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We relate Thurstonian models for paired comparisons data to Thurstonian models for ranking data, 
which assign zero probabilities to all intransitive patterns. We also propose an intermediate model for 
paired comparisons data that assigns nonzero probabilities to all transitive patterns and to some but not all 
intransitive patterns. 

There is a close correspondence between the multidimensional normal ogive model employed in 
educational testing and Thurstone's model for paired comparisons data under multiple judgment sampling 
with minimal identification restrictions. Alike the normal ogive model, Thurstonian models have two 
formulations, a factor analytic and an IRT formulation. We use the factor analytic formulation to estimate 
this model from the first and second order marginals of the contingency table using estimators proposed by 
Muth6n. We also propose a statistic to assess the fit of these models to the first and second order marginals 
of the contingency table. This is important, as a model may reproduce well the estimated thresholds and 
tetrachoric correlations, yet fail to reproduce the marginals of the contingency table if the assumption of 
multivariate normality is incorrect. 

A simulation study is performed to investigate the performance of three alternative limited infor- 
mation estimators which differ in the procedure used in their final stage: unweighted least squares (ULS), 
diagonally weighted least squares (DWLS), and full weighted least squares (WLS). Both the ULS and 
DWLS show a good performance with medium size problems and small samples, with a slight better 
performance of the ULS estimator. 

Key words: UMD, EWMD, WMD, GLS estimation, LISREL, categorical data analysis, preference data, 
MPLUS, binary data, goodness of fit. 

1. In t roduc t ion  

C o n s i d e r  the  p r o b l e m  of  m o d e l i n g  the  cho ice  b e h a v i o r  o f  a h o m o g e n e o u s  p o p u l a t i o n  of  

sub jec t s  in  a pa i red  c o m p a r i s o n s  des ign.  For  a f ixed set o f  n ob jec t s  a n d  a r a n d o m  sample  o f  N 

ind iv idua l s  f r o m  the  p o p u l a t i o n  o f  interest ,  this  e x p e r i m e n t a l  des ign  cons i s t s  in  cons t ruc t ing  all  

pos s ib l e  pai rs  of  objects ,  

5 ' 

and  p re sen t ing  t h e m  one  pa i r  at  a t ime  to each  ind iv idua l  in the  sample .  These  ind iv idua l s  are  

a lso g iven  some  p re fe r ence  or cho ice  c r i te r ion  and  are a sked  to express  the i r  p r e f e r ences  for  one  

ob jec t  in  each  pa i r  us ing  the  speci f ied  cr i ter ion.  

T h r o u g h o u t  this  p resen ta t ion ,  we  shal l  a s s u m e  that:  (a) n o  equa l i ty  j u d g m e n t s  are a l lowed,  

(b) each  sub jec t  in the  s ample  is a sked  to j u d g e  all  p a i r s - - t h i s  is w h a t  B o c k  and  Jones  (1968)  

re fe r  to as multiple judgment sampling--and tha t  (c) p r e sen t a t i on  order  effects  are n e g l i g i b l e - -  

pos s ib ly  t h r o u g h  r a n d o m i z a t i o n  o f  the  o rder  o f  p r e sen t a t i on  o f  pairs ,  and  o f  the  s t imul i  wi th in  a 

pair.  
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One of the most widely known class of models for paired comparisons data are Thursto- 
nian models which assume that (Thinstone, 1927): (a) whenever a pair of stimuli is presented 
to a subject it elicits a continuous prel~erence (utility function, or in Thurstone's terminology, 
discriminal process) for each stimulus; (b) the stimulus whose value is larger at the moment of 
the comparison will be preferred by the subject; (c) these unobserved preferences are normally 
distributed in the population. 

By imposing constraints on the mean and covariance matrix of the underlying normal den- 
sity one obtains different Thurstonian models such as Case III and Case V models (Thurstone, 
1927), the factorial model (Takane, 1980; Heiser & de Leeuw, 1981), the wandering vector model 
(Carroll, 1980; De Stere & Carroll, 1983), the ideal point model (Brady, 1989), or the wandering 
ideal point model (De Stere, Carroll & DeSarbo, 1986). Takane (1987) discussed what restric- 
tions these models impose on the binary pattern probabilities. He also proposed a mean and 
covariance structures analysis approach to estimating these models via Muthdn's (1978) lim- 
ited information estimator. However, ' I ~ ane  (1987) provided neither identification restrictions 
nor empirical examples and hence his paper largely remained programmatic. Here, taking on 
Takane's (1987) suggestive proposals, we provide a set of identification restrictions for Thursto- 
nian paired comparisons models and we discuss the estimation of these models by the limited 
information methods proposed by Muth6n (1978, 1993; Muthdn, du Toit & Spisic, in press). 

A drawback of these limited information methods is that no statistical test for assessing the 
overall fit of the models to the contingency table was available. A test statistic will be proposed 
to overcome this limitation. Also, a small simulation study will be performed to investigate the 
small sample behavior of this statistic and the relative merits in estimating these models of three 
different estimators proposed by Muth6n (1978, 1993; Muthdn, du Toit & Spisic, in press). 

Thurstonian models for paired comparisons data assign nonzero probabilities to all paired 
comparisons patterns. These models are closely related to Thurstonian models for ranking data 
which can be seen as models for paired comparisons data that assign nonzero probability only 
to transitive paired comparisons (Maydeu-Olivares, 1999). A model between these two extremes 
that may be of interest in applications would postulate that intransitivities should occur only for 
certain combinations of objects. We refer to these models as models with localized intransitivities 
and discuss how they can be specified within a Thurstonian framework. 

Most of our discussion revolves around the unrestricted Thurstonian (UT) model for paired 
comparisons data. This is a Thurstonian model in which the mean and covariance matrix of 
the underlying normal variates are unconstrained except for minimal restrictions needed for its 
identification. We find this model appealing in applications because it has a straightforward in- 
terpretation. Also, it is a useful benchmark model to assess the suitability of the whole class of 
Thurstonian models to the data at hand. With the identification restrictions provided here, there 
are close similarities between the UT model and the multidimensional normal ogive (MNO) 
model employed in the educational testing literature. Just as the MNO model can be expressed 
using a factor analytic (FA) or an item response theory (IRT) folTnulation (Takane & de Leeuw, 
1987), so does the UT model, and we shall provide both formulations of the model. 

