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In this article, a two-level regression model is imposed on the ability parameters in an item response 
theory (IRT) model. The advantage of using latent rather than observed scores as dependent variables 
of a multilevel model is that it offers the possibility of separating the influence of item difficulty and 
ability level and modeling response variation and measurement error. Another advantage is that, contrary 
to observed scores, latent scores are test-independent, which offers the possibility of using results from 
different tests in one analysis where the parameters of the IRT model and the multilevel model can be 
concurrently estimated. The two-parameter normal ogive model is used for the IRT measurement model. 
It will be shown that the parameters of the two-parameter normal ogive model and the multilevel model 
can be estimated in a Bayesian framework using Gibbs sampling. Examples using simulated and real data 
are given. 
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Introduction 

In educational and social research, there is a growing interest in the problems associated 
with describing the relations between variables of different aggregation level. In school effec- 
tiveness research, one may, for instance, be interested in the effects of the school budget on the 
educational achievement of the students. However, the former variable is defined on the school 
level while the latter variable is defined on the level of students. This gives rise to problems of 
properly modeling dependencies between these variables. These problems can be coped with us- 
ing multilevel models (Bryk & Raudenbush, 1992; de Leeuw & Kreft, 1986; Goldstein, 1995; 
Longford, 1993; Raudenbush, 1988). In the above example, students are nested in schools, and 
in a multilevel model the students would make up a first level and the schools a secondary level. 
Although most applications of the multilevel paradigm are found in regression and analysis of 
variance models (see, for instance, Bryk & Raudenbush), multilevel modeling does, in principle, 
apply to all statistical modeling of data where elementary units are nested within aggregates. 
Longford, for instance, gives examples of multilevel factor analytical models and generalized 
linear models. 

Also in the field of IRT models some applications of the multilevel paradigm can be found. 
Adams, Wilson and Wu (1997) discuss the treatment of latent proficiency variables as outcomes 
in a regression analysis. They show that a regression model on latent proficiency variables can 
be viewed as a two-level model where the first level consists of the item response measurement 
model which serves as a within-student model and the second level consists of a model on the 
student population distribution, which serves as a between-students model. Further, Adams et al. 
show that this approach results in an appropriate treatment of measurement error in the dependent 
variable of the regression model. Another application of multilevel modeling in the framework of 
IRT models was given by Mislevy and Bock (1989) where group-level and student-level effects 
are combined in an hierarchical IRT model. Both applications can be viewed as special cases of 
the general approach presented here. This general approach entails a multilevel regression model 
on the latent proficiency variables allowing for predictors on the student-level and group-level. 
The motivation for this approach is twofold. Firstly, linear multilevel models are based on the 
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assumption of homoscedasticity, that is, it is assumed that the error component is independent of 
the outcome variable (i.e., the score of the test taker). In IRT, measurement error can be defined 
locally, for instance, as the posterior variance of the ability parameter given a response pattern. 
This local definition of measurement error results in hetroscedasticity: In the Rasch model, for 
instance, the posterior variance of the ability parameter given an extreme score is greater than the 
posterior variance of the ability parameter given an intermediate score (see, for instance, Hoijtink 
& Boomsma, 1995, p. 59, Table 4.1). So summing up, the first motive for an IRT approach 
to multilevel models presented here is the more realistic treamaent of measurement error. The 
second motive is that, contrary to observed scores, latent scores are test-independent, which 
offers the possibility of analyzing data from incomplete designs, such as, for instance, matrix- 
sampled educational assessments, where different (groups of) persons respond to different (sets 
of) items. 

An important difference between the approach by Adams et at. (1997) and Mislevy and 
Bock (1989) and the present one is the estimation procedure: In the earlier approaches marginal 
maximmn likelihood (MML) and Bayes modal procedures (see, for instance, Bock& Aitkin, 
1981; Mislevy, 1986) were used, while the present approach entails a fully Bayesian procedure. 
Below, it will be shown that adopting a fully Bayesian framework results in a straightforward 
and easily implemented estimation procedure. The procedure has several advantages. First, a 
fully Bayesian procedure supports definition of a full probability model for quantifying uncer- 
tainty in statistical inferences (see, for instance, Gelman, Carlin, Stern, & Rubin, 1995, p. 3). 
Both knowledge about previous research and the data collection process can be incorporated in 
the model. Second, estimates of model parameters that might otherwise be poorly determined by 
the data can be enhanced by imposing restrictions on these parameters via their prior distribu- 
tions. For example, priors can be placed on the variance components in case of a small number of 
Level 2 units (see, for example, Seltzer, Wong, & Bryk, 1996). The third, and probably most im- 
portant advantage, has to do with the following. 'Ille framework used here is closely related to the 
framework introduced by Albert (1992). Recently, this framework has been further elaborated for 
estimation of IRT models with multiple raters (Patz & Junker, 1999b), testlet structures (Brad- 
low, Wainer & Wang, 1999; Wainer, Bradlow, & Du, 2000), latent classes (Hoijtink & Molenaar, 
1997) and multidimensional latent abilities (Bdguin & Glas, 1998). The unifying theme of these 
applications is the use of a Markov chain Monte Carlo (MCMC) method for Bayesian infer- 
ences. The motivation for the recent interest in Bayesian inference and MCMC might be that the 
complex dependency structures in the mentioned models require the evaluation of multiple inte- 
grals to solve the estimation equations in an MML or Bayes modal framework (Patz & Junker, 
1999a). In the sequel, it will become clear that these problems are easily avoided in an MCMC 
framework. This point will be returned to in the discussion section. 

This article consists of five sections. After this introduction section, a general multilevel IRT 
model will be presented. In the next section, an MCMC estimation procedure will be described. 
Then, in the following section, examples of the procedure will be given. And finally, the last 
section contains a discussion and suggestions for fresher research. 

