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A method is presented for constructing a covariance matrix Y.,~ that is the sum of a matrix 
~('10) that satisfies a specified model and a perturbation matrix, E, such that ~ = Z(~/0) + E. 
The perturbation matrix is chosen in such a manner that a class of discrepancy functions 
F ( ~ ,  ~(3'0)), which includes normal theory maximum likelihood as a special case, has the 
prespecified parameter value ~'0 as minimizer and a prespecified minimum 6. A matrix con- 
structed in this way seems particularly valuable for Monte Carlo experiments as the covariance 
matrix for a population in which the model does not hold exactly. This may be a more realistic 
conceptualization in many instances. An example is presented in which this procedure is em- 
ployed to generate a covariance matrix among nonnormal, ordered categorical variables which 
is then used to study the performance of a factor analysis estimator. 

Keywords: Monte Carlo experiments, covariance structure analysis, factor analysis, model 
misspecification. 

1. I n t r o d u c t i o n  

P s y c h o m e t r i c  m e t h o d s  a re  o f ten  d e v e l o p e d  a s s u m i n g  tha t  the  p o p u l a t i o n  cova r i -  
ance  ma t r i x  has  a pa r t i cu l a r  s t ruc tu re .  E s t i m a t o r s  o f  a m o d e l  o r  t es t s  o f  m o d e l  fit a re  
gene ra l l y  de r i ved  u n d e r  the  h y p o t h e s i s  tha t  t he se  s t ruc tu ra l  a s s u m p t i o n s  a r e  t rue ,  at  
wh ich  po in t  two  p rac t i ca l  ques t ions  of ten  ar ise .  F i r s t ,  w h e n  the  m o d e l  and  all o t h e r  
a s s u m p t i o n s  hold ,  h o w  a c c u r a t e  is a p r o p o s e d  e s t i m a t o r  o r  t e s t  s ta t i s t ic  u n d e r  idea l  
c o n d i t i o n s ?  S e c o n d ,  i f  the  a s s u m p t i o n s  a re  v io l a t ed ,  in w h a t  w a y s  is the  p e r f o r m a n c e  
o f  the  e s t i m a t o r  o r  t es t ing  p r o c e d u r e  a f fec ted?  I f  ana ly t i c  m e t h o d s  c a n n o t  be  u sed  to  
a d d r e s s  t h e s e  ques t i ons ,  then  M o n t e  Ca r lo  e x p e r i m e n t s  can  be  d e s i g n e d  to  i nves t iga t e  
t h e m  ins t ead .  The  m o s t  i n fo rma t ive  M o n t e  Ca r lo  e x p e r i m e n t s  ref lec t  t hose  c h a r a c t e r -  
i s t i cs  o f  the  popu la t i on ,  s ampl ing  p r o c e s s ,  and  a n t i c i p a t e d  d a t a  tha t  a r e  k n o w n  o r  
p r e s u m e d  to be  m o s t  r e a s o n a b l e .  

In  the  f a c t o r  ana lys i s  l i t e r a tu re  a va r i e t y  o f  M o n t e  Ca r lo  s tud ies  have  b e e n  con-  
d u c t e d  to  inves t iga t e  va r i ous  f e a t u r e s  o f  e s t i m a t o r s  o f  the  un re s t r i c t e d  o r  r e s t r i c t e d  
m o d e l s .  T h e s e  e x p e r i m e n t s  h a v e  mos t  of ten  been  b a s e d  on  a p o p u l a t i o n  c o r r e l a t i o n  
ma t r i x  tha t  sat isf ies  a s imple  f a c t o r  ana lys i s  m o d e l  e x a c t l y .  Whi l e  u n d e n i a b l y  usefu l ,  
t h e s e  e x p e r i m e n t s  c a n  be  c r i t i c i zed  on  the  g r o u n d s  tha t  it  is un l ike ly  that  a n y  s imple  
f a c t o r  a n a l y s i s  m o d e l  pe r f ec t l y  fits a popu l a t i on  ma t r ix .  