2. Thurstone's Model for Multiple Judgment Paired Comparison Data 

Consider a set of n objects and a random sample of N individuals; ~7 pairs of objects are 
constructed and each pair is presented to each individual in the sample. The outcomes of each 
paired comparison will be represented by a dichotomous random variable Yl indicating whether 
for each ordered pairwise combination of objects I a subject chooses object i or i t 

S 1 if subject j chooses object/ 
Ylj = 0 if subject j chooses object i t 

l =  1 . . . . .  h; j = 1 . . . . .  m (1)  

wherel  -- (i, it), (i = 1 . . . .  , n -  1; i t = i + 1 , . . . ,  n). 
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Let t i j  denote subject j ' s  unobserved continuous preference for object i. Thurstone (1927) 
proposed performing the following pairwise linear transformation on the set of unobserved pref- 
erences 

y[ = ti - ti, (2) 

Since under the model choices are performed according to the rule: 

i if tij >_ tilj 
Choose object i I if t i j  < t i / j  ' 

it follows that 

= 1  if y~__>O 
Ylj = 0 if y~ < 0  (3) 

Now, as proposed by Takane (1987), Thurstonian models for h-dimensional patterns of 
paired comparisons are obtained by considering the joint distribution of a n-dimensional vector 
of unobserved continuous preferences t and a h-dimensional vector of random errors e associated 
with each specific paired comparison. We assume that 

( : )  ~ N ( ( / 0 t )  ' (~0 t f Z ) )  (4) 

where f~ is a diagonal matrix with diagonal elements col. 
As in (2) we assume the linear transformation 

y * = ( A  , ) ( : ) = A t + e ,  (5) 

where A is a h x n matrix of simple pailwise contrasts with element in row I and column k 

0 if k ~ { i , i ' }  
azk = 1 if k = i 

- 1  if k i I 

For example, when n = 4, A is I;-1°°] ]0_10  
A= 0 0 - 

1 - 1  " (6) 

1 0 
0 1 

Finally from (3), for any paired comparisons pattern 

PrI~'qYlII=A = f ' i ( f 4 o f i ( Y * : A t x " A X t A ' + S 2 ) d Y * '  (7) 

where ~b~ (,,) denotes a IT-dimensional normal density, and the limits of integration in (7) are 

[ (0 ,  oc)  if Y l = l  
R l = [ ( - - o c , 0 ) "  if Yl 0" (8) 
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Equations (7) and (8) define an unrestricted Thurstonian model. Restricted Thurstonian 
models can be obtained by imposing suitable constraints on/ t t  and Xt (see Takane, 1987). 

3. Identification Restrictions 

Since the observed variables are dichotomous, the means and variances of y* are not iden- 
tifiable separately. This can be solved for instance by setting c ~  = 1, gl, so that y* has a 

correlation structure, Py,. One way to enforce the variance normalization restriction on y* is by 
using a restriction analogous to that employed in factor analysis for dichotomous variables 

l l  = I - diag(AEtA~). (9) 

Hence, Thurstonian models will be identified if and only if they are can be identified from 
the reduced form parameters of the model,/xy, and Py,. We notice that since A is of rank n - 1, 
the parameters of any Tht~stonian model suffer from a location indeterminacy. In the case of the 
UT model, this indeterminacy can be solved for instance by setting 

ix,n = 0 (10) 
cYii = 1,  Vi 

so that Pt, a correlation matrix among the continuous unobserved preferences, is estimated in- 
stead of their covariance matrix. 

Consider now Thurstone's (1927) Case V and Case III models, in which Xt = 0 I  and Xt 
is a diagonal matrix, respectively. Given (9), the location indetelwninacy m these models can be 
solved (and hence these models are identified) by just letting/*n = 0. 

4. Relationships Between the Unrestricted Thurstonian Model for Paired Comparisons 
Data and the Normal Ogive Model t'or Item Response Modeling 

The UT model for paired comparisons data is a latent trait model because the random vari- 
ables y* conditional on t are mutually independent by the diagonal assumption on 12. Further- 
more, if we define item response models as latent trait models with categorical indicators, then 
this model is an item response model. We shall now see that there is a close relationship be- 
tween the UT model defined by (7) and (8) with identification restrictions (9) and (10) and the 
multidimensional normal ogive (MNO) item response model for dichotomous test data (e.g., 
Christoffersson, 1975). The latter is defined by 

Pr Yi = "~" ,(w*; Ixw~,Pw~)dw* (11) 

if y =l D) = [(--oc,  ri) if Yi 0 i = l  . . . . .  n. 

In (11), it is assumed that w,  has the following mean and correlation structure: t~j, = 0 and 
Pw* = A ~ A  ~ + W, and it is further assumed that w,  has been dichotomized according to a set 
of thresholds ~-. 

There is a rather obvious relationship between the reduced form parameters of this model, 
~- and P~,, with those of the UT model for paired compm'isons data. 

Lemma. The reduced forms of the MNO model for fi items and of the UT model for n 
objects are equivalent with 

~Y* = -~" (12) 
Py* = Pw* 
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P r o o f  Perform a change of variable y [  = w [  - rl, in the normal ogive model. Then d y [  = 

d w [  and at w [  = rl, y [  = O. [] 

As for the relationships between the actual parameters of  both models, the MNO model  can 
be identified (McDonald, 1985) by letting A be a low echelon matrix, ~ a correlation matrix, 
and air = I - d iag(A~A1) .  Taking into account these identification restrictions, we see that the 
MNO and UT models differ in 

1. The dimension of  the latent variable vector. This is fixed in the UT model, n (in fact, n - 1, 
see the next section), whereas the MNO model  just  requires that p < n. 

2. The correlation structure. A in the MNO model  consists of  regression coefficients to be esti- 
mated, whereas A in the UT model  is a fixed design matrix. 

3. The mean structure. This is an unrestricted vector, -~-, in the MNO model, whereas in the 
UT model  it is a linear function (given by the design matrix A) of the parameter vector ~ t .  

Equation (11) corresponds to a factor analytic formulation of  the MNO model  (Takane & 
de Leeuw, 1987). This model  has an alternative formulation that is more frequently used in item 
response theory (IRT). Just as the MNO model  has two formulations, so does the unrestricted 
Thurstonian model. We next present an IRT formulation of the UT model. 

5. An IRT Formulation of  the Unrestricted Thurstonian Model  for Paired Comparison Data 

The identification restrictions (10) are not unique of  course and were chosen for ease of  
interpretation (see Maydeu-Olivares,  1999, Appendix B). Now, to formulate the UT model  as an 
IRT model  it is convenient to reparameterize it as 

z = S t (13) 

where S = [In-11 - I n - i ]  is a matrix arbitrarily chosen so that its rows are in the row space of 
A. With this reparameterization, the parameters being estimated are ~z = S~t  and ]~z = SPt $I. 

Letting # i  E lXt, fzi E lXz, Pii I E P t ,  ~riil E ~'z, t he  relationship between both parameterizations 
is given by 

/~i = #i  

~rii = 2 - 2phi  i = 1 . . . . .  n - 1; i I = i + 1 . . . . .  n (14) 

~rii~ = 1 q -  P i i  ~ - -  P h i  - -  P h i  ~. 