Multilevel IRT Models 

One-Way Random Effects IRT ANOVA 

Before describing the complete model considered here, a special case will be presented 
first to illustrate the dependency structure of a multilevel IRT model. Consider a population of 
units, say schools, from which a sample of units indexed j = 1 . . . .  , J is drawn. Individuals, say 
students indexed i = 1 . . . . .  n j,  are nested within units. In this framework, Bryk and Raudenbush 
(1992) consider a two-Level one-way random effects ANOVA model. For the first level, the 
model is given by 

Yij = flj + eij, with eij ~ N(O, c~2), (1) 



J E A N - P A U L  F O X  A N D  C E E S  A • W •  G L A S  273 

the second level is given by 

/~j = × + u j, with uj ~ N(0, r2). (2) 

So the model entails that the Level 1 unit means are sampled from a normal distribution with 
mean g and variance r 2. Persons within a unit are independent and the disturbances of the re- 
gression coefficients in different schools are uncorrelated. This model can be generalized to an 
IRT framework by imposing the linear structure on unobserved latent variables Oij rather than 
on observed variables Yij .  The assumption is introduced that unidimensional ability parameters 
Oij are independent and normally distributed given fij. So let Oij [ f l j  ~ N ( f l j ,  O-2). Further, 

fij ~ N(V, r2). Combining these two assumptions, it follows that the joint distribution of the 
ability parameters and the random regression coefficient in group j is multivariate normal, that 
i s ,  

~ N  

Oij  
o2j 

Onjj  
~j 

Y[ V 

V 
V 

o - 2  _~_ r 2 r 2 • • •  r 2 r 2 

.c2 o -2  _~_ .c 2 • • •  .c 2 .c2 

.c2 .c2 • • •  o - 2  _~_ .c 2 .c2 

r 2 r 2 • • • r 2 r 2 

(3) 

So, though local independence holds within groups, over groups the ability parameters of the 
respondents are dependent. As noted above, these kinds of complex correlated structures suggest 
using a fully Bayesian rather than an MML or Bayes modal approach. However, this does not 
mean that the latter two approaches are completely infeasible for the present model, this point 
will be returned to in the discussion. 

A M u l t i l e v e l  I R T M o d e l  

Bryk and Randenbush (1992) present the above one-way random effects ANOVA model as 
a special case of a general model• In an IRT context, this model translates to a model given by 

Oij : f loj  -]- • •• -]- f l q j X q i j  -]- •• • -]- f l o j X o i j  -]- e i j ,  with eij ~ N(O ,  a2 ) ,  (4) 

and 

f iqj  = Vqo + ••• + VqsWsq j  + ••• + V q s W s q j  + uq j ,  forq = 0 . . . . .  Q, (5) 

where the Level 2 error terms, uqj ,  q = 0 . . . . .  Q,  have a multivariate normal distribution with 
a mean equal to zero and a covariance matrix T• In (4), Xqi j and f lqj  are Level 1 predictor 
variables and regression coefficients, respectively• The latter are assumed to be random variables 
modeled by (5), where Wsqj  and Vqs are Level 2 predictor variables and regression coefficients, 
respectively• 

In the above formulation, the coefficients of all the predictors in the Level 1 model are 
treated as random, that is, as varying across Level 2 units• In certain applications, it can be 
desirable to constrain the effects of one or more of the Level 1 predictors to be identical across 
Level 2 units• This is accomplished by reformulating the hierarchical model as a mixed model 
(Randenbush, 1988)• The issues and procedures discussed below also apply to these mixed model 
settings• 

Up to this point, the ability parameter 0 is unspecified and unknown• In the next section, an 
IRT model and an estimation procedure will be introduced• 

An MCMC Estimation Procedure for a Multilevel IRT Model 

Recently, Albert (1992) derived a procedure for simulating sampling from the posterior 
distribution of the item and person parameters of the two-parameter normal ogive model using 



274 PSYCHOMETRIKA 

the Gibbs sampler (Gelfand, Hills, Racine-Poon, & Smith, 1990; Gelman et al., 1995; Geman 
& Geman, 1984). In this paper, this approach will be generalized to the multilevel IRT model 
considered above. In the normal ogive model, the probability of a correct response of a person 
indexed i j  on an item indexed k (k = 1 . . . . .  K) ,  Yijk = 1, is given by 

P(Yijk = 1 I Oij, ak, bk) = ~(akOij - -bk) ,  (6) 

where qb denotes the cumulative standard normal distribution function, and ak and bk are the 
discrimination and difficulty parameter of item k, respectively. Below, the parameters of item 
k will also be denoted by ~k, with ~k = (ak, bk) t (note that item difficulty is denoted by the 
usual choice b while regression coefficients are denoted by/~, which is the usual choice in linear 
regression models. These parameters should not be confused). 

In a Bayesian framework, the parameters in the model defined by (4), (5) and (6) are viewed 
as random variables. Inferences about the parameters are made in terms of their posterior dis- 
tribution. However, as will be shown below, the simultaneous posterior distribution of all model 
parameters is quite complicated. Therefore, the complete set of parameters is split up into a num- 
ber of subsets in such a way that the conditional posterior distribution of every subset given all 
other parameters has a tractable form and can be easily sampled. A MCMC procedure will be 
used for drawing samples from the conditional posterior distributions. The MCMC chains will 
be constructed using the Gibbs sampler. 

To implement the Gibbs sampler for the normal ogive model, Albert (1992) augments the 
data by introducing independent random variables Zijk, which are assumed to be normally dis- 
tributed with mean akOij -- bk and variance equal to one. It is assumed that Yijk = 1 if Zijk > 0 
and Yijk = 0 otherwise. Let Z = (Zll l  . . . . .  ZnsJx)  and let 0 and g be the vectors of all person 
and item parameters, respectively. Though the joint distribution of (Z, 0, g) has an intractable 
form, the fully conditional distribution of each of the three parameters are easy to simulate. Each 
iteration m consists of three steps: (1) draw Z m+l from its distribution given gm and 0 m, (2) 
draw 0 m+l from its distribution given Z m+l and gin, and (3) draw gm+l from its distribution 
given Z m+l and 0 m+l. In the next section, it will be shown that this idea can be extended to 
estimation of the posterior distribution of all parameters in the multilevel IRT model. 

Estimation of  the Multilevel IRT Model using Gibbs Sampling 

In the present case, the data consist of the item responses Y, and the values of the Level 1 and 
2 explanatory variables, denoted by X and W, respectively. Besides the parameters Z, 0 and ~, 
the model has as parameters the Level 1 regression coefficients/3, the Level 2 coefficients y, and 
the variance components a2 and T. As a result, the full posterior distribution of the parameters 
given the data is given by 

p(Z, 0, ~, ~, a 2, "y, T I Y, X, W) (x 1--I 1--I p(Zijk  I Oij, ~k, Yijk) p(Oij I i(Ij, a 2, Xj  
j = l  i=1 k=l  

p(13j I Y, T, W j ) P ( y  l T)  

p ( ~ ) p ( a 2 ) p ( T ) ,  (7) 

with 13j, Xj and Wj the Level 1 regression coefficients and the Level 1 and 2 explanatory vari- 
ables of group j ,  respectively. The exact definition of Xj and Wj as matrices will be returned to 
below. From the definition of Zijk it follows that 

P(Zi jk  I Oij, ~k, Yijk) O( ~(Zi jk;  akOij -- bk, 1) [I (Zij  k > O)I (Yij k = 1) 

+ I(Zi jk  <_ O)I(Yijk = 0)],  
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where ¢(.; akOij -- bk, 1) stands for the normal density with a mean equal to akOij -- bk and a 
variance equal to one, and I (.) is an indicator variable taking the value one if its argument is true, 
and taking the value zero otherwise. 