We are grateful to Alexander Shapiro for suggesting the proof of the optimality of the solution in section 
2. 
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In a notable departure from the practice of assuming a factor analysis model holds 
exactly, Tucker, Koopman, and Linn (1969) argued that actual data do not appear to 
follow such simple models, even in large representative samples with high quality data. 
Consequently, the generality of findings from a Monte Carlo study that assumes a 
particular model holds can be questioned. As an alternative, Tucker et al. suggested 
that more realistic population matrices be simulated by including three kinds of factors. 
Major factors are a small group of dominant latent variables, most often with a simple 
pattern. Unique factors are the traditional specific effect plus error associated with each 
variable, all mutually uncorrelated. Minor factors, in practice fifty or even more in 
number, represent small sources of covariance among the variables. Matrices gener- 
ated by this method seem more in keeping with actual data in the sense that although 
a small number of major factors is present, no simple factor analysis model holds 
exactly. In substantive terms, the influences represented by the minor factors reflect 
any of a variety of unsystematic or unknown aspects of the process that generates the 
data, such as non-random error or localized method effects. The idea in general is that 
the population covariance matrix is made up of a particular structure, plus additional 
elements of covariance representing lack of fit. The latter are not typically considered 
further. This method has been effectively used in several empirical studies (e.g., Haks- 
tian, Rogers, & Cattell, 1982; Laughlin, 1979). 

The purpose of this article is to describe another method for constructing a cova- 
riance matrix in which a particular structure holds approximately. The specified depar- 
ture or lack of fit between the population matrix and the model is operationalized as an 
exact value of a discrepancy function. The primary structure need not be a factor 
analysis model. Any model in the general class of covariance structures is appropriate. 
A simple modification to the procedure allows structured mean vectors to be included 
as well. Therefore, the method may be considered in a variety of applied problems that 
have been studied by Monte Carlo methods, including analysis of variance or regres- 
sion models with an assumed covariance structure, and certain multidimensional scal- 
ing models that use correlations or covariances as proximity measures. This work was 
motivated by Shapiro and Browne's (1988) suggestion that the sequence of systematic 
error terms in a population drift process could be chosen so as to avoid giving the 
impression that estimators are asymptotically biased. 

2. The Basic Procedure 

Let ~(~,) denote a (p × p) symmetric matrix-valued function of a parameter vector 
1 

"~/ '  = ( T I ,  • • • , Tq), where q <- y p ( p  + 1), and let ~'0 be a particular value within the 
admissible region F at which ]£(~/0) is positive-definite. We assume that the elements of 
the model matrix, ]£(~/) = {trjk(~,)}, are continuously differentiable functions in a neigh- 
borhood of ~/0, and assume also that ~(~,) is identified at the point ~/ = 3'0. Let E 
(p × p) be a symmetric matrix such that the sum, 

~ = Z(~/o) + E, (1) 

is positive-definite. We consider discrepancy functions of the form 

1 F(1£~, I;(~/)) = 2 tr [W-1(1£~ - l~(~/))] 2, (2) 

where W is a fixed matrix that does not depend on E. Two versions in particular are of 
interest. The first case corresponds to ordinary least squares, which is obtained when 
in (2) the substitution W = I is made. The second case is normal theory maximum 
likelihood. Let ~'ML be the minimizer of 
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M(X~,  X(~,)) = In IX(~')l - In IX l + tr [X~ X(~/)- ' ]  - p. (3) 

If  w = X(~/ML), the minimizer of  (2) is the same as the minimizer of  the maximum 
likelihood discrepancy function (3), although the respective minima are not in general 
equal (Browne,  1974). 

The problem to be addressed can be stated as follows. Given a particular value ~'0 
for  the parameter  vector  and a value 6 > 0 for the lack of  fit, we seek a matrix E in (1) 
such that 

(i) the minimizer of  F(X~,  X(~/)) is the required value ~ /=  ~'0, and 
(ii) at the point "/0, the minimum function value will be one of  the following: 

M(X~,  X(~/o)) = 6, if W = X(Vo), 

F(X~,  X(~/0)) = 6, o therwise ,  

where 6 is a prespecified value. A solution can be developed by considering the gradient 
of  (2), and exploiting the relationship between 2£(~, 0) and X~. Le t  2~ i = [0X(~/)/0 Yi] be 
the derivative of the model with respect to the i-th element of  ~,. It can be shown that 
the derivative of F with respect  to Yi is 

OF(X*o, X(V)) 
= - t r  [(X~ - X(~ , ) )W-lXiW-1] ,  (4) 

0yi  

(for example,  Browne,  1974, sec. 3). With the substitution W = ~X(~,), (4) is also the 
derivative of  M. Because of  this equality, the following results, which are stated gen- 
erally in terms of the derivative of  F,  also apply more specifically to the derivative of  
M. 