With this reparameterization, (7) can be rewritten as 

Pr Yl = "R" qS~ (y* : K/xz, Kl~z K~ + f~) dy* (15) 

where K = AS~(SS~) -1 equals the first n - 1 columns of  A, and now f~ = I - diag(KZzK~).  
Now, as in Takane and de Leeuw (1987) we let 

[ lsslZi / Pr Yl = "R . . . .  ~b~(y*lz)~bn_l(Z)dz dy* 

--OG 

OG OG 

= f ... / : o, I f .p . .  iz : i,.<,+ - Kz,";> dy*} dz 



214 PSYCHOMETRIKA 

= f f qSn_l(Z:0,]~z)I~I q51 (y[[z: k"iz+ 
\R~ 

dz. (16) 

In the last expression in (16) we use that the y[  ]z are mutually uncorrelated by the diagonality 
assumption on YL and hence independent by the multivariate normality of ylz. Finally, 

f q $1 (y[Iz : k~z+ 

Rz 

{~1 (RIlZ + tLy[ x~YI (l-- (Pl (ktlZ -}- /~y~ ~ 1-yl )dy; t-tTi+, co! \ \ \ ]) (17) 

where ~1 (-) denotes a univariate standard normal distribution function. 
Equation (16) with (17) is the IRT formulation of the unrestricted Thnrstonian model for 

paired comparisons data in which pattern probabilities require integrating over the n - 1 dimen- 
sional multivariate normal density z. The propose of the reparameterization (13) is to reduce the 
dimensionality of the integration problem from n to n - 1. 

6. Model Interpretation, Improper Solutions, Boundary Solutions, 
and Models with Localized Intransitivities 

Under the sampling scheme considered in this paper, the parameters of the unrestricted 
Thnrstonian model have a straightforward interpretation: The t•i and aii denote the mean and 
variance of the population's unobserved continuous pmt'erences for that object, while Pii ~ denotes 
the correlation between the preferences for objects i and i I in that population. 

The random errors e in (5) are crucial in modeling paired comparisons data. Their inclusion 
allows the modeling of intransitive patterns of paired comparisons. A pattern of binary prefer- 
ences is said to be transit ive when given the pattern it is possible to rank order the objects, and 
intransitive otherwise. Substantively, a random error e(i,i,)j reflects that a subject's preference for 
an object can change during the paired comparisons experiment as the object is presented next to 
different objects, thus giving rise to intransitivities. These errors are assumed to be uncorrelated 
with the continuous preferences and uncorrelated with each other, so that their covariance matrix, 
~ ,  is diagonal. 

Maydeu-Olivares (1999) has shown that since A is of rank n - 1, APtA ~ has rank n - 1 and 
that (7) and (8) with l-I = 0 assign nonzero probabilities only to transitive patterns, thus defin- 
ing a Thnrstonian model suitable for ranking data. Mathematically, the addition of ~ to APtA ~ 
transforms Py, into a positive definite matrix, so that the model assigns nonzero probabilities to 

all 2 a paired comparisons patterns. 
Therefore, if all members of a population were transitive in their paired comparisons pref- 

erences, then ~ = 0. We have found in unpublished applications that when all objects to be 
compared are similar to each other (as when the objects to be compared are different products 
within a market segmen0, almost invariably over 85% of the subjects in the sample yield transi- 
tive patterns. In these situations, one should expect some diagonal elements of ~ be very close 
to zero in the population. In fact, any number of them may be zero in the population as long as 

Py* = APtA l + ~'~ 

is positive definite, since that is a necessary and sufficient condition for the model to assign 
nonzero probabilities to all paired comparisons patterns. 

Because some diagonal elements of ~ can be zero in the population, improper solutions in 
which some estimates become negative are very likely to occur in paired comparisons applica- 
tions with few observed intransitive patterns. Now, since with the identification restrictions laid 
out in section 3, ~ = I - diag(APtA1), its elements are of the form col = 1 - 2pii  I. Therefore, 
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for col to be positive, 

1 
IPiill > -~, '¢Pii' E Pt. (18) 

Hence, the Pii I are not properly correlations since they are bounded by (18) and they should be 
interpreted accordingly. 

Should an improper solution arise, inequality constraints can be enforced by reparameteri- 
zation (McDonald, 1980) to obtain a boundary solution. However, whenever a boundary solution 
is obtained, the rank of Py, should be evaluated to determine whether the model assigns nonzero 
probabilities to all paired comparisons patterns. The rank of Py, (i.e., its maximum rank over the 
admissible parameter space) can be efficiently determined using computer algebra (see Bekker, 
Merckens & Wansbeek, 1994). Direct verification shows, for example, that for Py, to be posi- 
tive definite when n = 3, only one element of oJ needs to be nonzero. On the other hand, when 
n = 4, (a) if 4 or more elements of oJ are nonzero, Py, will be positive definite; (b) if 2 or fewer 
elements are nonzero, Py, will not be positive definite, and (c) if there are exactly three nonzero 
elements, Py, will be positive for all but four permutations of the zero elements in oJ. Note that a 
necessary condition for Py, to be of full rank is that at least h - n + 1 elements of ~o are nonzero. 

Whenever the UT model has zero elements in ~o, y* Iz is a singular multivariate normal 
density, and for all I such that col = 0, y[Iz is a degenerate distribution. In this case, the IRT 
formulation of the UT model is given by (16) with (17) for all l such that col 7 ~ 0, and by (16) 
with 

~ ( y [ I z : k l l z + # y [ , c o l )  d y [ = ( I z ) Y ' ( 1 - - I z )  1-y' where I z =  if k11z+#y[ < 0  

RI 
(19) 

for all I such that coz = 0. 
Whenever col = 0 one of the two stimuli in pair I is consistently chosen for fixed z. To 

see why in this case intransitivities may still arise, consider three objects {ol, o2, o3}. Assume 
o0(1,2) > 0, o0(1,3) > 0, o0(2,3) = 0. This implies that subjects consistently choose between objects 
2 and 3, but intransitivities may arise as subjects need not consistently choose between objects 1 
and 2 or between objects 1 and 3. 

In some applications researchers may have some prior substantive knowledge to believe that 
intransitivities should occur only for certain combinations of objects, thus leading to models with 
more than n! but less than 2 ~ expected patterns. We shall refer to these models as models with 
localized intransitivities. Within a Thurstonian framework, such models with localized intransi- 
tivities arise when (a) some but not all elements of oJ are zero and (b) Py. is not positive definite. 
It can be readily verified that when these two conditions are satisfied, intransitive paired compar- 
isons patterns that except for the columns in which col ~ 0 equal a transitive pattern are assigned 
zero probability. Note that since when n = 3 Py. is positive definite whenever any element of ~o 
is nonzero, models with localized intransitivities only exists for n _> 4. 

7. Model Estimation and Testing 

Using the Lemma in section 4, any of the methods proposed for the estimation of the nor- 
mal ogive model can be directly applied to estimate Thurstonian models for paired comparisons 
data: (a) limited information methods (e.g., Christoffersson, 1975; Muthdn, 1978, 1984, 1993; 
Ktisters, 1987), (b) full information methods based on the EM algorithm (Bock & Aitkin, 1981), 
or (c) resampling methods (e.g., Albert, 1992; Hajivassiliou, 1993; Schilling, 1993). Further- 
more, any available computer program for the estimation of the normal ogive model can be used 
to estimate these models provided that the Thurstonian modeling constraints can be imposed on 
the thresholds and tetrachoric correlations of the normal ogive model via (12). 
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As paired comparisons experiments are rather time consuming, only small samples are gen- 
erally collected in applications of  this methodology. As a result, contingency tables, which are of  
size 2 a, will generally be very sparse. This may give an edge to limited information estimators 
over full information estimators, as the former only make use of the lower order marginals of 
the contingency table which may be well estimated even in sparse tables. Furthermore, limited 
information estimators are considerably faster than full information estimators. 

