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Based on the usual factor analysis model, this paper investigates the relationship between 
improper solutions and the number of factors, and discusses the properties of the noniterative 
estimation method of Ihara and Kano in exploratory factor analysis. The consistency of the 
Ihara and Kano estimator is shown to hold even for an overestimated number of factors, which 
provides a theoretical basis for the rare occurrence of improper solutions and for a new method 
of choosing the number of factors. The comparative study of their estimator and that based on 
maximum likelihood is carded out by a Monte Carlo experiment. 
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1. Introduction and Examples  

Fac tor  analysis can be character ized as a multivariate technique for analyzing the 
internal relationships among a set of  variables. Formally,  a p × 1 r andom vec tor  x = 
(Xl . . . . .  Xp) '  o f  observat ions  is represented in the form 

x = A f + u ,  

where  A is a p x k matrix of  factor  loadings, f and u are k x 1 and p x 1 random vectors  
of  c o m m o n  and unique factors,  respectively,  and k(<p)  is the number  of  factors.  I t  is 
usually assumed that f and u are uncorrelated and the covar iance matrix air of  u is 
diagonal and posit ive definite. These  assumptions lead to the fundamental  equat ion of  
factor  analysis: 

Cov (x) = A ~ A '  + air( = X, say), 

where  ~ is the covar iance  matrix of  the common factors  (see, e.g.,  Lawley  & Maxwell ,  
1971, p. 13). In this pape r  we discuss the problem of  est imation in or thogonal  explor-  
a tory  factor  analysis: that  is, ~ is assumed to be the identity matrix and no prior  
information exists  about  A, ~ ,  and k. Given orthogonali ty,  the fundamental  equat ion 
becomes  

X = AA'  + ~ ,  (1) 

where  A and * are free paramete rs  to be est imated,  and k is unknown.  
When  the number  of  factors  is given, an es t imator  (A, ~t) is usually de termined by  

the solution minimizing a suitable discrepancy function, F(S, X), which gives an indi- 
cation of  the difference be tween the sample covariance matrix S and the model  X = A A '  
+ xI~ (see, e.g.,  Browne,  1982). Typical  examples  are es t imators  based on max imum 
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likelihood (MLE, say) and generalized least squares. Unfortunately, solutions gener- 
ated by such estimation procedures cannot be represented as explicit functions of S 
because the derivatives of F(S, X) with respect to (A, air) are non|inear and compli- 
cated; consequently, estimates are usually calculated by an iterative method (e.g., 
Jennrich & Robinson, 1969; JOreskog, 1967). In spite of the efforts that have been made 
to devise good estimation techniques, we often meet the following difficulties: (I) Some 
diagonal elements of • are not positive, which is called an improper solution or Hey- 
wood case, (II) the iteration does not terminate, and (III) solutions may depend on the 
choice of initial estimates. It is well-known that these difficulties frequently arise when 
we assume a large number of factors. 

One of the main purposes of  the present paper is to relate some of the difficulties 
commonly encountered in iterative estimation to the choice of the number of  factors, 
another important and longstanding problem in factoi" analysis. Many methods of find- 
ing suitable values of k have been proposed (e.g., Hakstian & Muller, 1973; Hakstian, 
Rogers & Cattell, I982); at least two have been justified from the statistical point of  
view, namely the likelihood ratio (LR) test (Lawley, 1940) and the AIC (Akaike, 1974). 
It has been reported, however, that all methods often fail to work well (see, e.g., 
Akaike, 1987; J6reskog, 1978; Sato, 1987). To illustrate, we shall use Davis' data (1944; 
p = 9, n = 421), which have been reanalyzed by Rao (1955) and by Jennrich and 
Robinson (1969), who showed that Rao's solution does not correspond to the MLE. In 
Davis' data, the iterative process calculating the MLE for k = 2 does not converge if the 
restriction that q'i ~ 0 for all i is dropped (see Tumura & Sato, 1981). If we impose this 
restriction to calculate the MLE, then for k = 1, the MLE is proper and the LR test is 
highly significant (a X 2 value of 54.95 for 27 df; p < .005); for k = 2, the LR test suggests 
acceptance of the model but the solution is improper. The AIC also indicates k = 2, 
where the MLE's  generated for k > 1 are all improper. To illustrate the difficulty 
labeled as (III), we calculated the MLE's  (k = 1, 2) starting from ten different initial 
estimates I0, I1 . . . . .  19 that were constructed as follows: I 0 is the initial estimate 
recommended by JOreskog (1967) written as (0 i = (1 - k/2p)/s ii, where s 6 stands for the 
(i, j )  element of S -  l, and I k was formed by replacing the k-th element of I0 by zero (k 
= 1, 2 . . . . .  9). The iteration was terminated if either the root mean square of the 
gradient vector or of A ~  = (~ t+ l )  - ~ t ) )  is less than 0.00001 as in Lee and Jennrich 
(1979); here, ~(t) denotes the t-th solution in the iterative process. 