Le t  A and B be symmetric matrices of order p.  Let  vecs (A) = ( a l l ,  a12 , a22, 
a13 app)' denote the vector  of  length p* = J 2 , • • .  , ~(p + p) obtained by stacking the 
nonduplicated elements of  A, including the diagonal, and let vec (A) -- ( a l l ,  a21, . . .  , 
a p l  . . . .  , a p p ) '  by the vector  of  length p 2 formed by stacking the columns of  A. Also 
let Kp be the (p2 × p . )  transition matrix (Browne, 1974, sec. 2; Nel,  1980, sec. 6) that 
relates the two vectors,  such that vecs (A) = Kp vec (A), and vec (A) = Kp ' vecs (A), 
where Kp- = ( K p K p ) - I  Kp is the Moore-Penrose inverse of  Kp. Let  Dk be the diag- 
onal matrix defined by 

Dk = K p ( K p ) '  = diag (I ,  2, 1, 2, 2, 1, . . .  , I). 

Since tr (AB) = vec '  (B) vec (A') (e.g., Graham, 1981, sec. 1.5), the derivative can be 
written as 

OF(X*o, X(~I)) 

Oyi 
= - v e c '  ( W - l X i w  -1) vec (X~6 - X(V)) 

= - v e c s '  (W-I~ iW-I )Dt~  vecs  (X'~ - X(~/)) 

= b~ vecs(X~ - X(~,)), 

where b i = - D  k vecs ( W - I ~ i W - I ) .  Define the (p*  × q )  matrix B -- (b I , . . .  , b q ) .  

Then the gradient of  (2) is 

aF(X~6, X(~,)) 
= B' vecs (X'~ - ~(~/)) = B'~. 
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Clearly, if the value ~/= V0 minimizes F(E~,  X(~/)) so that criterion (i) is satisfied, then 
the gradient must be null, that is, 

B ' ~  = Ot~ t = v o .  ( 5 )  

We proceed by first finding a vector, ~. = vecs (E), which satisfies (5). A coefficient, K, 
is then found such that if E = KE and X~ = X(~/0) + E, then (ii) is satisfied with 

m(X~ ,  X(~/0)) = 6 if W = X(~/0) (6a) 

F(X~,  X(~/0)) = 6 otherwise.  (6b) 

Let  y be a nonnull (p* × 1) vector. The difference, 

= y - B v ,  ( 7 )  

is a vector satisfying (5) if we take v = ( B ' B ) - I B ' y .  Consequently,  V0 is a stationary 
point of  F(Z(~/0) + E, X(V)) when E is chosen in this manner. Criterion (i) requires the 
global minimizer of this function, not just a stationary point, however. To obtain the 
optimum value, we show that for 

X~ = X(~o) + K~, 

"/0 in fact is the global minimizer of F( X~, Z(V)) as long as K is not too large. 

Proof. Let ~/(X~)) = arg min~ F(X~, X(V)) be the overall minimizer. Then it can 
be shown that for any e > 0, there exists a K such that II~(X~) - V011 < e whenever  
0 -< K < K (e.g., Kano,  1986, Theorem 1). We have shown that V0 is a solution to the 
system of equations 

bF(X~, X(V)) 
= 0, (8) 

and q(X~)) is also a solution to these equations. We assume that X(~/) is twice contin- 
uously differentiable in a neighborhood of ~ /=  V0- It follows by the Implicit Function 
Theorem that for K sufficiently small, there is a unique solution to (8) in a neighborhood 
IIV - ~0 ][ < e. Consequently there exists a K such that ~/0 = q(X~)) if K < K. []  

It remains to adjust ~ so that criterion (ii) holds, and here the two cases (6a) and (6b) 
must be distinguished. In the general case of  (2) evaluated at V = ~'0 so that (6b) holds, 
we have 

1 F ( ~ ,  X(V0)) = ~ tr [W- l (X~ - Z(V0))] 2. 

Defining G = W-1F,, it is straightforward to solve 

1 F(X~,  X(V0)) = ~ tr [KG] 2 = 

for K to obtain 

K = [26/(tr  G2)] 1/2. (9) 

This completes the procedure for the general case. 
In the particular case of maximum likelihood with argument ~/= ~'0, the minimum 

value of the function has the form 
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M(I£ ; ,  E(V0) ) = K tr G - In II + KG l, 

where in this instance, G = W -  1 ~, __ X('/0) - l ~. A solution for K in closed form so that 
(6a) is satisfied is not apparent, but an iterative method can be applied. Let  

t(K) = M(X~, X(Vo)) - 6 

= K t r G - l n  [ I + K G ] - 6 ,  

with derivative 

t ' (K)  = tr G - tr [(I + KG)-IG] .  

Obviously, t(K) = 0 implies that M(X~, X(~'0)) = & To solve the equation t(K) = 0, 
the Newton-Raphson method is used. The update at the (n + 1)-th step is 

t (Kn)  
Kn+ l = ~ t ' ( ~ , ) "  

Using (9) with G = X(~0 ) - IE  gives an accurate starting value, K0, for the iterative 
sequence. 