As with the basic two-parameter IRT model (see, for instance, Bock & Aitldn, 1981) the 
model must be identified by fixing the origin and scale of the latent dimension. Usually, this is 
done by fixing the mean and the variance of the ability distribution to zero and one, respectively. 
However, as can be verified from (3), the scale of the latent dimension is made up of several 
variance components. Further, in multilevel modeling, one often fits an hierarchical set of models 
(see, for instance, Bryk & Raudenbush, 1992, pp. 103-114) entailing various decompositions of 
the ability variance, and, therefore, fixing one of these variance components is not practical. 
An alternative is imposing the identifying restrictions on the item parameters. Since imposing 
lqk ak = 1 and ~ k  bk = 0 would require rescaling all drawn values in every iteration, the most 
convenient way is to fix one discrimination parameter to one, and one difficulty to zero. 

Assuming independence between the item difficulty and discrimination parameter simplifies 
the choice of the prior, because independent sets of parameters may be considered separately. A 
noninformative prior for the difficulty and discrimination parameter, which insures that each item 
will have a positive discrimination index, leads to the simultaneous noninformative prior p (~) = 
p (a)p (b) o( 1~=1 I (ak > 0). The other priors will be discussed below. The distribution (7) has 
an intractable form and will be very difficult to simulate. Therefore, a Gibbs sampling algorithm 
will be used where the three steps of the original algorithm by Albert (1992) are extended to seven 
steps. Each step consists of sampling from the posterior of one of the seven parameter vectors 
Z, 0, ~,/3, a 2, y, T conditionally on all other parameters. These fully conditional distributions 
are each tractable and easy to simulate. So the remaining problem is finding the conditional 
distributions of Z, 0, ~,/3, y, a 2 and T, respectively. 

Step 1: Sampling Z. Given the parameters 0 and ~, the variables Zijk are independent, and 

Zijk I O, ~, Y distributed 
"N(akOij -- bk, 1) truncated at the left by 0 if Yijk = 1 

N(akOij -- bk, 1) truncated at the right by 0 if Yijk = O. 
(8) 

Step 2: Sampling O. The ability parameters are independent given Z, ~, 13 and a 2. Using 
equation (4) and (8) it follows that 

p(Oij ] Zij, ~, ~j, a 2) o( p(Zij ] Oij, ~)p(Oij ] ~j, a 2) 

]E-' l cx exp T Z ( Z i j k  + bk -- akOij) 2 exp ~a2(Oij -- Xij /3j)  2 , 
k=l  

(9) 

where Xij is a matrix of the explanatory variables of person i of group j ,  that is, Xij = 
(Xoij . . . . .  XQij )t 

Inspection shows that (9) is a normal model for the regression of Zijk + bk on ak with Oij 
as a regression coefficient, where Oij, has a normal prior parameterized by/3j and a 2 (e.g., see, 
Box & Tiao, 1973, pp. 74-75; Lindley & Smith, 1972). So the fully conditional posterior density 
of 0ij is given by 

Oij iZi j ,~ ,~j ,a2  N(O~ij/v+ Xij~j/a2 1 ) 
1 /v  + l / a  2 ' l / v  f - 1 / a  2 ' 

(lO) 

with 



276 PSYCHOMETRIKA 

a n d  v = ( x - ' K  a 2~-1 
~,Z.~k= 1 k ~' • 

A 

Oij = 
K 

~ k = l  ak(Zijk + bk) 
K 2 

~ k = l  ak 

Step 3: Sampling ~. Conditional on 0, Zk = (Zllk . . . . .  Zn~ lk . . . . .  ZnjJk) t satisfies the 
linear model 

Z k = [  0 --1 ] ~ k + e k ,  (11) 

where ek = (e 1 l k . . . . .  en s.lk )t is a random smnple from N (0, 1). Combining (11) with the prior 
for ~, it follows that 

j nj 

P(~k I Z, O, ~) ~ U H p(Zijk; akOij - bk, 1)p(~k) 
j = l  i=1 

( - 1  ~ - H ~ k ) )  (x exp \--~--(Zk - H(k)t (Zk ~ P(~k) 

with H = [0 - 1]. Therefore, 

~k I O, Zk ~ N(~k, (HtH)-J)l (ax > 0), (12) 

where ~ is the usual least squares estimator based on (11). 

Step 4: Sampling [3. Define Xj = (X U, .. , ,  Xij . . . . .  Xnjj) t, with Xij a s  defined in Step 
2. Further, Wj is the direct product of Wqj = (Woqj . . . .  WSqj )t and a (Q + 1) identity matrix, 
that is, Wj = {Wqj } ® IQ+I (the direct product is also known as tensor product or Kronecker 
product). Then the fully conditional posterior density of/I j  is given by 

p([3j I Oj, c~ 2, y, T) o( p(Oj I ~j ,  c~2)P(~j I T, T) 

x exp ( U ~ ( 1 3 j - W j T ) t T - I ( [ 3 j -  WIT) )  

with/3~ = ( x } x j ) - l x }  0j. Notice that the tully conditional posterior of ~j entails a model for 
the regression of O i on X j, with ~j as regression coefficients, where the regression coefficients 
have a normal prior induced by the Level 2 model (5), that is, the regression of 13j on Wj.  

Define ]£j = o-2(X~Xj) -1, d = ~21~j  + T-1Wj]  t and D = (2£~-1 + T - 1 ) - I  Then it 
follows that 

[3j I Oj, c ~2, y, T ~ N(Dd, D). (13) 

Step 5." Sampling y. The matrix y is the matrix of regression coefficients for the regression 
of ~ j  o n  W j .  The unbiased estimator for y will be file generalized least squares estimator. 
Because 

J 

P(7 ] ¢3j,T) ~ U P(~J I 7, T)P(T I T) 
j = l  

exp Z (/~J - Wj y) tT-1 (/3j - Wj y) , 
j = l  
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using an improper noninformative prior density for y results in 

((± tlt 2< I/3j, T ~ N  W}T-1Wj Z W~T-I~J  ' W} T-1Wj  . (14) 
j =1 j =1 \ j  =1 ] //  

&ep 6: Sampling o-2 The conjugate prior density tbr the variance a 2 is the I n v  - 
)(2(vo, a~). Upon setting vo = 0, it follows that the noninfonnative prior density for the variance 
is p (a  2) o( a -2. Then the conditional posterior distribution for cN is given by 

p(o-2 I 0,/1) oc p(O I/~, o-2)P(a2) 

¢ ( ( o - 2 ) - ( N / 2 + l ) e x P ( 2 @ 2 S 2 ) ,  

with S 2 ~ J = F_~j=I(Oj - X j ~ j ) t ( O j  - Xj)()j) .  Thus, the posterior distribution of o-2 given 0 
and IB is an inverse-chi-square distribution, that is, 

o-2 I O, ~ ~ I n v  - x2(N, $2). (15) 

The prior density for the variance o_2 is improper, but yields a proper conditional posterior density 
for o -2 . 