The results are shown in Table 1. For k = 2, all solutions were improper and seven 
different solutions were obtained (the solutions starting from 10, 11 , 15 and 16 a r e  the 
same), whereas all solutions for k = 1 were identical and proper. 

To explain why such difficulties may be encountered, assume that a matrix X is 
decomposed as in (1), and many different common factor decompositions with k + 1 
factors exist because the following equalities hold: 

X = A A '  + ~  
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Here c is any number, and thus, the factor loadings and unique variances for k + 1 
factors are not identified. This nonidentifiability can cause a number of serious prob- 
lems, if we intend to estimate the parameters under the assumption ofk  + 1 factors. For 
instance, c may become so large that ¢i - c2 is negative; c may oscillate or tend to 
infinity so that iteration is not terminated; and the position of the ~i where c appears 
may change if different initial estimates are chosen. For convenience, we will call such 
a loading, c, a quasi-loading; also, when a column vector of .X, consists of just one 
element with a large value and the others have rather small value, the element will be 
also called a quasi-loading. The presence of quasi-loadings may be one of the possible 
causes of the three difficulties mentioned earlier; also this could be one of reasons for 
the failure of the AIC, which requires the MLE to be consistent. 

Considering Davis' data and observing the results in Table I, we see that the first 
factor loading vectors with k = 2 are almost the same and are close to the factor loading 
vector with k = 1. Each of the second vectors includes only one element with a large 
value; the others are considerably smaller (A's were obtained by Sato's, 1987, method 
of rotation). Thus, the elements with a large value can be considered quasi-loadings, 
and the one-factor solution would be appropriate in exploratory factor analysis• 

Akaike (1987) suggested the existence of local maxima of the likelihood function 
with k = 2 for Davis' data. In fact, two different improper solutions for the 1st and 2rid 
variables were reported by Mattsson, Olssen, and Ros6n (1966) and Akaike (1987), 
respectively. These improper solutions are very close to the corresponding estimates in 
Table 1, which suggests that these solutions are due to the appearance of quasi-load- 
ings. Although Boomsma (1985) stated that different initial values have little effect in 
estimation, this would be true only when the number of factors is properly chosen. One 
might choose as the MLE the solution with the maximum likelihood of the seven shown 
in Table 1, but quasi-loadings are loadings not for common but for unique factors, and 
it is meaningless to analyze estimates that include them. 

Other examples illustrating quasi-loadings could be given in a similar manner. For 
instance, the MLE with k = 3 for the data of Eight Physical Variables (Harman, 1976, 
p. 22) has the followingform: 

.59 .53 .50 .55 .94 
~ '  = .72 .77 .73 .73 - .12 

- .07 .35 .15 - .09 - .10 

and 

.79 .75 .691 
- .12 .16 - - . 0 1  

-.01 .00 .16 

xit = diag (.13 .00 .21 .15 .09 .36 .41 .51), 

where again .~ was obtained by Sato's method of rotation. Sato (1987) also investigated 
the treatment of quasi-loadings in Maxwell's data (1961). 
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TABLE 1 

MLE's Starting from Ten Different Initial Estimates in Davis' Data with k=l,  2 

(The underlined values represent quasi-loadings as defined in the text.) 