To summarize, the basic procedure requires computing the matrix B, calculating 
the preliminary orthogonal component ~ = y - By, and then rescaling to obtain the final 
version, e = K~. For maximum likelihood, an iterative method is required to compute 
K to satisfy the second criterion. 

3. Notes on Implementation 

Several points related to computation should be noted. To implement this algo- 
rithm, the partial derivatives ~i are required in (4). These can be written explicitly for 
each model, but for the sake of generality, a numerical approximation might instead be 
preferred. For this approximation the finite forward difference method is 

~ i  = ~ ( ~  + u ih)  - ~ ( ~ )  
h 

where u i is a vector with all elements equal to zero except for a single value of  unity in 
the i-th position, and h is a small constant (i.e., h = 10 -8). When a computer program 
is written in this way, only the code describing the model X(~/) need be changed in each 
application. 

In the least squares solution to (7), it is important to compute ~ accurately and 
efficiently, especially in problems where p or q are large. While forming the required 
cross-product matrices and solving normal equations is straightforward, it is not nec- 
essarily the most effective approach for this procedure. One may instead apply the QR 
factorization (e.g., Gill, Murray, & Wright, 1981, sec. 2.2.5.3) to the first q columns of 
the (p* × q + l )  matrix (B, y) to produce the transformed matrix (B*, y*). This is 
followed by using the same component transformations, but applying them to y* in 
reverse order, which then yields the vector ~. While this approach is less straightfor- 
ward to implement than is an algorithm to solve normal equations, it is faster and 
produces very stable solutions. An excellent discussion of the computational details, 
along with its relative merits, is presented by Thisted (1988, sec. 3.1). 

The preliminary residual vector ~ in (7) is the orthogonal complement of  the pro- 
jection of a vector y on B. When maximum likelihood is used, y can be an arbitrary 
vector. With least squares, on the other hand, X~ is sometimes not positive definite 
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unless y is computed with some care. Consequently,  we have employed the following 
method for calculating y which appears to be effective in eliminating the problem. 

First, take A1 = U'U, where U(m × p),  m > p,  consists of  random uniform 
deviates, and rescale by 

A 2  = Diag (A])- l /2A 1 Diag ( A 1 ) - 1 / 2 ,  

so that A 2 is at least positive semidefinite with unit diagonal elements. Next  one must 
distinguish between those models that specify a measurement  submodel for  the ob- 
served variables and those that do not. Models that include a measurement  submodel 
can be written in the form 

~(~t, o )  = ~ ( v )  + Do ,  (10) 

where I)(V) denotes the structural part of the model,  and D o = Diag (01, • • • , Op) 
represents the unique variances of  the p observed variables. Factor  analysis models 
with unconstrained unique variances are the most obvious examples of  structures with 
a measurement  submodel. We write ~ = A ~ A '  + Dq,, where D~, is diagonal with 
positive values. This is an instance of (10) with II(V) = A ~ A '  and D o = D~,. When a 
model includes a measurement  submodel of  this kind, an additional scaling is applied, 

r~ 1 / 2 A  r~ 1/2 Diag(D~/2A2Dt~/2) D 0.  Then in (7) let namely ~'o ~ 2 v o  , SO that = 

[r~l/2A nl /2~ 
y = v e c s  ~11 O t l , 2 v  O ) ,  

and proceed with the other  steps as outlined above. 
There  are important classes of structures, for example patterned covariance or 

pat terned correlation structures, which do not contain a measurement  sub-model. For  
these cases, take y = vecs (A2) and proceed.  

4. Computational Example 

J6reskog (1973, sec. 4) presented an artificial example of  a seven variable covari- 
ance matrix with the structure given by 

[ B - I ( F ~ F  ' + ~ ) B ' - I  + De ] 

~(V0) = L ~ F ' B ' - 1  • + D~ " 

The particular submatrices were 

(11) 

[18 4" 
0 1 0 - . 3 *  

B =  0 1 1 - ; 

- 1  0 0 

[00 1 l .2* .3* 0 0 .1" ; 
F =  - 1  0 ; l i t =  0 0 

0 1 0 0 0 

= ] .1" 2* ; 

.2* .1" 3* 

D8 = Diag ( .16" ,  .36*, .25*); 

De = Diag ( .25*, .36*, .81",  .25*). 
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TABLE 1 

Covariance Matrices for Model (11). 