Step 7: Sampling T. Above, Wj and/3j are defined as the matrix of explanatory variables 
and the vector of regression coefficients for Level 2 unit j ,  respectively. The Level 2 model for 
this unit can be written as/3j = Wj y + u j, with E (u j) = 0, E (uj u}) = T. Therefore, 

p(T I /3j, Y) o( p ( ~ j  ] "It, T)p(T) 

1T[-1/2 exp ( - l ( / 3 j - W j T ) t T - I ( ~ j -  W j y ) )  p(T). 

J ( Define S = ~ j = l  /}j - Wj y)(/}j - Wj y)t and assume a noninformative prior for T. Aggre- 
gating over Level 2 units results in 

p(T I/3, y) o~ ]Tl-l /2exp - Z ( [ 3  j - W j T ) t T - I ( ~ j  - Wj'y) p(T) 
j = l  

= , T , - J / 2 e x p ( - ~ t r ( S T - 1 ) ) p ( T )  

= I T l - ( J / 2 + l ) e x p ( - 2 t r ( S T - 1 ) )  , 

and the posterior distribution of T given ~ and "1/is an inverse-Wishart distribution, that is, 

T ] [3, y ~ inv-Wishart(J, S-1). (16) 

With initial values 0 (°), ~(0), l}(0), o_2(°) ' y(0), and T (°), the Gibbs sampler iteratively sam- 
ples Z, 0, ~, ~, % o-2 and T from the distributions (8), (10), (12), (13), (14), (15) and (16). 
The components are updated in the order given by steps 1-7 above. Roberts and Sahu (1997) 
showed that a different updating strategy can affect the speed of convergence. Furthermore, they 
show that in case of a hierarchically structured problem the strategy of iteratively updating the 
components in the fixed ordering is the best. 
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The values of the initial estimates are also important for the rate of convergence. When 
poor initial values are chosen, convergence will be very slow. Consider, for example, (10). When 
the parameters of the multilevel model are estimated conditional on poor estimates of 0, the 
poor estimates of the multilevel model parameters will subsequently produce poor estimates of 
the ability parameters. This is because, in Step 2 the prediction of 0 from the multilevel model 
will dominate the sampled values of 0 when the Level 1 residual variance c~ 2 is smaller than 
the variance of 0, that is, v. So after some iterations, all the sampled values of the parameters 
are far away from the optimal parameter values, while c~ 2 remains smaller than v. It will take 
a lot of iterations to alter this pattern. Therefore, the following procedure can be used to obtain 
better initial estimates. First, MML estimates of the item parameters are made under the usual 
assumption that 0 is normally distributed with I+ = 0 and c~ = 1 (see, Bock & Aitkin, 1981; 
Mislevy, 1986). Another suggestion might be to compute initial values using a distinct ability 
distribution for every subgroup j .  These estimates can be computed using the program Bilog-MG 
(Zimowski, Muraki, Mislevy, & Bock, 1996). +l]len, using draws from the normal approximation 
of the standard errors of the parameter estimates of Bilog-MG as starting values, the MCMC 
procedure by Albert (1992) for estimating the normal ogive model can be run. That is, with the 
assumption that 0 is standard normal distributed formula (10) becomes 

{ ~ij/__v 1 ) (17) 
Oij I Zijk,  ~ ~'~ N \ 1/v + 1' 1/v + 1 ' 

and Z, 0 and ~ can be sampled from the distributions (8), (17) and (12). As the Gibbs sampler has 
reached convergence, the means of the sampled values of (Z, 0, ~) are computed to start sam- 
pling from the distributions (13), (14), (15) and (16). After convergence, means of the sampled 
values of (/3, y, a 2, T) are used as initial estimates. It is also possible to use an EM algorithm 
for estimating (/3, y, a 2, T) with the O (see, for instance, Bryk & Raudenbush, 1992). Once all 
initial values are estimated, equation (17) can be replaced by (10), and the complete seven-step 
MCMC procedure can be started for an estimation of (Z, 0, ~,/3, y, c~ 2, T). 

Simulated and Real-Data Examples 

In this section, a simulated data set and a data set from a Dutch primary school mathematics 
test are analyzed. The simulated data set will be used to illustrate the parameter recovery with the 
Gibbs sampler. The Dutch primary school mathematics test will be used to illustrate the practical 
impact of the proposed multilevel Ig I '  model. 

A Numerical Example 

To illustrate parameter recovery, data were simulated using a multilevel model with one 
explanatory variable on both levels. The model is given by 

Oij = flOj -J- f l l j X l i j  + eij 

floj = Voo -J- VOl WlOj -I-- uoj 

f i l j  = ~'10 -t- V l l W l l j  -t- Ulj, (18) 

wi th  eij ~ N(O, o -2) alld uqj ,.~ N(O, ,:2). Response patterns were generated according to a 
normal ogive IRT model for a test of K = 20 dichotomous items. The generating values of 
the item parameters are shown under the label Generated in Table 1. The ability parameters of 
2,000 students were divided over J = 10 groups of nj = 200 students each, and generated 
with the multilevel model given by (18). The true values for the fixed effects y and the variance 
components r0, Vl and cr are shown under the label Generated in Table 2. The explanatory 
variables X and W were drawn from N(0, 1) and N(1/2,  1), respectively. 
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TABLE 1. 
Item parameter estimates of the normal ogive IRT model using the Gibbs sampler 