Number 
of 

Factors 
Initial Estimate 

V a r i a b l e  

1 2 3 4 5 6 7 8 9 

k=l All 
A: .81 .81 .48 .41 .67 ,89 .84 .66 .84 

• .34 .34 .77 .83 .55 .20 .29 .57 .30 

Io Ii 

15 le 

A: .81 .80 .47 .42 .68 .90 .84 .66 .84 
.5___99 .13 .05 -.10 -.05 -.03 .00 -.04 .01 

3: .00 .36 .77 .82 £3 .19 .30 .56 .30 

A: .80 .81 .48 .41 .68 .90 .84 .66 .84 
.13 .58 -.09 .05 -.04 -.04 -.00 -.03 .00 

@: .36 .00 .76 .83 .54 .18 .30 .56 .30 

/3 
A: .81 .82 .47 .41 .67 .89 .84 .66 .84 

.03 -.05 .88 -.04 .02 .01 .03 -.04 .02 

~: .34 .33 .00 .83 .55 .20 .30 .56 .30 

k=2 /4 
A: .81 .81 .48 .41 .67 .89 .84 .66 .84 

-.06 .03 -.04 .91 .03 -.01 .01 .02 .02 

~: .34 .34 .77 .00 .55 .20 .30 .57 .30 

A: .81 .81 .47 .41 .68 .89 .84 .65 .84 
-.01 -.01 .04 .01 -.03 .02 .54 .08 -.06 

~: .34 .34 .78 .83 .54 .21 .00 .58 .29 

/8 
A: .81 .81 .48 .41 .67 .90 .84 .66 .84 

-.04 -.02 -.05 .03 .01 -.03 .05 .75 .04 

@: .34 .34 .77 .83 .55 .20 .30 .00 .30 

A: .81 .81 .48 .41 .68 .89 .85 .65 .84 
-.0I -.01 .02 .03 -.03 .02 -.06 .06 .5__~4 

~: .34 .34 .77 .84 .54 .21 .28 .58 .00 
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In these examples, the estimates A were suitably rotated so that we can easily find 

the quasi-loadings. In practical situations, however, it is difficult to recognize the pres- 
ence of quasi-loadings because, as a rule, only the estimate A considered is one that 
satisfies some restrictions required by the estimation method employed or has been 
generated by some method of rotation such as varimax. For example, a quasi-loading 
is not easily detected from the varimax solution (k = 2) for Davis' data given in Table 
5 (a) in Martin and McDonald (1975). 

To find an appropriate number of factors, solutions for several values of k must be 
calculated and compared; but quasi-loadings become an issue when k is overestimated. 
New estimation methods preventing the presence of quasi-loadings are needed that are 
different from the usual methods based on minimizing a discrepancy function, because, 
as shown above, factor loadings and unique variances are not identified in cases with 
overestimated values of k. Akaike (1987) made use of Bayesian methods to eliminate 
the indefiniteness and concluded that k = 1 and k = 2 are appropriate for the data sets 
of Davis and the Eight Physical Variables, respectively. Another approach is to use 
some prior information about (A, ~ )  and k in a type of confirmatory factor analysis, 
where an acceptable two-factor solution is obtained for Davis' data (this was pointed 
out by one of referees). 

In this paper, the properties of the noniterative estimator of Ihara and Kano (1986) 
are investigated, both analytically and experimentally. Their estimation method is 
shown not only to produce a simple consistent estimator but also to prevent quasi- 
loadings. In section 2, the analytical properties of their estimator are developed, and it 
is shown that the consistency of the estimator holds even if the number of extracted 
factors is greater than the true number. A new criterion for choosing the number of 
factors is then proposed based on this consistency property. Section 3 presents an 
algorithm for the best choice of the Ihara and Kano estimators, and the new estimation 
procedure is applied to seven real data sets in section 4. The comparative study of the 
Ihara and Kano estimator and the MLE is carried out using a Monte Carlo experiment 
in section 5. 

2. Ihara and Kano's Estimator and Its Analytical Properties 

Let ~ = AA' + air, with A of order p x k, and suppose that the parameter (A, * )  
satisfies Anderson and Rubin's sufficient condition for identifiability (see Anderson & 
Rubin, 1956, Theorem 5.1). This condition will be referred to as the A-R condition 
hereafter. Note that the A-R condition requires p _-> 2k + 1. 

