Depressed Mood -1.8 .7 
Guilt  0.0 .6 
Suicidal 0.4 .5 
Initial Insomnia -0.5 .0 .3 
Middle Insomnia -0.5 -.1 .8 
Late Insomnia -0.4 .1 .6 
Problem Working -1.0 .6 
Motor Retardat ion  0.4 .2 
Agitat ion 0.0 .5 
Psychic Anxiety -0.8 .6 
Somatic Anxiety 0.0 .5 .3 
Appet i te  -0.3 .1 
Anergia -1.4 .2 

Loss of Sex Interest  -0.5 .5 
Hypochondriasis  0.3 .0 .2 
Loss of Insight 1.0 -.2 
Weight Loss 0.5 .2 

.3 

- .7 

Note: ,k ,~ = 2519 
, '  299 

.5 
- .2 

.0 

.5 

.5 
.1 
.1 

.7 
.7 

.6 

over the simple structure model (X127 = 75, p < .0001), suggesting that a primary 
depressive dimension is required to fully describe these data. 

Analysis results suggest that depression (measured by the HDRS) is a multidimen- 
sional disorder consisting of a primary depressive severity dimension and four subdi- 
mensions reflecting sleep disturbance, loss of insight, motoric retardation, and eating 
disorder. The unrestricted five-factor model provided a significant fit improvement over 
the bi-factor model suggesting the four subdimensions are not independent, as the 
bi-factor model assumes. 

Discussion 

This bi-factor model provides a natural alternative to the traditional conditionally- 
independent unidimensional IRT model. When conditional dependence is suspected, as 
in the case of paragraph comprehension tests or tests in which two or more methods of 
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TABLE 6 

Simple Sructure Model 
Hamilton Depression Rating Scale Data (N = 351) 
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Symptom Threshold Factor 
1 2 3 4 5 

Depressed Mood -1.8 
Guilt 0.0 .5 
Suicidal 0.4 .5 
Initial Insomnia -0.5 
Middle Insomnia -0.5 
Late Insomnia -0.4 
Problem Working -1.0 
Motor Retardation 0.4 
Agitation 0.0 .5 
Psychic Anxiety -0.8 .6 
Somatic Anxiety 0.0 .6 
Appetite -0.3 
Anergia -1.4 
Loss of Sex Interest -0.5 .4 
Hypochondriasis 0.3 
Loss of Insight 1.0 
Weight Loss 0.5 

.3 

.8 

.6 

.2 

.9 

.8 

.5 

.5 

Note: X 2 = 2587 316 

.7 
.7 

.7 

item presentation are involved, the item bi-factor solution provides an excellent alter- 
native. An attractive by-product of this model is that it requires only the evaluation of 
a two-dimensional integral, regardless of the number of subtests, paragraphs, or con- 
tent areas. Of course, subsections (e.g., paragraphs) must be known in advance. 

In certain situations (for example, psychiatric measurement) existence of a primary 
dimension (e.g., depression), is itself at question. In this case, comparison of the 
bi-factor and simple factor solutions can help answer whether depression is a unitary 
disorder or a series of qualitatively distinct abnormalities; a question that has long 
plagued psychiatric researchers. Using analysis of the HDRS as an illustration, it sug- 
gests depression consists of a common primary dimension and a series of correlated 
subdimensions. It should be clinically interesting that the dimension characterized by 
sleep disturbance (i.e., insomnia items), seems little related to anything else. In the 
bi-factor solution, these items have nearly zero loadings on the primary factor. Further 
research should focus on the relationship of insomnia items to the depressive factors. 
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