279 

Generated Gibbs Sampler 

Item ate bk ak s.d. CI bk s.d. CI 

1 .640 .004 .689 .056 [.587, .809] 0 0 [0, 0] 
2 1.013 - .019  .982 .072 [.852, 1.137] - . 012  .054 [- .124,  .085] 
3 .939 - .508  .954 .072 [.826, 1.107] - .511  .055 [ - . 6 2 6 , - . 4 1 1 ]  
4 .780 - .066  .746 .058 [.638, .869] - . 117  .045 [- .208,  - .031]  
5 .824 - . 180  .896 .067 [.776, 1.038] - . 212  .050 [ - . 3 1 6 , - . 1 2 3 ]  
6 .772 - .017  .832 .063 [.717, .964] - . 016  .048 [- .113,  .075] 
7 .903 - . 942  .848 .068 [.726, .991] - .891  .053 [-1.002, - .793]  
8 .789 .168 .823 .063 [.710, .955] .108 .047 [.011, .194] 
9 .915 .000 .877 .066 [.758, 1.021] - . 002  .049 [- .104,  .088] 
10 .967 .603 .998 .075 [.860, 1.1561 .563 .054 [.450, .663] 
11 1.087 - . 010  1.(X)3 .078 [.951, 1.2611 - . 032  .057 [- .152,  .074] 
12 .980 - . 506  1.047 .077 [.909, 1.2121 - .549  .057 [ - . 6 6 7 , - . 4 4 1 ]  
13 1.124 .458 1.111 .080 [.963, 1.2811 .413 .059 [.290, .520] 
14 .945 - .691  .938 .071 [.814, 1.0931 - .679  .054 [ - . 7 9 1 , - . 5 8 0 ]  
15 1.039 - .235  1.012 .072 [.880, 1.167] - . 263  .055 [ - . 3 7 8 , - . 1 6 4 ]  
16 1.002 - . 402  1 0 [1, 11 - .371  .053 [- .479,  -.2711 
17 .676 .451 .602 .052 [.506, .7131 .467 .040 [.386, .544] 
18 .845 - . 578  .824 .064 [.709, .961] - . 588  .050 [- .691,  -.4961 
19 .796 .052 .943 .069 [.818, 1.092] .046 .051 [- .060,  .142] 
20 .722 .115 .799 .061 [.689, .931] .106 .046 [.012, .191] 

TABLE 2. 
Parameter estimates of the multilevel model, with the Gibbs sampler and HLM for Windows 

HLM Gibbs Sampler 

Fixed Effects Generated Coefficient s.e. Coefficient s.d. CI 

g00 - . 3 0  - .366  .116 - .319  .182 [- .681,  .041] 
g01 .15 .291 .150 .209 .238 [- .270,  .690] 
g l0  .35 .411 .042 .478 .061 [.361, .601] 
Vl l  1.0 .929 .081 .728 .123 [.486, .971] 

Variance Variance Vailance 
Random Effects Components Components Components s.d. CI 

vo .1 .131 .150 .018 [.085, .262] 
v 1 .1 .(X) 1 .097 .007 [.051,. 168] 
c~ .2 .199 .178 .006 [.136, .205] 

With Bilog-MG estimates as starting values, the normal ogive model was estimated with 
the MCMC procedure of  Albert (1992). Subsequently, the parameters of  the multilevel model 
were sampled, given the parameters of  the non-nal ogive model. In the simulation study, 500 iter- 
ations were needed to estimate the normal ogive model and another 500 iterations were needed 
to compute the parameters of  the multilevel model. After that, 20,000 iterations were made to 
estimate the parameters of  the multilevel IRT model 1. The convergence of the Gibbs sampler 
was checked by monitoring the expected a posteriori estimate of each parameter and its posterior 

1On a Pentium II 400mHz computer, 20,000 iterations took about 10 hours. The S-Plus (Mathsoft, 1999) code can 
be downloaded from http://users.edte.utwente.nl/fox. 
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standard deviation for several consecutive sequences of 1,000 iterations. The Gibbs sampler has 
reached convergence if differences are small. The sample variance of the individual draws was 
used as an estimator for the posterior variance (see, for instance, Patz & Junker, 1999b). 

In Table 1, the estimates of the item parameters issued from the Gibbs sampler are given 
under the label Gibbs Sampler. The item parameter estimates are the means of the generated 
posterior distributions. The reported standard deviations are the estimated posterior standard de- 
viations. In the Bayesian framework, credibility intervals are calculated as confidence regions 
for the parameters and they are given in the column labeled CI. These credibility intervals are 
the 95%-equal-tailed-intervals whose endpoints are the 2.5 and 97.5 percentiles of the marginal 
posterior distribution of the parameters. 

Figure 1 presents the posterior densities of ak for four specific items. In each plot of Fig- 
ure 1, two lines are plotted representing the density estimates based on 500 and 20,000 simulated 
values, respectively. It can be seen that the first 500 values, which were produced with the Gibbs 
sampler to get initial estimates, were quite removed from the final estimates. 

Table 2 presents the results of the estimation of the fixed effects and the variance compo- 
nents of the model. Notice that the conventional multilevel terminology is still used although all 
parameters were treated as random in the estimation procedure. The posterior means and standard 
deviations estimates computed with the Gibbs sampler are given under the label Gibbs Sampler. 
It can be seen that the true parameter values are well within the computed credibility intervals 
except for y 10 and y 11. As an additional check on the procedure, the fixed effects and variance 
components were also estimated from the true ability parameters 0 using HLM for Windows 
(Bryk, Roudenbush, & Congdon, 1996). In practice, these ability parameters are, of course, un- 
known. Inspection shows that the estimates issued by the two methods were quite close. That is, 
the parameter values from HLM are well within the computed credibility intervals. The estimates 
resulting from HLM are based on the true ability parameter, which results in more accurate es- 
timates. It seems that a fully Bayesian method which includes all the uncertainty in the problem 
needs larger sample sizes to make adequate inferences. On the other hand, comparing MML and 
fully Bayesian estimates of an IRT model for responses to testlets, Glas, Wainer, and Bradlow 
(2000) argue that the smaller size of the frequentist confidence intervals is related to the fact that 
they are based on an asymptotic approximation that does not take the skewness into account. 
Obviously, more research comparing the two approaches needs to be done. 

Finally, it is of interest to evaluate whether the multilevel IRT model was an improvement 
over the usual multilevel model on the observed scores. The linear model on the observed scores 
is less complex than the multilevel IRT model, but it was expected that using observed scores 
instead of latent scores as dependent variables will result in less precision in parameter recovery. 
For comparative purposes, the unweighted sums of the item responses were rescaled to a standard 
normal distribution. These rescaled scores will be called Z-scores. Table 3 gives the results of the 
estimation with HLM for Windows using the true standardized ability parameters and Z-scores. 

From Tables 2 and 3, it can be verified that the estimates computed using Z-scores differ 
substantially from the analogous estimates computed under a linear model on the true ability 
parameters and under a multilevel IRT model. The difference in the estimates of the variance 
components also had consequences for the estimates of the intraclass correlation coefficient. This 
coefficient expresses the proportion of variance in ability accounted for by group-membership, 
after controlling for the Level 1 predictor variable, that is, 

T0 
70  - ~.0 + a.2 

From the results of Table 2, it can be verified that using the ItLM estimates based on the true 
ability parameters resulted in ~0 = .397, while using the estimates from Gibbs sampler resulted 
in~0 = .457. Notice that the same intraclass correlation coefficient is obtained using the variance 
components of the true standardized ability parameters as shown in Table 3. This shows that this 
measure is scale-independent. From the results of ~Ihble 3, it can be verified that using the Z- 
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F I G U R E  1. 