Let m be a positive integer with k =<_ m _6 < (p - 1)/2, representing the number of 
extracted factors, and partition A, ~ and X as follows: 

A = m ~/2 
m , ~ = "I'3 ' (2) 

LA4J} p -  2 m -  1 O 
~F4 

and 

= 

I O'11 1 O'21 222 symmetric 
0"31 232 ~33 
O'41 242 243 244 
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The sample covariance matrix S is also partitioned in the same fashion. Define 

0/~ tn) = SII  - -  s I 2 S ~ t s 3 1  . (3)  

(This estimator is not invariant under permutation of the variables X 2 . . . . .  Xp; a 
problem to be discussed in section 3.) Estimators of Oz . . . . .  ~bt, are constructed in a 
similar manner to (3), and an overall estimator ~(m) is defined by diag (t~t m) . . . .  
~p(m)). Once air(m) is given, an estimator of A is constructed as follows: Using spectral 
decomposition, we have 

S - ~ ( m )  = PDP', 

where D is a p × p diagonal matrix of eigenvalues arranged in descending order, and P 
is a p × p orthogonal matrix of eigenvectors. Partitioning 

P =  [P1 P2] and D =  [DI 0] 
D2 , 

m p - m  
m p - m  

an estimator A (m) is defined by 

~(m) = p1D]/2. (4) 

Note that the squared length of the i-th column vector of fill (m) is equal to the i-th 
eigenvalue of S - ~ ( m )  The estimator (li, (m), ~(m)) constructed in this way will be 
called the I-K estimator. Ihara and Kano (1986) showed that the consistency and 
asymptotic normality of ~(m) hold when m = k; that is, when the number of factors is 
known. In this case it can also be proved that the same properties hold for A(m). 

We shall now investigate how the I-K estimator works when the number m is 
misspecified. We are concerned especially with the case where m is overestimated, that 
is, m > k, because in the usual iterative methods, the quasi-loadings would appear and 
the difficulties (I), (II) and (III) would arise. Partition A as follows: 

A = [ k ~  k~ A~ A~ A~ A~,]', 
1 k k p - 2 m - 1  

m m 

with ~ ,  X and S partitioned correspondingly. We may assume that A2 and A 4 are 
nonsingular, and thus, it can be proved in the same way as in Ihara and Kano (1986) that 

S l l  - -  s12S~1s41  P-~ O'1I - -  O ' 1 2 ~ 1 0 - 4 1  = I]/1, (5)  

where P denotes convergence in probability. The estimator (3) is now represented as 

_rs42 S,Ss. j]-l[s4' ]LSs, 
~ m )  = Sl 1 __ ]-SI2S13JLS5 2 . 

By the following equality 

[C A B]- I=[0A-1 0 ] + [ A - I B ] W [ C A - I - I ]  ' 

with W = (D - C A - 1 B )  - l  (see, e.g., Anderson, 1984, Theorem A.3.3.), we have 

~ I  m) = (SII  - -  $ 1 2 S ~ l s 4 1 )  

- -  (813 --  $ 1 2 s ~ l s 4 3 ) ( S 5 3  --  S 5 2 s ~ l s 4 3 ) - l ( 8 5 1  --  S 5 2 s ~ l $ 4 1 ) .  (6)  
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l/2Lq .. Each element of n ,~u - Si28421S4j) (i # J, i, j # 2, 4) has an asymptotic normal 
distribution with zero mean and positive and finite variance. There exist nonzero (m - 
k)-th derivatives of the determinant of $53 - $52S421843 with respect to the elements of 
S (in fact, the derivative with respect to the diagonal elements of S53 is equal to 1), and 
thus, the determinant of n 1/2(S53 - $52S4~ l S43) does not vanish as n tends to infinity. 
This implies that n 1/2 times the second term in (6) is bounded in probability, and from 
(5) that 

~/Im) L ~ 1, (7) 

that is, the consistency o f ~  Cm) holds even if the number of factors is overestimated. In 
this case, however, asymptotic normality of ~(m) would not hold, because ~(m~ is not 
a continuous function of S at S = X. For the asymptotic distribution in a case when 
m > k, see Kano (in press). 

We shall investigate the estimator ~(m) defined by (4). Since S converges to X = 
AA' + * in probability, it follows from (7) that 

S - ~  C'*) P AA', (8) 

and hence, from (4): 

~Cm) P [AQ : 01 

p x k p × (m - k) 

for some orthogonal matrix Q of order k. 
Summarizing these results, we have the following theorem. 

Theorem. Assume that X = AA' + * (with A of order p x k), and suppose that 
Anderson and Rubin's sufficient condition for identifiability is satisfied. Let m (k -< 
m _-< (p - I)/2) be a number of extracted (or assumed) factors and let the I-K estimator 
(~-rm), ~r(m)) be defined by (3) and (4). When m > k, (A (m) , ~(m)) converges to ([AQ: 0], 
air) in probability for some k × k orthogonal matrix Q (but the asymptotic normality is 
not guaranteed). When m = k, the I-K estimator is consistent and has an asymptotic 
normal distribution. 