In this paper we shall employ three-stage limited information estimators proposed by 
Muthdn (1978, 1993; Muthdn, du Toit & Spisic, in press). Let K = (r, p)1 where r = - ~ y .  and 
now p is used to denote the lower diagonal elements of  Py..  In a first stage each element of r is 
estimated separately as 

~l = -°PTl(Pl ) ,  1 = 1 . . . . .  a (20) 

where Pl is the sample counterpart of  £cl = Pr(yl = 1). 
In the second stage, each element of  Py. is estimated separately given the first stage esti- 

mates as 

kgll/ = (I)21 (Pll/ l - -  ~l,--@//), 1 = 2 . . . . .  a; 11 = 1 . . . . .  1 - 1 (21) 

where pill is the sample counterpart of  £cll/ = Pr(yl = 1, yl~ = 1). 
Finally, in a third stage the parameters of  any Thurstonian model collected in a q- 

dimensional vector 0 are estimated by minimizing 

F = ( k  - t¢(0) )1Qq(t~  - t ¢ ( 0 ) )  ( 2 2 )  

where Vq is a matrix converging in probability to W, a positive definite matrix. 
Let P2 (/)1, /),~,/)2,1, " i . . . .  , "" ", Pa,a-1) and ~2 be the vector of its corresponding proba- 

bilities, where 

x/-N(p2 - ~'2) . d  N(0, F) (23) 

and ~ denotes convergence in distribution. Muth6n (1978) showed that 

x/ 'N(k - K) a ~_ lx / ' ~ (p2  _ #2) (24) 

where zX a 'at're a = -&-r, and = denotes asymptotic equality. Thus, 

x / ~ ( k  - to) . d  N(0, ~ = 2 k - l r 2 k - l Z ) .  (25) 

Therefore, obvious choices of Qg in (22) are Qg = ~ - 1  (Muthdn, 1978), Qg = diag(~) -1 
(Muthdn, du Toit & Spisic, in press), and Qg = I (Muthdn, 1993). Using standard results for 
weighted least squares estimators (e.g., Browne, 1984; Satorra, 1989; Satorra & Bentler, 1994) 

x / ~ ( 0  - 0 ) a  H x / ~ ( k  - t¢) H = ( N W A ) - I N w  (26) 

N~" ~ ~7,ri=l o~ix P (27) 

where A = a,, ,~(,~+1) 707, and r - 2 - q is the number of  degrees of freedom of the model. In (27), 

the X/2's are independent chi-square variables with one degree of freedom and the cei's are the r 
nonnull eigenvalues of  

M = W ( I  - A H ) ~ .  ( 2 8 )  
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It then follows (Muthdn, 1993) that 

x / ~ ( 0  - O) .,d N(O, H~.HI). (29) 

Now, when W = ~ -1 ,  (27) and (29) simplify to N/~ .d  X2 ' and x/-N(0 - 0 ) ~  N(0, 
( N N - i A ) - 1 ) ,  respectively, and we obtain an estimator that asymptotically has minimum vari- 
ance among the class of estimators based on the first and second order marginals of the contin- 

gency table. On the other hand, when W = diag(~,) -1 or "iV = I, a goodness of fit of the model 
can be obtained (Muth6n, 1993; Muth6n et al., in press) by scaling T := NF by its mean or 
adjusting it by its mean and variance so that it approximates a chi-square distribution as follows 

r TRIM] T 
T s -  Tr[M----~T Ta- Tr[M2] (30) 

where Ts and Ta, denote the scaled (for mean) and adjusted (for mean and variance) test statistics. 
Ts is referred to a chi-square distribution with r degrees of freedom, whereas Ta is referred to a 

chi-square distribution with d (Tr[M])2 degrees of freedom. - -  Tr{M 2] 
These statistics can be used to test Ho : K = K(0). However, as discussed by Muth6n 

(1993), verifying this hypothesis is only meaningful if the distributional hypothesis of di- 
chotomized multivariate normality is correct, but a test of this hypothesis is only currently 
available for triplets of binary variables (Muthdn & Hofacker, 1988). 

Rather than employing this approach, we propose testing directly Ho : g-r: = #2(0). By a 
Taylor series expansion 

a a#2 0 
~r2(O) = ~r2(0) + -g~7t  - 0) = ~r2 + a a ( O  - 0) .  

Hence, by (24) and (26) 

x / ' - N ( ~ ' 2 ( D )  - -  ~ r 2 ) a  z ~ A H z ~ _ I v / - ~ ( p 2  _ ~r2) .  (31) 

Now, since 

v / - N ( p 2  - ~ r 2 ( 0 ) )  = v / - N ( p 2  - ~r2)  - q / - N ( ~ r 2 ( 0 )  - ~r2)  a q / - ~ ( |  _ z ~ A H z ~ _ I ) ( p  2 _ ~r2) ,  

we obtain from (23) 

~,/-~e : = ~,/-N(p2 - ~r2(O)) G N(O, M) 

1VI = (I - z ~ & H z ~ - i ) F ( I  - z~&Hz~- i )  '. 

(32) 

(33) 

Consider now the test statistic T = Ne'e. Since i? .d  ~ = 1  ~i X/2, where the ~i 's  are the r nonnull 

eigenvalues of 1VI (Box, 1954, Theorem 2.1). To test Ho : ~'2 = ~'2(0), following Satorra and 
Bentler (1994), we propose scaling i? by its mean or adjusting it by its mean and variance so that 
it approximates a chi-square distribution using 

~ _  r if i ? a -  Tr[ifl] i?. (34) 
TRIM] TrIM 2] 

i?s is to be referred to a chi-square distribution with r degrees of freedom, whereas i?a is to be 

referred to a chi-square distribution with cl (TRIM])2 degrees of freedom. -- Tr [i~i2 ] 



218 PS YCHOMETRIKA 

It is interesting to point out that in the case of the Case III, Case V and UT models, the 
reduced form parameters of the model K can be expressed as a linear function of the model 
parameters, say K = zX0 + c+ As a result, for these models (22) has a closed form solution 

0 = (N@~X)- l zx19¢(k  - c) (35) 

Should an improper solution arise in these models with closed form solutions since zero el- 
ements in a~ are admissible, a boundary solution can be obtained by sequentially employing (35), 
setting the smallest improper Pi t  / equal to its boundary value until a proper solution is obtained. 
This is equivalent to the method of successive averaging (e.g., Hubert & Arable, 1995) and it is 
more efficient computationally than employing reparameterization techniques (e.g., McDonald, 
1980). Note, however, that standard errors and goodness of fit tests obtained in boundary solu- 
tions would be incorrect (Shapiro, 1985, 1988). Perhaps these could be obtained along the lines 
of Shapiro (1985, 1988) or employing resampling methods as suggested by Dijkstra (1992). 