P o s t e r i o r  d e n s i t i e s  o f  6~k f o r  I t e m s  2,  5, 7,  a n d  8. T h e  d o t t e d  l i n e  i s  a n  e s t i m a t e  o f  d e n s i t y  a f t e r  5 0 0  v a l u e s ,  a n d  t h e  s o l i d  

l i n e  i s  a n  e s t i m a t e  a f t e r  2 0 , 0 0 0  v a l u e s .  

scores resulted in ~0 = .238. So file conclusions drawn from a multilevel IRT model  can be 
quite different from the conclusions drawn from a more traditional multilevel analysis. 

A Dutch Primary School Mathematics Test 

This section concerns a study of  a primary school leaving test. A multi level IRT model  and 
an hierarchical linear model  using observed scores were estimated and compared. One of  the 
research questions in the study was whether schools that participate on a regular basis in the 
central primary school leaving test in the Netherlands perform better than schools that do not 
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TABLE 3. 
Parameter recovery of the multilevel model with standardized true latent scores and Z-scores as dependent variables 

HLM HLM (sum scores) 

Fixed Effects Coefficient s.e. Coefficient s.e. 

goo -.241 .133 -.191 .140 
gOl .336 .173 .261 .184 
glo .474 .049 .555 .049 
Vll 1.071 .093 .704 .098 

Random Effects Variance Components  Variance Components 

r 0 .151 .144 

r 1 .105 .097 

.229 .462 

participate on a regular basis. To investigate this research question, the students of 97 schools 
were given a mathematics test for grade 8 students. The test consisted of 18 mathematics items 
taken from the school leaving examination developed by the National Institute for Educational 
Measurement (Cito). Of the 97 schools sampled, 72 schools regularly participated in the school 
leaving examination; in the sequel, these schools will be called the Cito schools. The remaining 
25 schools will be called the non-Cito schools. The total number of students for which data were 
available was 2156. 

Three students' characteristics were used as a predictor for the students' achievement: socio- 
economic status (SES), nonverbal intelligence test (ISI) and Gender. SES was based on four 
indicators: the education and occupation level of both parents (if present). The non-verbal intel- 
ligence test was measured in grade 7 by three parts of an intelligence test. Predictors SES and ISI 
were normally standardized. The dichotomous predictor Gender is an indicator variable equal 
to 0 for males and equal to 1 for females. Finally, a predictor variable labeled End equaled 1 if 
the school participates in the school leaving test, and equals 0 if this is not the case. A complete 
description of the data can be found in (Doolaard, 1999, p. 57). 

The structural model used in the analysis is given by 

Oij = flOj + fllISIij + fl2jSESij + t3  Gende r i j  + eij (19) 

floj = ?'oo + ?'Ol Endj + Uoj 

f l l  = ?'10 

fi2j = ?'20 + u2j 

/~3 = ?'30 

where eij ~ N (O, o-2), Uoj ~ N (O, r~) and u2j ~ N (O, r~). Further, Uoj and u2j are assumed 
independent. Notice that SES is modeled as a random effect, that is, its regression coefficient 
varies over schools. The two-parameter normal ogive model is used as the measurements model. 

The fully conditional decomposition of Gibbs sampling was run for 25,000 iterations, with a 
burn-in period of 5,000 iterations 2. 25,000 iterations were "enough" in the sense that a substantial 
increase in the number of iterations did not perturb values of ergodic averages, that is, the average 
of the parameter draws over the iterations after the bum-in period. 

The multilevel IRT analysis was compared to an analyses with an hierarchical model on ob- 
served scores. The score distribution of the mathematics test had a "ceiling", that is, a third of the 
students scored 15 or more, with a maximum of 18. A standard procedure for dealing with such 

2Also the S-Plus code for this example can be downloaded from http://users'edte'utwente'nl/f°x" 
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TABLE 4. 
Parameter estimates of the multilevel model with the Gibbs sampler and HLM using N-scores and rescaled N-scores as 
dependent variables 

HLM HLM 
Gibbs Sampler (N-scores) (rescaled N-scores) 

Fixed Effects Coefficient s.d. CI Coefficient s.e. Coefficient s.e. 

Voo - .172 .214 [-.589, .242] - .287 .078 - .125 .068 
Vol .467 .242 [-.006, .943] .441 .087 .389 .077 
Vlo .445 .034 [.384, .516] .415 .017 .367 .016 
g2o .236 .111 [.020, .456] .213 .023 .188 .020 
g3o -.181 .040 [-.262, -.102] - .167 .034 - .148 .030 

Random Effects 
Variance Variance Variance 

Components s.d. CI Components Components 

r 0 .410 .041 [.322, .514] .326 .288 
t" 2 .228 .021 [.153, .324] .112 .099 
cr .644 .056 [.563, .729] .757 .669 

skewed distributions is to transform the data to normality. This was done by assigning normal 
order statistics to the ranked scores (Goldstein, 1995, p. 49). So these so-called N-scores had 
a standard normal distribution. For comparative purposes, a second transformation was applied 
to transform these N-scores to the same scale as the latent abilities. This was accomplished by 
transforming the N-scores such that their mean and variance were equal to the mean and variance 
of  the posterior estimates of  the ability parameters, respectively. 

The results of  the analyses are displayed in Table 4. The remark with respect to the differ- 
ence in the standard errors made above also applies in the present case. The main result of  the 
analysis was that conditionally on SES, ISI and Gender, the Cito schools performed better than 
the non-Cito schools. This can be deduced from the estimate of  the fixed effect g01, which mod- 
els the contribution of  participating in the school leaving exam to the ability level of  the students 
via its influence on the intercept fi0j. This intercept fi0j is defined as the expected achievement 
of  a male-student in school j when controlling for SES and ISI. There is a highly significant 
association between the Level 1 predictors ISI and SES and the abili ty of the students. Obvi- 
ously, students with high ISI and SES scores performed better than students with lower scores. 
The effect of  Gender on mathematics achievement was also significant and negatively related to 
achievement. This means that controlling for End, ISI and SES, boys outperformed girls on the 
mathematics test. 

The residual variance for the school-level, r0, is the variance of  the achievement of  male- 
students in school j ,  fi0j, around the grand mean, V00, when controlling for SES and ISI. Appar- 
ently, a substantial proportion of  the variation in the outcome at the student level was between 
the schools, which justifies the use of  a multilevel model. 

There were some important differences between the estimates from the multi level IRT 
model  and the estimates from the HLM model  via transformed N-scores. Firstly, the magnitude 
of  the estimate of  Y01 was greatest in the multilevel IRT analysis, so this approach discriminated 
more between Cito schools and non-Cito schools. Also the magnitude of  the estimate of  the 
variance r 2 was greatest in the multilevel IRT analysis, which indicated more variability in the 
means in schools of  the students' math achievement. Thus, the effect of grouping was greater in 
the multilevel IRT analysis. Notice that, again, the Bayesian multi level IRT estimates had larger 
posterior standard deviations. So the remarks with respect to differences between frequentist and 
Bayesian credibili ty intervals made above also applies here. 
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FIGURE 2. 
Expected posterior estimate and prediction of student's abilities in a Cito and non-Cito school as a function of SES, 
controlling for ISI and Gender. 