z(%) 
X 1 4.599 

X 2 2.481 2.069 

X 3 4.659 2.159 7.514 

X 4 6.449 3.731 7.409 

X s -0.692 -0.138 -1.454 

X 6 2.100 1.250 2.750 

X 7 0.442 0.763 -0.421 

~0(M) , 
X 1 4.839 

X 2 2,568 2.195 

X 3 4.815 2.343 7.862 

X 4 6.545 3.814 7.675 

X 5 -0.461 -0.054 -1.385 

X 8 2.323 1.407 2.997 

X 7 0.342 0.881 -0.154 

10.799 

-0.592 1.160 

4.100 0.100 2.360 

0.542 0.200 O.lOO 

with M(~OO(M),~*yo) ) = 0.25 (maximum likelihood) 

10.593 

-0.465 1.179 

4.182 0.205 2.471 

0.251 0:246 0.227 

~O(L~ , with F(~O(L),~7o))=0.25 (least square)  

X l 4.599 

X 2 2.627 2.069 

X s 4.808 2.159 7.514 

X 4 6.298 3.738 7.412 

X s -0.585 0.015 -1.444 

X 6 2.089 1.406 2.884 

X 7 0.495 0.877 -0.292 

10.795 

-0.612 1.180 

3.963 0.214 2.360 

0.371 0.308 0.135 

3.250 

3.250 

3.254 

The starred coefficients are the population parameters,  all other  elements being con- 
sidered known. The values 333 and e44 were specified to be equal. There are a total of  
q = 19 parameters  in 7o. 

The value of  ~(70)  implied by this structure is shown in the upper section of  Table 
1. When the above structure is applied to this matrix using maximum likelihood or least 
squares, the parameters are recovered exactly. The second section of  the table contains 
the covariance matrix, ]£~(M), for  which M(~A*O(M), ~(T0)) = 0.25. When model (1 I) 
is fitted to this matrix by maximum likelihood, the parameter  values are again as above,  
while the associated value of  the discrepancy function is M = 0.25 (to four decimal 
places). The matrix E is the difference between the two tabled matrices. Similarly, the 
bot tom section of the table contains the matrix, ~ ( L ) ,  for which F(I£~(L), ~(70))  = 
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TABLE 2 

Parameter Vectors when Applying Model (11) to Z~o (u) using Least Squares 

and to ~O(L) using Maximum Likelihood. 

fll~ Bn fl24 ~'~3 ~u ~21 ~22 ~31 ~32 

7o - .80 --.40 - .30 .20 1.00 .10 2.00 .20 .10 

7t - .74 - .39 --.31 .34 1.08 .19 2.27 .30 .17 

72 - .76 - .44  - .29 .16 .88 .13 2.05 .15 .13 

~33 ~tt ~t  ~ .  61t ~.  ~tt ~. E23 

% 3.00 .20 .10 .30 .16 .36 .25 .36 .81 

7t 1.93 .39 .09 .35 .08 .08 .02 .05 .42 

72 3.25 .10 .18 .19 .30 .43 ,32 .64 1.30 

• 3 3  = ~44 

% .25 

7t 1.31 

7~ .00' 

7t is the parameter vector obtained from ~oo(L) using maximum likelihood as 

discrepancy function, while 72 is the parameter vector obtained from ~o(tO using 

least squares as discrepancy function. *This parameter was on its lower bound. 

0.25 when in (2) W = I. When the model is applied to this matrix with ordinary least 
squares, then the parameters are exactly recovered again. 

It is known that if the model is applied to * 0(L) using maximum likelihood, or 
alternatively, if it is applied to X 0(M) using least squares, that the associated vectors of 
parameters are not the same, and in general neither are equal to 3"0 (Browne, 1969). Let  
these two vectors be denoted by 3"1 and 3'2, respectively. In Table 2 the two sets of 
parameters for these cases are shown. Some of the differences are rather marked. The 
values of  the discrepancy functions are M ( ~ ( L ) ,  ~(3"0)) = 0.16 for the matrix con- 
structed under least squares but fit by maximum likelihood, and F(Z~(M), Z(3"0)) = 
0.32 for the matrix constructed under maximum likelihood but fit by least squares. 