In closing this section, it should be pointed out that when a model assigns zero probabilities 
to some binary patterns (as in the case of models with localized intransitivities, or in the case of 
ranking data), the degrees of freedom available for testing will be reduced. Let Y° be a t x 
matrix (t _< 2 ~) containing all binary patterns with nonzero model probabilities. Then, following 
Maydeu-Olivares (1999, Appendix 2) the number of mathematically independent elements in #2 

(and hence in K) equals the rank of T = ([I[~), where T, = Y°', and the kth row of T2 is given 

by 

tlk = y ~ l Q  yl,/, l = 2 , . . . , ~ ;  l I = 1 . . . . .  l - -  1 (36) 

where y~ denotes the Ith column of Y°, and Q denotes an elementwise (Hadamard) product. 
Hence the number of degrees of freedom available for testing models with localized intransitivi- 
ties equals rank(T) - q. 

8. Simulation Study 

The asymptotically optimal WLS estimator has been repeatedly shown to behave poorly 
in small samples, particularly in large models (e.g., Muth6n, 1993, Reboussin & Liang, 1998). 

Thus, recently, interest has turned to eslimators such as DWLS with "& = diag(~) -1 (Muthdn, 
du Toit & Spisic, in press), and ULS with V¢ = I (Muthdn, 1993), which do not require the 

inversion of the large symmetric matrix W ~ -  1 
No published study has compared the actual performance of the DWLS and ULS ap- 

proaches. We shall theretbre perform here a small simulation study to compare these approaches 
in estimating an unrestricted Thurstonian model for paired comparisons data. The simulation 
study will also allow us to investigate the small sample behavior of the overall goodness of fit 
tests just introduced. 

Two models will be considered, a small and a medium size model with n = 4 and n = 7 
objects respectively. The parameters used to generate the data were 

~t  

n = 4 objects 

(0 , ) 
t-°:)  " 0.7 0.6 1 
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( 0 .P  
0 

-0 .5  
# t =  0 

0.5 
0.5 

< 0/ 

P t  = 

n = 7 o ~ e c t s  

/ 1  
0.8 1 
0.7 0.6 1 
0.8 0.7 0.6 
0.8 0.7 0.6 
0.7 0.6 0.8 
0.8 0.7 0.6 

1 
0.8 1 
0.7 0.6 1 
0.8 0.7 0.6 

Two sample sizes will be considered, N = 300 and N = 100. 1000 replicates were used in 
each experimental cell. To increase the comparability of the results the same starting seed was 
used within each cell. The parameter estimates and estimated standard errors for the small model 
are shown in Table 1, and the goodness of fit statistics are shown in Tables 2 and 3. 

For this model, we also show the results obtained using the full WLS estimator. In this case, 
we used a generalized inverse of the weight matrix whenever this was found to be singular. 

We shall define estimation bias as % -00 0----T-' standard error bias as XsE(~)-sd~ and coverage rate 
sdg ' 

as the percentage of estimated 95% confidence intervals (g -4- 1.96 SE(g)) that included the true 
parameter. We note in Table 1 that both the DWLS and WLS correlation parameter estimates 
show a downward bias. This increases in the smaller sample size and it is larger for WLS than 
for DWLS. We also note that the estimated standard errors are largest for ULS, followed by 
DWLS, and then by WLS. The estimator that shows the smallest standard error bias is ULS. 
However, the estimation and standard error biases for DWLS are small. Turning to the results 
for the tests of the structural restrictions shown in Table 2, we see that both the mean (Ts) and 
mean and variance (To) corrected statistics perform reasonably at N = 300, but when N = 100, 
To clearly outperforms Ts, the latter being too optimistic. This is true for both ULS and DWLS 
estimation. The test statistic associated with WLS, N/~, is too optimistic at N = 300 and clearly 
inadequate at N = 100. Finally, we see in Table 3 that the overall i?o statistic works well for 
all three estimators even at N = 100, whereas the ~ is too liberal. In sum, we conclude that 
even with the small model considered here, WLS is clearly inadequate at the small sample sizes 
considered: Its parameter estimates and standard errors for the correlation structure show a large 
downward bias. The differences obtained when using DWLS and ULS are small. ULS parameter 
estimates, however, do not show the consistent downward bias of DWLS parameter estimates, 
and its standard errors show a smaller bias. 

Tables 4 and 5 summarize the results corresponding to the larger model (7 objects). Here the 
number of parameters is rather large and the results shown in Table 4 are pooled across parameter 
estimates having the same true value. Again, we observe that both the DWLS and ULS estimators 
work well even when N = 100, and that the ULS estimator shows a better performance than the 
DWLS estimator, as the DWLS correlation parameter estimates show a downward bias, whereas 
the ULS correlation estimates show almost no bias. Furthermore, the standard error bias for the 
correlation parameters is smaller for ULS than for DWLS. We also observe in Table 5 than it is 
inappropriate to use the Ts and ~ statistics for this medium size model. On the other hand, the 
To and To statistics work well in all cases. 

9. Application 

We investigated compact car preferences among college students. Using a multiple judg- 
ment paired comparisons design, 289 subjects were asked which car they would buy if they 
could afford one. In this example we shall analyze their responses to these four cars {Opel Corsa, 
Renault Clio, Seat Ibiza, Volkswagen Polo}. With four objects, there are 26 = 64 possible paired 
comparisons patterns, of which 4! = 24 are transitive patterns. However, only 41 distinct patterns 
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TABLE 2. 
Tests of the structural restrictions for an unrestricted model for 4 objects 

221 

N =  300 N =  100 

Ho : ~ = ~(0) ULS DWLS WLS ULS DWLS WLS 

stat Ts Ta Ts Ta N F Ts Ta Ts Ta N F 

Mean 12.2 9.58 12.2 10.3 13.2 12.9 9.1 12.9 9.7 16.0 
Vax. 29.5 18.03 27.9 19.5 32.5 41.9 20.1 33.9 18.3 60.7 

1% 2.5 1.6 2.0 1.4 2.6 3.5 1.4 2.7 1.4 10.3 
Nominal 5% 5.7 4.0 5.2 4.2 8.6 9.4 5.8 8.8 6.0 21.3 
Rates 10% 11.1 8.7 11.0 8.9 16.1 14.2 11.6 15.6 12.9 30.3 

20% 21.8 20.1 22.2 21.1 27.1 24.7 22.9 25.3 23.8 43.5 

Notes: 1000 replications; 6 binary variables are modeled; 12 df 

TABLE3. 
OverNllimitedi~ormationtestsforanunrestricted modelfor4o~ects  

N =  300 N =  100 

Ho : 4r2 = it2(0) ULS DWLS WLS ULS DWLS WLS 

stat Ts Ta Ts Ta Ts Ta Ts Ta Ts Ta Ts Ta 

Mean 12.3 4.0 11.9 3.9 12.1 4.3 12.5 4.0 12.1 3.8 13.5 5.2 
Vat. 74.1 8.0 70.0 7.6 65.9 8.4 79.8 8.0 74.6 7.6 80.5 12.0 

1% 7.5 1.2 7.2 1.0 6.5 1.2 8.7 1.3 7.3 1.0 9.5 1.9 
Nominal 5% 13.8 5.7 12.8 5.2 13.2 5.2 14.2 6.1 13.0 5.3 16.0 8.4 
Rates 10% 18.7 10.6 17.7 9.6 17.2 10.0 19.2 11.2 17.9 10.4 21.2 13.9 

20% 26.5 20.0 24.4 18.9 25.9 18.6 26.1 19.8 24.2 19.3 30.1 23.2 

Notes: 1000 replications; 6 binary variables are modeled; 12 df 

were observed in this sample, as 267 subjects (92% of  the sample) yielded transitive patterns (all 
transitive patterns were observed). The paired comparisons patterns and their observed frequen- 
cies in this sample are given in Table 6. 