For a given X, there exist many common factor decompositions of X if we take 
several large numbers of factors, but the decomposition satisfying the A-R condition is 
unique (up to orthogonal rotation) when it exists. If the I-K estimator converges to 
([A:0], ~ ) ,  the (A, * )  is the parameter satisfying the A-R condition, and the factor 
loading matrix A includes no quasi-loadings (if quasi-loadings are included, (A, ~ )  does 
not satisfy the A-R condition). The I-K estimator therefore produces no quasi-loadings. 
When the number of factors is known, (A (k), ~(k)) would be the best of all (ilk (m) , XI r(m)) 
with m _>- k because the second terms in (6) may be unstable due to sample fluctuations. 

We shall consider application of the I-K estimator to the choice of the number of 
factors. The relation (8) means that the eigenvalues of S - ~(m) converge to those of 
AA', and the p - k smallest eigenvalues of AA' are all zero. Thus, the smallest p - k 
eigenvalues of S - ~Ir(m) would be close to zero, unless the sample size is too small. It 
is natural to determine the number of factors by the number of eigenvalues of S - air(m) 
greater than some constant d, and this means disregarding the column vectors of &(m) 
that are close to the zero vector. Applications of this method to real and simulated data 
sets will be given in sections 4 and 5, respectively. 
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3. Algorithm for the Choice of A2 and A3 

There are ( P m l ) ( p - m - 1 ) / 2  alternative choices of A2 and A 3 in (2), and the same 
number of estimators (3) whose values are usually distinct from each other. We need to 
find estimators that satisfy the A-R condition and possess good properties. If the ab- 
solute value (A, say) of the determinant of $32 is small, it is doubtful whether the 
submatrix ~32 corresponding to S32 is nonsingular, and hence it is natural to choose 
estimates with a large value of A. This criterion was reported to work well for some data 
sets in Ihara and Kano (1986). Calculating & for all cases often requires heavy compu- 
tation, and the procedure proposed by Kano (1989) is inadequate for large p .  

To develop a more efficient algorithm, we first state a simple procedure for calcu- 
lating the estimate (3). Partition S as A in (2), and sweep out the elements of S except 
the first row and column vectors by  choosing diagonal elements of S32 as pivots. If X 
and Y are matrices that sweep out the column and row vectors, respectively, we have 

o o o-lr ,l 
; 0/Is2,  

x s r =  0 x33 01/s31 
0 X43 SjL ,, 

* 0 * * 

= * I 0 0  ' 

* 0 * * 

which implies that 

and that 

X S Y  = 

S12 S13 5'14 
S22 S23 S24 
S32 S33 S34 
S42 S43 S44 

o o] 
Y22 Y23 Y24 

0 0 

I $11 $12Y22 $13 - SlzS~lS33 $14 ] - s12S~lS34 q 
$21 - S22S~1s31 0 S23 - S22S~lS33 S24 S 8~1834 

X33s31 1 0 ~2 
s41 - S42S~1s31 0 S43 - S42S~lS33 844 S42S~lS34 J 

=It; A, (say) 

Y22x33 = S£  1. 

We note 

tll -- t12t31 (9) 

is identical with the I-K estimator (3), showing that the estimate can be calculated by  
sweeping S out only m times and calculating (9). One merit of the procedure is that the 
estimates with fewer than m factors can be simultaneously obtained by calculating (9) 
at each step of the sweeping-out process. 

Using this procedure, we can easily find S32 or pivots with a large value of &. 
Interchanging appropriately the row and column vectors of S, we choose as a pivot the 
element with the largest value of all possible elements of S at each step. The value of 
& is usually large because it is the product of all pivot values. 