In the HLM analyses, the variance r 2 did not differ significantly from zero, so the SES- 
math regression slope did not vary from school to school. This is contrary to the multilevel 
IRT analysis, where the relationship between SES and math achievement within schools varied 
significantly across schools. Figure 2 displays the predicted abilities of the students in a Cito and 
a non-Cito school as a function of SES. The points are the expected posterior estimates of the 
students' abilities. 

For the same students as in Figure 2, Figure 3 shows the predicted transformed N-scores as 
a function of SES. The points are the transformed N-scores. The abilities and the transformed 
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FIGURE 3. 
Student ' s  N-scores and  predicted N-scores in a Cito and non-Cito school as a funct ion  of  SES, control l ing for  ISI and  
Gender.  

N-scores in the two plots are corrected for the effects of ISI and Gender. The upper line repre- 
sents the outcomes of students in a Cito school, which illustrates that students in Cito schools 
performed better than students in non-Cito schools. Furthermore, the differences between the two 
lines is greater in Figure 2 which illustrates that the subdivision in Cito and non-Cito schools was 
greater in the estimates resulting from the multilevel IRT analysis. Moreover, Figure 2 shows a 
sharper distinction between schools which indicates a greater school-level effect. 

The differences between the estimates can be explained by the fact that the sum scores 
discriminate less between students' outcomes than the complete response patterns, which is fur- 
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ther amplified by the "ceiling" effect which suppresses the variance in the dependent variable. 
Therefore, the multilevel IRT analysis gauges a greater variance between students' achievements 
which results in a greater school-level effect whereas the variance at Level 1 is almost the same. 
In conclusion, the multilevel IRT model reveals a sharper distinction in students' outcomes across 
schools. 

Discussion 

In this article, a two-level regression model is imposed on the ability parameters of the two- 
parameter normal ogive model. The advantage of using latent rather than observed scores is that 
it offers a more realistic way of modeling uncertainty in the dependent variable. Further, latent 
scores are test-independent, which offers the possibility of entering results from different tests in 
one analysis. 

It was shown that the Gibbs sampler can be used to concurrently estimate all the parame- 
ters of the multilevel IRT model. The method presented is very powerful because there are no 
limitations to the number of parameters or the number of explanatory variables. Although good 
initial values will speed up convergence, there are still many iterations necessary for producing 
acceptable estimates. Further research will concentrate on the use of a Monte Carlo EM (MCEM) 
algorithm to limit the amount of iterations (Wei & Tanner, 1990). 

It is easy to incorporate different types of prior beliefs about the item parameters ~. The 
numerical example illustrates that the posterior distribution of the item discrimination param- 
eters were skewed to the right. Therefore, it could be interesting to use a log-normal prior for 
the discrimination parameters (Mislevy, 1986). It is also possible to incorporate different pri- 
ors for T, a2 or T. In this paper, Jefffeys' prior is used for the variance components, that is, 
p(a 2) cx a -2, p( r )  o( r -1. However, Jet'freys' prior for r is potentially a problem in cases 
where J is small (Mort'is, 1983; Rubin, 1981). Other possible choices of priors for a 2 and r 
are an uniform prior and an inverse-chi-square prior with small degrees of freedom (see, for in- 
stance, Seltzer, 1996). The inverse-chi-square distribution has the property that, in contrast to 
the uniform prior, the prior probabilities gradually decrease when values of the variance become 
arbitrarily large. Analogously, an alternative prior for T is an inverse-Wishart distribution with 
small degrees of freedom. Another possibility would be a more informative inverse-chi-square 
prior or inverse-Wishart prior with mode and spread specified in accordance with previous re- 
search. Using nonconjugate prior distributions has the disadvantage that sampling from the fully 
conditional distributions can be very complicated. In that case, approximations can be used from 
which sampling is possible. The Metropolis-Itastings algorithm can be used to compensate for 
the approximation (Gelman et al., 1995, p. 329). 

In this article, the focus was on inferences assuming that the model is con'ect. The problem 
of model checking using Bayes factors is rather dit~cult, especially when prior information is 
weak (O'Hagan, 1995). Posterior predictive data can be used to judge the fit of the Bayesian 
model to the observed data. Tail-area probabilities, o1" posterior p-values, can be calculated under 
the posited model to quantify the extremeness of the observed value of a selected discrepancy 
(e.g., differences between observations and predictions). The predictive data are easily sampled 
via Monte Carlo simulation (see, for example, Gelman, Meng, & Stern, 1996). The Gibbs sam- 
pling formulation presented in this article can be extended to settings in which the fixed effects 
are distributed with heavy tails (Seltzer, 1993) to study the extent to which posterior means and 
intervals change as the degree of heavy-tailedness assumed increases. 

Another remark concerns alternative modes of estimation. The first approach might be to 
use a logit-link in combination with a procedure to estimate a linear multilevel model, such as, for 
instance, HLM. Applying the logit transformation to the two-parameter logistic model, results in 

I I)ij.kk I = akOij -- bk + ~ijk, log 1 -- Pijk 
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where  Pijk stands for the probability of a correct response and Sijk is a normally distributed 
error variable. A linear multilevel model can then be imposed in Oij. The problem here is that 
the item discrimination parameters ak are multiplicative with the ability parameter Oij, and there 
is no way to concurrently estimate the item parameters using a package for linear multilevel 
models. A solution might be to estimate the item parameters using Bilog-MG and impute them 
into the multilevel logit analysis. However, there are two problems with this approach. First, the 
uncertainty with respect to the imputed parameters is very difficult to model in the logit analysis. 
Second, in Bilog-MG the item parameters are estimated under the assumption that the ability 
parameters are normally distributed. However, the model imposed by (4) and (5) does not imply 
a normal distribution of Oij, and this miss-specification will cause bias in the parameters when 
the multilevel IRT model holds. The severity of this bias, however, is unknown, and to opt for 
this approach certainly more research needs to be done. 