It was shown in the previous section that the results obtained using the ULS or DWLS were 
very similar, whereas it is inappropriate to use full WLS.  For all the models  estimated here, the 
parameter estimates, estimated standard errors and p-values associated with the goodness of  fit 
tests obtained using ULS and DWLS agree at least to two significant digits. Hence, since we 
have seen in the previous section that the ULS estimator has a slight better performance than the 
DWLS estimator, only the ULS results will be reported here. 

The ULS parameter estimates and estimated asymptotic standard errors for the unrestricted 
model  are shown in Table 7. As can be seen in this table, all elements of ~ except for o)l are 
significantly equal to zero (or equivalently all elements of  Pt but P21 are significantly equal to 
0.5). This was expected since there are so few intransitive observations in this sample. 

The goodness of  fit statistics for this model  are shown in Table 8. In this table, the usefulness 
of  the proposed test of  the model  to the first and second order marginals of the contingency table 
is readily apparent. The statistics for testing the restrictions introduced by the UT model  on the 
reduced form parameters (thresholds and tetrachoric correlations) suggests that the UT model  
fits very well these data. Yet, these statistics are misleading. The ~ and ira statistics reveal that 
the UT model  does not fit well  the first and second order marginals of  the contingency table. 
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TABLE 5. 
Goodness  of fit tests for  an unrestr icted model  for  7 objects 

223 

N = 3 0 0  N = 1 0 0  

ULS f)WLS ULS DWLS 

stat Ts l a  Ts Ta ~. Ta Ts Ta 

HO : t~ = t4(O) Mean 208.3 84.0 211.9 90.3 216.5 46.9 223.9 52.2 
Var.  658.2 1 0 4 . 1  670.9 116.4 1019.8 49.6 1016.3 56.8 

1% 12.1 0.7 16.1 0.9 22.3 0.7 30.1 0.5 
Nominal 5% 55.8 2.9 62.3 4.1 63.1 3.8 73.5 3.9 
Rates 10% 55.8 7.2 62.3 10.3 63.1 7.3 73.5 11.7 

20% 55.8 18.6 62.3 24.0 63.1 20.5 73.5 28.8 

Ho : ~'2 = ir2(O) Mean 208.5 23.9 205.7 23.7 209.2 20.3 206.5 20.2 
~Vhr. 3347.3 45.11 3289.8 44.2 3406.0 32.2 3325.6 31.9 

1% 27.8 1.0 26.3 0.7 28.0 1.1 26.2 1.2 
Nominal 5% 48.1 6.4 45.9 6.2 49.6 4.2 47.5 3.6 
Rates 10% 48.1 11.0 45.9 9.9 49.6 9.3 47.5 8.5 

20% 48.1 22.3 45.9 20.6 49.6 19.3 47.5 18.0 

Notes: 1000 replications;  21 b inary  variables are modeled;  204 dj] 

For this small model, we also calculated a full information X 2 statistic where the expected 
probabili t ies for each paired comparison pattern were computed using the IRT formulation of the 
model. It remains to be shown that a X 2 statistic has an asymptotic chi-square distribution with 
2 ~ - q -  1 degrees of  freedom when model  parameters are estimated using the limited information 
procedures employed here. Therefore, the degrees of  freedom and associated p-value for the X 2 
statistic reported in Table 8 are provided for illustrative purposes only. Under the assumption 
that they are asymptotically correct, they would suggest that the UT model  does not fit the paired 
comparisons patterns adequately. An examination of  the expected frequencies shown in Table 6 
reveals that the model  reproduces adequately all the observed patterns except for the intransitive 
patterns 30 and 54. According to the model, these patterns are very unlikely to be observed, but 
had a single occurrence in this sample. The standardized residuals for these patterns are 4.306 
and 5.560, respectively, and thus these two observations account for over 60% of  the value of  the 
X 2 statistic. 

It may be that the responses of  these two subjects were due to carelessness during the ex- 
perimental procedure. For  illustrative purposes we shall remove these two observations from the 
data and re-estimate the model  as when they are removed an improper solution is obtained. We 
obtained a boundary solution by applying (35) sequentially, setting the smallest improper  Piif 

1 equal to 7 until a proper  solution was obtained. The parameter estimates and standard errors for 
this boundary solution are also shown in ~Iiibles 7 and 8. The standm'd errors and goodness of  fit 
tests are incorrect and are only shown for illustrative purposes. Not surprisingly, the parameter  
estimates for the boundary solution are almost identical to those obtained from the complete data, 
but now the overall l imited information statistic and the full information statistic suggest that the 
model  fits well  these data after the two outlier observations are removed. 

Alternatively, given the parameter estimates and standard errors for the unrestricted model, 
one may consider fitting a model  with these restrictions {#4 = 0; #3 = /*2 ;  ,o31 = ,032 = ,041 = 

/)42 = /)43 = 1}. It turns out that this is a model  with localized intransitivities as col > 0 and Py, 
is of  deficient rank (its rank equals 4). According to this model, 28 of  the intransitive patterns 
have zero probability. However, seven of  these patterns {6, 9, 24, 30, 41, 50, 54} were observed in 
the complete data, each having a single occurrence. In other words according to the model  these 
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TABLE 6. 
Observed and expected frequencies of paired comparisons patterns for the compact cars data 

no. pattern obs. unrestrict, restrict, no. pattern obs. unrestrict, restrict. 

* 1 111111 15 15.795 16.676 *33 011111 10 11.331 11.567 
* 2 111110 24 17.520 19.527 *34 011110 12 11.793 13.606 

3 111101 0 0.657 0 35 011101 0 0.158 0 
* 4 111100 13 19.438 17.920 36 011100 2 2.401 1.597 
* 5 111011 12 12.657 13.541 37 011011 1 2.030 1.265 

6 111010 1 0.777 0 38 011010 0 0.221 0 
* 7 111001 10 11.729 13.684 39 011001 0 0.434 0.394 
* 8 111000 20 16.884 15.424 40 011000 1 0.823 0.415 

9 110111 1 0.209 0 41 010111 1 0.440 0 
10 110110 1 1.737 1.058 *42 010110 6 6.386 7.546 
11 110101 0 0.1:19 0 43 010101 0 0.047 0 

.12  110100 18 17.036 16.164 *44 010100 8 10.051 12.333 
13 110011 0 0.124 0 45 010011 0 0.062 0 
14 110010 0 0.084 0 46 010010 0 0.123 0 
15 110001 0 0.708 0 47 010(81 0 0.134 0 