Kano (1990) reported that the arithmetic mean of several I-K estimators for ~i with 
a large value of A is a good estimator. In this paper we average p (the number of 
variables) estimates of ~b i with a large value of A and calculate A~ (m~ by (4). If there exist 
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TABLE 2 
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Root Mean Squar~ Differences (RMSD) between LK Estimates and MLE in Empirical Data Sets 

D a t a  S e t s  

Six Eight Nine T~irteea Twenty-Four 
School Physical Davis Emmett Psychological Psychological Psychological 
Subjects Variables Testa Tests Testa 

p, k 6, 2 8, 2 9, 1 9, 2 9~ 3 t3, 3 24, 4 

RMSD .01 .03 .01 .02 .01 .07 .09 

fewer than p estimators, we may average them all. To find such estimates, we first 
denote by Xrt the value of the t-th pivot in calculating the r-th estimate for qJi(r = 1, 
2 , . . .  , p and t = 1, 2 . . . . .  m), and choose as xn the element with the largest value 
of all possible elements of S. For r => 2 the following restrictions are imposed: 

Ixrl . . .  xrtl # Ixs] . . .  xstl (s = 1, 2 . . . .  r -  I), 

which guarantees that all A's are mutually distinct, and hence the p estimates of Oi can 
be chosen differently. 

4. Applications 

To investigate the closeness of the I-K estimate to the MLE, we begin by using 
seven sets of empirical data with the number of factors assumed known from the 
literature. The data sets are as follows: (a) Six School Subjects in Lawley and Maxwell 
(1971, p. 66), (b) Eight Physical Variables in Harman (1976, p. 22), (c) Davis (1944), (d) 
Emmett (1949), (e) Nine Psychological Tests (exploratory sample) in Lawley and Max- 
well (1971, p. 96). (f) Thirteen Psychological Tests and (g) Twenty-Four Psychological 
Tests in Harman (1976, p. 124). The last three sets of data were originally given by 
Holzinger and Swineford (1939), and the data (f), analyzed by Harman (1976, p. 172), 
are the first thirteen of (g). Table 2 shows the numbers of factors and the root mean 
squared differences (RMSD) between the I-K estimates and the MLE for W. The 
differences are seen to be considerably small. 

To illustrate the lack of quasi-loadings in the I-K estimates, we give ~(1) . . . . .  
ai r(4) and ~(4) for Davis' data in Tables 3 and 4, respectively. The four I-K estimates and 
the MLE (with m = 1) of xIr are all mutually rather close (the MLE with m = 1 appears 
in Table 1). The first column of/i_ (4) and the MLE (with m = 1) of A are also very close, 
and every element of the 2nd, 3rd and 4th columns of/~(4) is small. These observations 
would also suggest the consistency of the I-K estimator in cases with m > k. Note that 
the RMSD between ~(m) and d)(~E, the MLE with m = 1, becomes large as m moves 
away from 1. 

Consider the criterion for the choice of the number of factors based on the 
(squared) lengths of columns of A <m) , which are equal to the eigenvalues of S - ~(m). 
Theorem 5.6 in Anderson and Rubin (1956) gives a necessary condition for identifiabil- 
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TABLE 3 

I-K Estimates ~('~) for All Possible Values of m in Davis' Data 

(The last row represents RMSD between ~(m) and ~(t) M L E ' /  

Variable 

1 
2 
3 
4 
5 
6 
7 
8 
9 

RMSD 

m = l  m = 2  m = 3  m = 4  

.36 .36 .37 .29 

.35 .35 .37 .33 

.78 .78 .78 .77 

.83 .83 .84 .81 

.55 .56 .55 .54 

.21 .21 .19 .14 

.31 .31 .32 .32 

.58 .58 .57 .46 

.31 .31 .32 .32 

.01 .01 .02 .05 

ity, and states that each column of  AA has at least three nonzero  elements for  every  
nonsingular matrix A of  order  k. This suggests that estimates would be rather  unstable 
and difficulties could arise if there are only two elements with a large absolute value in 
a column of  A. In fact,  the analysis of  Bechtoldt 's  (1961) data has encountered  diffi- 
culties because only X 1 and X 2 are variables for the Memory  factor  that is identified as 
one of  the common factors (see van Driel, 1978). Thus,  each column of  A should 
include at least three elements with a fairly large absolute value. The average of  the 
absolute values of  elements with a large absolute value will be denoted by x; the 
average of  the others will be represented by y. The squared length of  the i-th column 
vector  of  A is then greater  than 3x 2 + (p - 3)y 2. Thus,  we propose to set the number  
of  factors using the number  of  eigenvalues of  S - ~ r(m) greater  than 

3x 2 + (p - 3)y2( = d, say). (10) 