It was shown in section 2 that ~/0 minimizes F (Z~ ,  Z(3")) if 6, or more precisely K, 
is " smal l " .  If  6 is " la rge" ,  3"0 may give a stationary point of F(X~), ~(3")) that does not 
correspond to a minimum. To get some idea of the likelihood of this occurance, Z~ was 
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computed for all values of 6 in steps of  0.25 between 0.0 and 16.0 (i.e., 0.0, 0.25, 
0 . 5 0 , . . .  ) using the same initial vector  ~ in conjunction with maximum likelihood and 
the model in (11). Obviously,  1£~ must be positive definite, so 6 cannot  be too large. For  
example,  at 6 = 16.0, 1 ;;I = 0.120 x 10 -5. Nonetheless,  when I£~ was used as the 
input matrix to fit (11), the correct  parameters 3'0 were always recovered,  and the value 
of  the discrepancy function at 5' = 3"0 was M(1£~, I£(3")) = & At larger values of  6 the 
starting values for  the iterative procedure had to be very close to the true value, 
however ,  otherwise local minima occurred. These were local minima because the true 
parameter  vector  was always associated with a smaller value of M(I;~,  Z(3')). It is 
possible that a value of 3" ¢ 3"0 exists that produces a smaller value of  M for one or more 
Z~), because local minima were sometimes a problem for cases with 6 large. Based on 
these limited results, however,  it appeared that 3"0 was probably the global minimizer 
for ~E~) associated with each 6, which is reassuring. While it is unwarranted to generalize 
too much from one example, it appears that in practice 6 may sometimes be relatively 
large and 3'0 may still minimize the function. 

5. An Application to the Factor  Analysis of  Ordered Categorical Variables 

To illustrate how this method can be of value in empirical research, a small Monte 
Carlo experiment was designed to extend and partially replicate some results reported 
by Muth6n and Kaplan (1985). They examined the performance of  several factor  anal- 
ysis estimators with continuous, multivariate normal variables, but were especially 
interested in the estimators '  behavior with non-normal, ordered categorical variables. 
To describe the data, let z*' = ( z ] ,  • • •, z~) denote p continuous,  normally distributed 

• by the transformation variables with null mean vector.  Let  zj  be obtained from z j  

if r r  ~ Z j ,  

:g 
if r l  -< z j  < "/'2, 

if Z~ < ~'1, 

where ~'h, h = 1 . . . . .  T, are thresholds common to all z j .  Muth6n and Kaplan took 
p = 4 variables with T = 4. This gives observed variables with T + 1 = 5 categories. 
They  described five conditions of  categorization, defined according to different sets of  
thresholds. In this study, we used the first four of  these sets: 

Case 1: - 1.645 -0 .643  0.643 1.645 

Case 2: - 1 . 645  -1 .036  -0 .385  0.385 

Case 3: -1 .881 -1 .341  -0 .772  0.050" 

Case 4: -1 .645  -1 .282  -1 .0 3 6  - 0 . 6 7 4  

An additional condition was based on the untransformed variables, z = z*, hereafter  
denoted Case 0. Let  Z(g) represent the variables obtained from Case g, g = 0, 1, 
. . . ,  4. Across these conditions, the transformed variables have increasingly larger 
coefficients of  skewness and absolute value of  kurtosis for both multivariate as well as 
univariate distributions (see their Table 1). 

Because all components  of  Z(g) are related to those of  z* by a common transfor- 
mation, the covariance structure of z(g), g -> 1, is the same as that for z(0 ) = z*. The 
structures have different parameter  vectors,  however.  Let  Z(3'(a)) denote the model 
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covariance matrix for Z(g), where ~/(g) is the associated parameter vector. Muthrn and 
Kaplan studied a version of the factor analysis model for parallel tests, 

Z(~/) = hh '  + D~, (12a) 

in which 

h = l ) t  and D~ = I 0 ,  (12b) 

with "V' = (4, 0). This structure was estimated as an unrestricted factor analysis model. 
Hence, q = 8 and df = 2. For z(0), they specified ~/(0) = (0.7, 0.51)'. A typical 
correlation between any pair of variables of z(0 ) is therefore p = ) 2  = 0.49. Categori- 
zation introduces a bias in the model parameters and attenuates the resulting correla- 
tion (see footnote on their Table 1). Consequently, associated with the four sets of 
categorical variables, z(1), . . . ,  z(4), were the parameter vectors (0.661, 0.563), (0.660, 
0.564), (0.645, 0.584), (0.587.0.655), respectively. These parameter vectors show the 
effects of increasing nonnormality in the categorical variables, inducing a downward 
bias in 4, and an upward bias in qJ. 

Muthrn and Kaplan (1985) found that maximum likelihood produced quite accurate 
estimates of the parameters in these conditions. They also found that the mean and 
variance of the computed maximum likelihood test statistic were approximately equal 
to the theoretical values for df = 2, except for the most extremely nonnormal condition, 
Case 4. Thus, the major conclusion of their study with respect to maximum likelihood 
was that the estimator gave accurate parameter estimates and a test statistic with 
approximately the correct distribution, except for the most nonnormal categorical data. 