.16  110000 19 16.681 14.814 48 010000 2 2.184 1.382 
17 101111 1 1.326 0.858 *49 001111 6 6.220 5.840 
18 101110 0 0.050 0 50 (~31110 1 0.126 0 
19 101101 0 0.109 0 51 001101 0 0.122 0 
20 101100 0 0.079 0 52 001100 0 0.319 0 

.21 101011 15 10.702 10.546 *53 001011 10 8.817 8.186 
22 101010 0 0.013 0 e54 001010 1 0.030 0 

*23 101001 8 10.544 11.183 55 001001 0 1.791 1.087 
24 101000 1 0.457 0 56 001000 1 0.191 0 
25 100111 0 0.442 0.197 *57 000111 4 4.421 3.948 
26 100110 0 0.208 0.232 *58 000110 3 3.269 4.491 
27 100101 0 0.178 0 59 000101 0 0.210 0 
28 100100 1 1.066 0.931 *60 000100 8 5.199 6.358 
29 100011 4 1.539 0.733 .61 000011 6 6.010 4.794 

e30 100010 1 0.049 0 62 000010 1 0.289 0 
.31 100001 12 12.068 11.776 *63 000001 8 8.389 8.347 
*32 100000 13 11.368 13.647 *64 000000 7 8.880 9.691 

Notes: N = 289; * transitive patterns, • oullier observations deleted when fitting the boundary model 

seven observat ions  should not  have occurred.  No te  that the two observat ions  that we  r emoved  in 

our  previous  analysis  because  o f  their  large s tandardized residuals  be long to this set. We fitted 

again this mode l  with local ized  intransit ivit ies to our  data  wi thout  these seven observat ions.  The  

result ing parameter  es t imates  and standard errors are also shown in Tables 7 and 8. The  standard 

errors and goodness  o f  fit indexes lbr  this m o d e l  are asymptot ica l ly  correct  (Dijkstra, 1992). In 

Table 6 we  show the expected  f requencies  for each pattern. Both the l imi ted and full  informat ion 

test suggest  that this m o d e l  matches  very wel l  the data  (after r emov ing  seven observations).  The  

rank of  T for  this mode l  is 19 and there /ore  the number  o f  degrees  o f  f r eedom reported for  this 

m o d e l  in Table 8 are 19 - 3 = 16. 

10. Discuss ion  and Conclus ions  

The me thod  of  paired compar isons  is mos t  often emp loyed  using a mul t ip le  j u d g m e n t  

f ramework.  Fo l lowing  Takane 's  (1987) seminal  ideas, we  have  discussed how to es t imate  

Thurstonian mode ls  for these data as a mean  and correlat ion structure mode l  with dichoto-  

mous  indicators.  Exis t ing software can be  used to es t imate  some of  these models ,  such as 
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TABLE 7. 
Estimated parameters and asymptotic standard errors 
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unrestricted model boundary model restricted model 

pax. value SE value SE value SE 

/~ 1 0.201 (0.066) 0.205 (0.066) 0.200 (0.067) 
/~ 2 --0.155 (0.068) --0.156 (0.069) --0.144 (0.061) 
/~3 --0.112 (0.069) --0.115 (0.068) --0.144 (0.061) 

I~ 4 0 fixed 0 fixed 0 fixed 
P21 0.658 (0.037) 0.655 (0.040) 0.633 (0.040) 
P31 0.502 (0.040) 0.5 constrained 0.5 fixed 
P32 0.556 (0.038) 0.552 (0.041) 0.5 fixed 
P41 0.561 (0.039) 0.556 (0.044) 0.5 fixed 
P42 0.503 (0.040) 0.5 constrained 0.5 fixed 
P43 0.504 (0.040) 0.5 constrained 0.5 fixed 
co 1 0.315 (0.073) 0.309 (0.079) 0.267 (0.080) 
oo 2 0.004 (0.079) 0 constrained 0 fixed 
o93 0.121 (0.078) 0.112 (0.088) 0 fixed 
o94 0.113 (0.076) 0.103 (0.083) 0 fixed 
o) 5 0.006 (0.080) 0 constrained 0 fixed 
o) 6 0.009 (0.079) 0 constrained 0 fixed 

Notes: N = 289 (unrestricted model), N = 287 (boundary model), N = 282 (restricted model); 1 = Opel Corsa, 
2 = Renault Clio, 3 = Seat Ibiza, 4 = Volkswagen Polo; #4 = 0 for identification purposes; #2 and #3 are 
constrained to be equal in the restricted model 

TABLE 8. 
Goodness of fit tests 

Model 

So : ~ = ~ (0 )  So  : #2 = #2 (0 )  So : rr = rr(0)  

Statistic df  p statistic df  p statistic df  p 

Unrestricted Ts = 10.13 12 0.61 Ts = 9.00 12 < 0.01 X 2 = 81.65 54 0.01 

Ta = 7.82 9.27 0.58 Ta = 2.39 4.40 0.01 

boundary Ts = 4.91 12 0.96 Ts = 4.51 15 0.06 X 2 = 38.02 54 0.95 

Ta = 2.92 7.13 0.90 Ta = 1.56 5.94 0.12 

restricted Ts = 14.12 16 0.59 Ts = 19.70 16 0.23 X 2 = 24.12 32 0.84 

Ta = 8.08 9.16 0.54 Ta = 11.27 4.28 0.27 

Notes: N = 289 (unrestricted model), N = 287 (boundary model), N = 282 (restricted model); rr is used here 
to denote the paired comparison pattern probabilities (7); the p-values for the boundary model are incorrect and 
are shown only for illustrative purposes. 

M P L U S  ( M u t h d n  & Muthdn ,  1998) w h i c h  i m p l e m e n t s  the  D W L S  est imator .  No te  however ,  tha t  

in  M P L U S  the  w e i g h t  m a t r i x  o f  the  r e d u c e d  f o r m  p a r a m e t e r s  is c o m p u t e d  as in  M u t h d n  (1984)  

ins t ead  o f  as in  M u t h d n  (1978)  as we  do  here.  

We  have  seen  tha t  w h e n  the  s a m p l e  th re sho lds  a n d  te t rachor ic  cor re la t ions  can  be  exp re s sed  

as a l inear  func t ion  o f  the  T h u r s t o n i a n  m o d e l  p a r a m e t e r s  b o t h  the  U L S  and  D W L S  es t imators  

work  wel l  even  for  seven  ob jec t s  (21 d i c h o t o m o u s  var iab les )  and  w i th  s a m p l e  sizes d o w n  to 

one  h u n d r e d  observa t ions .  Fu r t he r m or e ,  we  h a v e  p r o p o s e d  m e t h o d s  to assess  the  g o o d n e s s  of  

fit o f  the  m o d e l s  to the  first and  s e c o n d  order  m a r g i n a l s  of  the  c o n t i n g e n c y  tab le  tha t  o v e r c o m e  

the  s ingle  m o s t  ser ious  p r o b l e m  faced  w h e n  m o d e l i n g  these  data,  namely ,  h o w  to assess  the  

fit o f  the  e s t ima ted  mode l s .  T he  p r o p o s e d  tests  work  wel l  u n d e r  the  cond i t ions  e x a m i n e d  here.  