Another approach to estimating the parameters in the multilevel IRT model might be an 
MML or Bayes modal procedure. To study this approach in some detail, consider the one-way 
ANOVA model given in the first section of this article. The impact of the dependency structure (3) 
on an MML or Bayes modal estimation procedure can be assessed by inspection of a likelihood 
function marginalized over all random effects. This likelihood function can be written as 

J 'lJ 

where P(Yij I Oij, ~) is the IRT model specifying the probability of observing response pattern 
Yij as a function of the ability parameter Oij and the item parameters ~, g(Oij I f i j ,  °-2) is the 
density of Oij and h(flj I V, r) is the density of fij. It can be seen that the dependency structure 
results in nesting of integrations that might complicate an MML estimation procedure. Notice 
that the marginal likelihood entails a multiple integral over  Oij and fij. Hence there is no need 
to compute high-dimensional integrals: Computation of two-dimensional integrals suffices. In 
this respect, this approach to estimation is related to the bi-factor full-information factor analysis 
model by Gibbons and Hedeker (1992) who show that numerical integration by Ganss-Hermite 
quadrature is feasible in these problems. Therefore, MML and Bayes modal estimation are still 
options that deserve further investigation. 

References 

Adams, R.J., Wilson, M., & Wu, M. (1997). Multilevel item response models: An approach to errors in variable regres- 
sion. Journal of Educational and Behavioral Statistics, 22, 47-76. 

Albert, J.H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educa- 
tional Statistics, 17, 251-269. 

B6guin, A.A., & Glas, C.A.W. (1998). MCMC estimation of multidimensional IRT models (Technical Report No. 98-14). 
Twente, The Netherlands: University of Twente, Faculty of Educational Science and Technology. 

Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM 
algorithm. Psychometrika, 46, 443-459. 

Box, G.E.E, & Tiao, G.C. (1973). Bayesian inference in statistical analysis. Reading, MA: Addison-Wesley Publishing. 
Bradlow, E.T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153- 

168. 
Bryk, A.S., & Raudenbush, S.W. (1992). Hierarchical linear models. Newbury Park, CA: Sage Publications. 
Bryk, A.S., Raudenbush, S.W., & Congdon, R.T. (1996). Hlmfor Windows. Chicago, IL: Scientific Software Interna- 

tional. 
de Leeuw, J., & Krefl, I.G.G. (1986). Random coefficient models for multilevel analysis. Journal of Educational and 

Behavioral Statistics, 11, 57-86. 
Doolaard, S. (1999). Schools in change or schools in chains. Unpublished doctoral dissertation, University of Twente, 

The Netherlands. 
Gelfand, A.E., Hills, S.E., Racine-Poon, A., & Smith, A.EM. (1990). Illustration of Bayesian inference in normal data 

models using Gibbs sampling. Journal of the American Statistical Association, 85, 972-985. 
Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (1995). Bayesian data analysis. London, UK: Chapman & Hall. 



288  PSYCHOMETRIKA 

Gelman, A., Meng, X-L., & Stern, H.S. (1996). Posterior predictive assessment of model fitness via realized discrepan- 
cies. Statistica Sinica, 6, 733-807. 

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741. 

Gibbons, R.D., & Hedeker, D.R. (1992). Full-information bi-factor analysis. Psychometrika, 57, 423-463. 
Glas, C.A.W., Wainer, H., & Bradlow, E.T. (2000). MML and EAP estimation in testlet-based adaptive testing. In W.J. 

van der Linden & C.A.W. Glas (Eds.). Computerized adaptive testing: Theory and practice (pp. 271-287). Boston, 
MA: Kluwer Academic Publishers. 

Goldstein, H. (1995). Multilevel statistical models (2nd ed.). London: Edward Arnold. 
Hoijtink, H., & Boomsma, A. (1995). On person parameter estimation in the dichotomous Rasch model. In G.H. Fischer 

& I.W. Molenaar (Eds.), Rasch models: Foundations, recent developments and applications (pp. 53-68). New York, 
NY: Springer. 

Hoijtink, H., & Molenaar, I.W. (1997). A multidimensional item response model: Constrained latent class analysis using 
the Gibbs sampler and posterior predictive checks. Psychometrika, 62, 171-189. 

Lindley, D.V., & Smith, A.EM. (1972). Bayes estimates for the linear model. Journal of the Royal Statistical Society, 
Series B, 34, 1-41. 

Longford, N.T. (1993). Random coefficient models. New York, NY: Oxford University Press. 
Mathsofl, Data Analysis Products Division. (1999). S-Plus 2000 programmer's guide [computer program and software 

manual]. Seattle, WA: Author. 
Mislevy, R.J. (1986). Bayes model estimation in item response models. Psychometrika, 51, 177-195. 
Mislevy, R.J., & Bock, R.D. (1989). A hierarchical item-response model for educational testing. In R.D. Bock (Eds.), 

Multilevel analysis of educational data (pp. 57-74). San Diego, CA: Academic Press. 
Morris, C.N. (1983). Parameteric empirical Bayes inference: Theory and applications (with discussion). Journal of the 

American Statistical Association, 78, 47-65. 
O'Hagan, A. (1995). Fractional Bayes factors for model comparison. Journal of the Royal Statistical Society, Series B, 

57, 99-138. 
Patz, R.J., & Junker, B.W. (1999a). A straightforward approach to Markov chain Monte Carlo methods for item response 

models. Journal of Educational and Behavioral Statistics, 24, 146-178. 
Patz, R.J., & Junker, B.W. (1999b). Applications and extensions of MCMC in IRT: Multiple item types, missing data, 

and rated responses. Journal of Educational and Behavioral Statistics, 24, 342-366. 
Raudenbush, S.W. (1988). Educational applications of hierarchical linear models: A review. Journal of Educational 

Statistics, 13, 85-116. 
Roberts, G.O., & Sahu, S.K. (1997). Updating schemes, correlation structure, blocking and parametrization for the Gibbs 

sampler. Journal of the Royal Statistical Society, Series B, 59, 291-317. 
Rubin, D.B. (1981). Estimation in parallel randomized experiments. Journal of Educational Statistics, 6, 377-400. 
Seltzer, M.H. (1993). Sensitivity analysis for fixed effects in the hierarchical model: A Gibbs sampling approach. Journal 

of Educational Statistics, 18, 207-235. 
Seltzer, M.H., Wong, W.H., & Bryk, A.S. (1996). Bayesian analysis in applications of hierarchical models: Issues and 

methods. Journal of Educational and Behavioral Statistics, 21,131-167. 
Wainer, H., Bradlow, E.T., & Du, Z. (2000). Testlet response theory: An analog for the 3pl model useful in testlet-based 

adaptive testing. In W.J. van der Linden & C.A.W. Glas (Eds.), Computerized adaptive testing: Theory and practice 
(pp. 245-269). Boston, MA: Kluwer Academic Publishers. 

Wei, G.C.G., & Tanner, M.A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's Data 
Augmentation algorithms. Journal of the American Statistical Association, 85, 699-704. 

Zimowski, M.F., Muraki, E., Mislevy, R.J., & Bock, R.D. (1996). Bilog MG, multiple-group IRTanalysis and test main- 
tenancefor binary items. Chicago, IL: Scientific Software International. 

Manuscript received 6 JAN 1999 
Final version received 18 APR 2000 