To extend these findings, maximum likelihood estimation of the model in (12) was 
studied with several population matrices constructed according to (1) assuming various 
degrees of lack of fit. In practicular, five values of ~£~ were generated for which 6 in (6a) 
was equal to (0.0, 0.1, 0.2, 0.3, 0.4). This gave a total of twenty-five conditions (five 
values of 6 by five categorization conditions). Samples of size n = 1,000 were gener- 
ated, and each cell in the design was replicated 500 times. Mean parameter estimates 
were computed by averaging over all 500 replications and p = 4 variables. Means of the 
discrepancy function were computed across 500 replications. Results are summarized 
in Table 3. 

In this experiment, the condition with 3 = 0 is the same as one part of the design 
studied by Muthrn and Kaplan (1985). We review these results first. In terms of accu- 
racy of parameter estimates, a pattern very similar to theirs was found. For all levels of 
Z(g), the mean parameter estimates followed the expected positive and negative bias in 
the parameters almost exactly. (The theoretical values are repeated in the bottom two 
lines of Table 3.) The mean value of the discrepancy function had a very slight increas- 
ing trend for more highly skewed conditions, a result that was quite similar to the 
analogous conditions summarized in Table 3 of Muthrn and Kaplan for maximum 
likelihood. 

In those conditions where the structure did not hold exactly, the mean parameter 
estimates were again essentially equal to the true values for all 3 > 0. Even with the 
most extreme case (3 = 0.40), the parameter estimates were nearly identical to those for 
3 = 0. In other words, maximum likelihood estimates appeared to be robust with 
respect to all levels of lack of fit. Differences that did occur only emerged for the various 
categorization conditions. 

Next, consider results related to the discrepancy function. As anticipated for z = 
z* (Case 0), Mean(M) almost exactly equaled 3. This gives some assurance that the 
method works properly with continuous variables. A very different picture emerged 
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TABLE 3 

Average Maximum Likelihood Parameter Estimates and 

Discrepancy Function Values for Model (12) 

Categorization Condition (Case 9) 
Population 

Discrepancy (5) Coefficient 0 1 2 3 

0.00 

0.I0 

0.20 

0.30 

0.40 

~a 0.699 0 . 6 6 2  0 . 6 6 0  0 . 6 4 6  0.588 

0.511 0 . 5 6 2  0.564 0 . 5 8 1  0.653 

M b 0.002 0.002 0.002 0.003 0.004 

0.699 0 . 6 6 0  0 . 6 6 0  0 . 6 4 6  0.590 

0.511 0 . 5 6 3  0.564 0 . 5 8 2  0.650 

M 0.103 0 . 0 6 5  0 . 0 7 2  0 . 0 6 4  0.045 

0.701 0 . 6 6 1  0 . 6 6 1  0 . 6 4 6  0.588 

0.509 0 . 5 6 2  0 . 5 6 2  0 . 5 8 2  0.651 

M 0.200 0 . 1 2 5  0 . 1 3 7  0 . 1 2 4  0.082 

0.699 0 . 6 6 1  0 . 6 6 1  0 . 6 4 6  0.590 

0.510 0.563 0.563 0 . 5 8 1  0.650 

M 0.302 0 . 1 8 2  0 . 1 9 8  0 . 1 7 8  0.118 

0.699 0 . 6 6 1  0 . 6 6 0  0 . 6 4 6  0.590 

0.512 0 . 5 6 2  0 . 5 6 3  0 . 5 8 1  0.649 

M 0.401 0 . 2 3 6  0 . 2 6 0  0 . 2 3 1  0.152 

Parameters c 

Ag 0.700 0.661 0.660 0.645 0.587 

~g 0.510 0.563 0.564 0.584 0.655 

aMeans of A and ~b were computed over 500 replications of 4 parameter estimates. 

bMean of M was computed over 500 replications. 

CFor Case g, g > I, Ag = v~g and ~g = 1 - A~, where pg is the attenuated 

correlation due to categorization as reported in Muth6u and Kaplan's Table 1. 

from the four conditions with 6 > 0 in Cases 1 through 4, however. Compared to the 
conditions with 6 = 0, the average of the sample discrepancy function values decreased 
with increasing nonnormality. In other words, when the model did not hold and the 
distribution assumption was incorrect, the fit improved for cases with more extreme 
values of skewness and kurtosis. This finding is counterintuitive. For when 6 = 0, there 
was a slight deterioration in Mean(M) over levels of categorization, and across levels 
of 6 > 0 for fixed levels of 9, Mean(M) worsened predictably. The effect of their joint 
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influence was not negative, as might have been anticipated, but rather produced an 
improvement in Mean(M) for the more extreme nonnormal cases. 