In practical situations the value x is expected to be greater than 0.3 or 0.4 and y would 
be about  0.1 or 0.2, when the sample correlation matrix is used. This method is similar 
to the Kaiser  and Guttman rule (Kaiser, 1960), which determines k by the number  of  
eigenvalues of  S greater than 1. The difference is whether  or not the effects of  ~Ir and p 
are taken into account.  
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I-K Estimates ~(4) in Davis' Data 

Variable 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Squared Length 

Factor Loading 

1 2 3 4 

• 82 -.23 .12 -.04 
• 81 -.09 .14 .13 
• 47 -.09 -.10 -.12 
• 41 .14 .01 .15 
• 67 .05 -.13 .03 
• 90 -.01 -.21 .03 
• 84 .03 .01 -.06 
.67 .26 .13 -.11 
.83 .03 .01 -.00 

4.83 .16 .12 .07 

The new method was applied to the seven data sets. The estimates ~(m) with m = 
[(p - 1)/2] were calculated, where [c] represents the minimum integer not greater than 
c, and the numbers of factors were then chosen by the proposed procedure. Table 5 
shows the estimated numbers of factors as well as the numbers of variables, values of 
d with x = 0.3 and y = 0.15 in (10), and the eigenvalues of S - ~(,n). The criterion 
appears to work rather well. Note that improper solutions do not appear for the I-K and 
ML methods with the estimated number of factors. In Emmett 's data, the critical value 
d(= 0.41) is rather close to the closest smaller eigenvalue (= 0.34), and so some risk 
may be incurred if the number is decided solely on the basis of our criterion. The value 
of A sometimes becomes rather small especially for large m. In such c a s e s  ~i (m) was 
calculated by the arithmetic mean of estimates with A greater than the half of the 
maximum value of A's. 

5. A Monte Carlo Experiment 

A comparative study of the I-K estimator and MLE was carried out using a small 
Monte Carlo experiment, employing a model with (p, k) = (9, 2) and a true value of A 
using the Ist and 2nd factor loading vectors of the solution of Emmett 's data rounded 
to one decimal place (Lawley & Maxwell, 1971, p. 43); W was defined by Ip - Diag 
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TABLE 5 

Choice of the Number of Factors 

Data Sets 

Six School Subjects 

Eight Physical Variables 

Davis 

Emmett 

Nine Psychological Tests 

Thirteen Psychological Tests 

Twenty-Four 
Psychological Teats 

Estimated 
Number p d Eigenvalues of S - ~(m) 

of Factors 

2 6 0.34 2.22 0.59 

2 S 0.38 4.45 1.51 0.11 

1 9 0.41 4.83 0.16 0.12 0.07 

2 9 0.41 4.34 0.95 0.34 0.09 

3 9 0.41 3,31 1.24 0.90 0.08 

3 13 0.50 4.64 1.36 0.96 0.24 0,18 

4 24 0.74 7.67 1.71 1.23 0.96 0,48 
0.32 0.30 0.24 0.14 0.I0 

0.10 

0.39 

(AA'). For each sample size (n = 50, 100 and 200), 200 sample covariance matrices 
drawn from a Wishart distribution W p ( X ,  n - l) were generated by Smith and Hock- 
ing's program (1972), in which we used physical random numbers generated by the 
amplified thermal noise from Zener diode (for details see Niki, 1980). The I-K estimates 
with m = 1 . . . . .  [(p - I)/2] = 4 and the MLE for m = k were calculated for each 
sample correlation matrix along with the root mean squared error (RMSE) of ~ to the 
true value. The partial Gauss-Newton algorithm given by Okamoto and Ihara (1984) 
was employed for calculating the MLE. 

The results are shown in Table 6 as well as the square root of the asymptotic 
variance obtained from the standard asymptotic theory; the number of improper solu- 
tions is given in parentheses. Table 6 also includes distributions of the estimated num- 
bers of factors from the 200 simulated correlation matrices by using the rule proposed. 

The Monte Carlo experiments suggest the following: (a) When m -- k, the I-K 
estimator is not inferior to the MLE for moderate sample sizes both in RMSE and in the 
number of improper solutions; the I-K estimator is recommended particularly when the 
sample size is small. (b) ~ ( m )  with rn => k is consistent of order n-l/2, (c) ~(k) is the best 
of all ~I t(m) with k =< m =< [(p - 1)/2], and the RMSE becomes large little by little as m 
moves away from k, an--ff (d) the new method for choosing the number of factors works 
satisfactorily. 