Fu r the r  w o r k  is n e e d e d  to inves t iga te  the  b e h a v i o r  of  the  p r o p o s e d  es t ima to r s  and  tests  in  f i t t ing 
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Thurstonian models that impose non-linear restrictions on the reduced form parameters (e.g., 
factor or ideal point models). 

In closing, it should be noted that the ULS estimator employed here is closely related to 
the classical least squares procedures proposed for estimating Thurstonian models (see Arbuckle 
& Nugent, 1973; Bock & Jones, 1968, and references therein). However, these use first order 
information only (i.e., binary choices), which are assumed to be independent. Under multiple 
judgment sampling, this assumption is clearly violated. In contrast, the ULS estimator employed 
here uses first and second order information and takes into consideration the dependencies among 
the sample statistics to obtain asymptotically correct standard errors and goodness of  fit tests. 

References 

Albert, J.H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educa- 
tional Statistics, 17, 251-269. 

Arbuckle, L., & Nugent, J.H. (1973). A general procedure for parameter estimation for the law of comparative judgment. 
British Journal of Mathematical and Statistical Psychology, 26, 240-260. 

Bekker, EA., Merckens, A., & Wansbeek, T.J. (1994). Identification, equivalent models and computer algebra. San 
Diego: Academic Press. 

Bock, R.D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM 
algorithm. Psychometrika, 46, 443-459. 

Bock, R.D., & Jones, L.V. (1968). The measurement andprediction of judgment and choice. San Francisco, CA: Holden- 
Day. 

B6ckenholt, U., & Dillon, W.R. (1997). Modeling within-subject dependencies in ordinal paired comparisons data. 
Psychometrika, 62, 411-434. 

Box, G.E.E (1954). Some theorems on quadratic forms applied in the study of analysis of variance problems: I. Effect of 
inequality of variance in the one-way classification. Annals of Mathematical Statistics, 16, 769-771. 

Brady, H.E. (1989). Factor and ideal point analysis for interpersonally incomparable data. Psychometrika, 54, 181-202. 
Browne, M.W. (1984). Asymptotically distribution free methods for the analysis of covariance structures. British Journal 

of Mathematical and Statistical Psychology, 37, 62-83. 
Carroll, J.D. (1980). Models and methods for multidimensional analysis of preference choice (or other dominance) data. 

In E.D. Lantermann & H. Feger (Eds.), Similarity and choice. Bern, Switzerland: Hans Huber. 
Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 5-32. 
De Soete, G., & Carroll, J.D. (1983). A maximum likelihood method for fitting the wandering vector model. Psycho- 

metrika, 48, 553-566. 
De Soete, G., Carroll, J.D., & DeSaxbo, W.S. (1986). The wandering ideal point model: A probabilistic multidimensional 

unfolding model for paired comparison data. Journal of Mathematical Psychology, 30, 28-41. 
Dijkstra, T. K. (1992). On statistical inference with parameter estimates on the boundary of parameter space. British 

Journal of Mathematical and Statistical Psychology, 45, 289-309. 
Hajivassiliou, V.A. (1993). Simulation estimation methods for limited dependent variable models. In G.S. Maddala, C.R. 

Rao, & H.D. Vinod (Eds.), Handbook of Statistics (Vol. 11). New York, NY: Elsevier Science. 
Heiser, W., & de Leeuw, J. (1981). Multidimensional mapping of preference data. Mathdmatiques et Sciences Humaines, 

19, 39-96. 
Hubert, L., & Arabic, R (1995). Iterative projection strategies for the least squares fitting of tree structures to proximity 

data. British Journal of Mathematical and Statistical Psychology, 48, 281-317. 
Ktisters, U.L. (1987). Hierarchische Mittelwert- und Kovarianztrukturmodelle mit nichtmetrischen endogenen Variablen 

[Hierarchical mean and covaxiance structure models on nonmetric endogenous variables]. Heidelberg, Germany: 
Physica-Verlag. 

Maydeu-Olivaxes, A. (1999). Thurstonian modeling of ranking data via mean and covariance structure analysis. Psycho- 
metrika, 64, 325-340. 

McDonald, R.E (1980). A simple comprehensive model for the analysis of covariance structures: Some remarks on 
applications. British Journal of Mathematical and Statistical Psychology, 33, 161-183. 

McDonald, R.E (1985). Factor analysis and related methods. New York, NY: Lawrence Erlbaum. 
Muth6n, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551-560. 
Muth6n, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent 

variable indicators. Psychometrika, 49, 115-132. 
Muth6n, B. (1993). Goodness of fit with categorical and other non normal variables. In K.A. Bollen & J.S. Long (Eds.), 

Testing structural equation models (pp. 205-234). Newbury Park, CA: Sage. 
Muth6n, B., du Toit, S.H.C., & Spisic, D. (in press). Robust inference using weighted least squares and quadratic esti- 

mating equations in latent variable modeling with categorical and continuous outcomes. Psychometrika. 
Muth6n, B., & Hofacker, C. (1988). Testing the assumptions underlying tetrachoric correlations. Psychometrika, 53, 

563-578. 
Muth6n, L., & Muth6n, B. (1998). Mplus. Los Angeles, CA: Muth6n & Muth6n. 
Muth6n, B., & Satorra, A. (1995). Technical aspects of Muth6n's LISCOMP approach to estimation of latent variable 

relations with a comprehensive measurement model. Psychometrika, 60, 489-503. 
Reboussin, B.A., & Liang, K.Y. (1998). An estimating equations approach for the LISCOMP model. Psychometrika, 63, 

165-182. 



ALBERT M A Y D EU-OLIVARES 227 

Satorra, A. (1989). Alternative test criteria in covariance structure analysis: A unified approach. Psychometrika, 54, 
131-151. 

Satorra, A., & Bentler, EM. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In 
A. von Eye and C.C. Clogg (Eds.), Latent variable analysis: Applications to developmental research (pp. 399-419). 
Thousand Oaks, CA: Sage. 

Schilling, S. (1993). Advances in full-information item factor analysis using the Gibbs sampler. Unpublished doctoral 
dissertation, University of Chicago. 

Shapiro, A. (1985). Asymptotic distribution of test statistics in the analysis of moment structures under inequality con- 
straints. Biometrika, 72, 133-144. 

Shapiro, A. (1988). Towards a unified theory of inequality constrained testing in multivariate analysis. International 
Statistical Review, 56, 49-62. 

Takane, Y. (1980). Maximum likelihood estimation in the generalized case of Thurstone's model of comparative judg- 
ment. Japanese Psychological Research, 22, 188-196. 

Takane, Y. (1987). Analysis of covariance structures and probabilistic binary choice data. Communication and Cognition, 
20, 45~52. 

Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized 
variables. Psychometrika, 52, 393-408. 

Teugels, J.L. (1990). Some representations of the multivariate Bernoulli and binomial distributions. Journal of Multivari- 
ate Analysis, 32,256-268. 

Thurstone, L.L. (1927). A law of comparative judgment. Psychological Review, 79, 281-299. 

Manuscript received 21 SEP 1998 
Final version received 6 OCT 1999 