These results demonstrate the potential utility of this method for constructing a 
covariance matrix with a prescribed lack of fit, and utilizing such a matrix in Monte 
Carlo experiments. It has led to the unexpected finding that there are situations where 
an incorrect assumption of normality leads to an unjustified impression that the model 
under consideration fits well. A more complete investigation of the behavior of esti- 
mators under lack of fit of the model, including additional simulation studies, is obvi- 
ously needed, but this example illustrates that a rather different picture may emerge 
about an estimator's behavior when the assumption 2£ 0 = I£(~/0) is relaxed. 

6. Discussion 

A method has been presented for computing a population covariance matrix as the 
sum of a particular model plus a nonstochastic residual matrix, with the stipulation that 
the model holds with a prespecified lack of fit. It is felt that the procedure is promising 
for Monte Carlo research, and that sampling experiments based on populations where 
the model in (1) describes the covariance matrix are more realistic than those that 
assume a particular structure holds exactly. As the small experiment reported above 
illustrates, generating data in this fashion may yield results that are very different from 
those produced with the more common approach. 

The present framework can be extended to apply to models with a structured mean 
vector as well as structured covariance matrix. This could be useful in several different 
settings, for example in the study of effects of assumption violation in certain analysis 
of variance problems (e.g., Huynh, 1978, sec. 5). The simplest way to incorporate this 
change is to parameterize both the covariance matrix and mean vector as components 
of an augmented matrix of scaled sums of squares and cross-products, 

it 1 £ ( ~ 0 )  = w(~0) X(~0)  + v~('~0)w('t0)' ' 

where ix(-~ 0) is the model for the vector of means. The order of £(~/o) is therefore 
/~ x /~, where i6 = p + I, and the relationship in (1) becomes £~ = ~('~0) + F,. One 
modification must be made to the procedure as outlined above, however. The fixed 
value of unity in element (1, 1) of~,(~/0), [£(~/0)] 11 = l, is simply a consequence of this 
form of parameterization, so the corresponding elements of £~ and F, must be unity and 
zero, respectively. These conditions will be met if the first element of the vector y = 
( Y t ,  . . .  , Y p ) '  in (7) is defined as 

P 

Yl = (1 -- C l l )  - l  X ClJYJ , 
j = 2  

where (c l l, . . .  , c1#) is the first row of the matrix C = B(B'B)-IB ' .  The remaining 
values (Y2 . . . . .  y#) are otherwise arbitrary as before. This choice for Yl gives 
[E]ll = 0, and [~,'~]ll = ~,(~/0)]ll = 1. 

References 

Browne, M. W. (1969). Fitting the factor analysis model. Psychometrika, 34, 375-394. 
Browne, M. W. (1974). Generalized least-squares estimators in the analysis of covariance structures. South 

African Statistical Journal, 8, i-24. 
Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical optimization. San Diego, CA: Academic Press. 



ROBERT CUDECK AND MICHAEL W. BROWNE 369 

Graham, A. (1981). Kronecker products and matrix calculus, with applications. London: Ellis Horwood. 
Hakstian, A. R., Rogers, W. T., & Cattell, R. B. (1982). The behavior of number-of-factors rules with 

simulated data. Multivariate Behavioral Research, 17, 193-219. 
Huynh, H. (1978). Some approximate tests for repeated measurement designs. Psychometrika, 43, 161-175. 
J6reskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. 

Goldberger & O. D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85-112). New 
York: Seminar Press. 

Kant ,  Y. (1986). Conditions for consistency of estimators in covariance structure models. Journal of the 
Japanese Statistical Society, 16, 75--80. 

Laughlin, J. E. (1979). A Bayesian alternative to least squares and equal weighting coefficients in regression. 
Psychometrika, 44, 271-288. 

Muth6n, B., & Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non-normal 
Likert variables. British Journal of Mathematical and Statistical Psychology, 38, 171-189. 

Nel, D. G. (1980). On matrix differentiation in statistics. South African Statistics Journal, 14, 137-193. 
Shapiro, A., & Browne, M. W. (1988). On the asymptotic bias of estimators under parameter drift. Statistics 

and Probability Letters, 7, 221-224. 
Thisted, R. A. (1988). Elements of statistical computing. New York: Chapman & Hall. 
Tucker, L. R., Koopman, R. F., & Linn, R. L. (1969). Evaluation of factor analytic research procedures by 

means of simulated correlation matrices. Psychometrika, 34, 421--459. 

Manuscript received 1/30/90 
Final version received 8/28/91 