6. Discussion 

Based on the previous discussion, the following procedure may be recommended 
for exploratory factor analysis: 

1. Let M = [(p - 1)/2] and average the p estimates of (///(m) for all m with 1 =< m 
- M, where p is the number of variables. 
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Comparative Study of RMSE of I-K Estimates and MLE Using the Monte Carlo Experiment 

(The number of improper solutions is given in parentheses.) 

(multiplied by 1000) 

m=l 
n=50 m=2 

m=3 
m=4 

m=l 
n=100 m=2 

m=3 
m=4 

m=l 
n=200 m=2 

m=3 
m----4 

I-K Estimates 
MLE Square Root of Distribution of 
with Asymptotic Variance Estimated Numbers 

m = 2 of MLE of Factors 

236 (o) 0 
107 (o) 110 (29) 106 178 
109 (3) 22 
137 (2) 0 

225 (o) 0 
75 (o) 76 (2) 74 199 
78 (o) i 
99 (2) 0 

218 (0) 0 
53 (0) 53 (0) 52 200 
55 (0) 0 
71 (0) 0 

2. Choose the number (k, say) of extracted factors by the number of eigenvalues 
of S --  ~ ( M )  greater than some constant d. 

3. ~(k) is employed as an estimator of ~ ,  and .~ is calculated by (4). 
Simplicity is one of the advantages of the I-K estimator. Data sets with a fairly 

large number of variables could be analyzed even by a personal computer with a rather 
small memory. For example, in the Twenty-Four Psychological Tests data, the com- 
puting time for the MLE with rn = 4 is about sixteen times as much as that for the I-K 
estimate (/~k (4) , ~(4)); here the MLE based on the partial Gauss-Newton algorithm given 
by Okamoto and Ihara (I984) was employed that required five iterations for conver- 
gence (when the I-K estimates are calculated for all m, the proportion of computing 
times of the I-K estimate to the MLE is nearly one to six). The I-K estimates required 
much less computing time than the MLE for the other data sets as well. Several 
inexpensive estimation methods have been proposed recently (see, e.g., Bentler & 
Dijkstra, 1985; H~igglund, 1982; Jennrich, 1986; Okamoto, 1988), but the I-K estimator 
is the simplest and possesses the useful properties stated previously, though it is not 
asymptotically efficient. 

The I-K estimates are all proper for all the data sets treated here and for every m 
with I _-< m -< [(p - 1)/2], whereas the MLE are all improper for a large m(_- < [(p - 1)/2]) 
(except the data of Six School Subjects). The same holds for the following data sets: 
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Maxwell's data for normal and neurotic children with p = 10 (Maxwell, 1961, p. 53 and 
p. 55), and Hemmerle's data with p = 15 (Hemmerle, 1965, p. 298). When the MLE is 
improper and the I-K estimate is proper in cases where m is rather large, the improper 
solution is likely to be due to quasi-loadings. Van Driel (1978) discussed three causes of 
improper solutions, and the appearance of quasi-loadings corresponds to the indefinite- 
ness of the model. 

As for the difficulties (I), (II) and (III), the I-K estimator is free from (II) and (III) 
because it is calculated by a noniterative procedure. In cases with m > k, the I-K 
estimate does not produce any improper solutions due to the quasi-loadings but the 
MLE does; in cases with m = k, the ML method more frequently leads to improper 
solutions than the I-K method according to our Monte Carlo experiment, although 
improper solutions could arise because of sample fluctuations (see, e.g., Anderson & 
Gerbing, 1984; Boomsma, 1985). 

The present study leaves the following problems open. The first is to evaluate how 
many estimators should be averaged in calculating (b/~m). The present I-K estimator 
could probably not be improved by choosing a more reasonable number because the 
Monte Carlo experiment shows that the present I-K estimator (the average of p esti- 
mators) is pretty good. The second is to study further how to choose d, especially the 
values of x and y in (10); here, applications to a great number of real data sets might 
provide a better assessment of d. Anderson and Rubin's necessary condition may be 
satisfied even when the value o fx  is quite small and y is equal to zero. However,  factor 
loading vectors with such a small length that we cannot distinguish between minor 
factors and sampling errors should be ignored because of poor reproducibility. 
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