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This paper generalizes the p* class of models for social network data to predict individual-level 
attributes from network ties. The p* model for social networks permits the modeling of social relation- 
ships in terms of particular local relational or network configurations. In this paper we present methods 
for modeling attribute measures in terms of network ties, and so construct p* models for the patterns of 
social influence within a network. Attribute variables are included in a directed dependence graph and the 
Hammersley-Clifford theorem is employed to derive probability models whose parameters can be esti- 
mated using maximum pseudo-likelihood. The models axe compared to existing network effects models. 
They can be interpreted in terms of public or private social influence phenomena within groups. The mod- 
els are illustrated by an empirical example involving a training course, with trainees' reactions to aspects 
of the course found to relate to those of their network partners. 
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1. In t roduc t ion  and  B a c k g r o u n d  

The  f o r m a t i o n  and  c h a n g e  of  a t t i tudes  w i th in  g roups  has  a long  ped ig ree  as a r e sea rch  

ques t ion ,  even  t h o u g h  it  has  appea red  unde r  d i f fe ren t  guises .  Ind iv idua l s  w i th in  the  s ame  socia l  

sys t em m a y  tend  to share  ce r ta in  at t i tudes,  behav io r s  or  bel iefs .  Resea rch  s tudies  re la t ing  to, for  

ins tance ,  g roup  n o r m s  (Sherif ,  1936/1964) ,  g roup  or  o rgan iza t iona l  cu l ture  (Schein ,  1985),  "col-  

lec t ive  cogn i t i ons "  (K l imosk i  & M o h a m m e d ,  1994; W e i c k  & Rober ts ,  1993),  a n d  socia l  inf lu-  

ence  (Moscov ic i ,  1985) a t t empt  to desc r ibe  s imi la r  p rocesses  o f  co l lec t ive  func t ion ing ,  w h e r e b y  

cogn i t ion  and  social  con tex t  interact .  Such  p rocesses  are o b s e r v a b l e  in g roup  set t ings,  wi th  sev- 

eral  c lear  d e m o n s t r a t i o n s  s ince  Sher i f fs  (1936 /1964)  s emina l  work  on  g roup  no rms .  Neve r the -  

less, the  in te rac t ion  b e t w e e n  social  cogn i t ion  and  socia l  con tex t  is o f  such  complex i ty  tha t  there  

is cons ide r ab l e  r o o m  for  fu r ther  m o d e l i n g  in this  area  (Pat t ison,  1994).  

Th i s  ar t ic le  deve lops  a new  class  o f  n e t w o r k  m o d e l s  for  social  in f luence  processes ,  b y  gen-  

e ra l iz ing  the  p* c lass  o f  n e t w o r k  m o d e l s  (F rank  & Strauss,  1986; Pa t t i son  & W a s s e r m a n ,  1999; 

Rob ins ,  Pa t t i son  & W a s s e r m a n ,  1999; St rauss  & Ikeda,  1990; W a s s e r m a n  & Pat t ison,  1996) to 

inco rpora t e  ind iv idua l  a t t r ibutes .  A n  attribute is r ega rded  as a va r iab le  m e a s u r e d  at the  level  of  

the  indiv idual ,  as d i s t inc t  f r om a n e t w o r k  tie, w h i c h  ind ica tes  a r e l a t ionsh ip  b e t w e e n  two indi-  
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viduals. This article follows Leenders (1997) in using attribute to refer not just to background 
variables that remain constant, such as sex and race, but also to changeable variables, including 
more psychologically based constructs such as measures of attitude. 

Social influence occurs when an individual adapts his or her behavior, attitudes or beliefs to 
the behavior, attitudes or beliefs of others in the social system (Leenders, 1997). Influence does 
not necessarily require face-to-face interaction, but is based on information about other people. 
Social influence may arise when individuals affect others' behaviors, or when individuals imitate 
the behaviors of others, irrespective of the intention of the behavior's originator (Marsden & 
Friedkin, 1994). These processes have also been termed contagion (Leenders, 1997). 

The models developed below describe the distribution of attributes across a network of 
relational ties. The ties are construed as the linkages between people that may enable the dis- 
semination of influence. Whether a particular type of tie does indeed facilitate influence across a 
social structure is of course an empirical question. The models do not attempt to model explicit 
processes of interpersonal influences and how they might produce consensus in a group. Rather, 
they are intended to provide a means to investigate the extent to which shared opinions and 
attitudes can be explained by a pattern of social relations among individuals. 

The models below essentially propose that social proximity (for instance, friendship) may 
lead to similar attitudes. It is worth noting other possible influence processes: for instance, Burr 
(1987) argued that people who occupy equivalent social positions tend to exhibit similarities. 
The network analytic literature has advanced various definitions of equivalence (see Wasserman 
& Faust, 1994), and the role of social position in influence structures has been explored in some 
depth by Noah Friedkin (see, for instance, Friedkin, 1993; Friedkin, 1998; Friedkin & Johnsen, 
1997). Although the models below do not directly incorporate equivalence, certain aspects related 
to social position (such as popularity and expansiveness) are nevertheless modeled. 

The use of actor attributes in network models is an established practice: Wasserman and 
Faust (1994), for instance, offer several applications. There has been a long-standing interest in 
two different processes that relate attribute and network variables. Firstly, individuals may change 
their relationships on the basis of the attributes of other individuals; that is, individual attributes 
may contribute to the formation or change of network ties. Secondly, network structure can affect 
individual characteristics, in that individuals may be influenced by others with whom they have 
network ties. Several researchers (e.g., Erickson, 1988; Leenders, 1997) have argued that these 
two processes are not mutually exclusive, but, rather, are intertwined. Nevertheless, as Erickson 
pointed out, it may be profitable to simplify the theoretical and analytical task by ignoring the 
effects of one process while examining the other. The second process--where network structure 
affects individual characteristics--is the focus of this article. The network is taken as given and 
the network ties are used to explain the distribution of attributes. 

In many descriptive social influence theories, the conceptualization of social structure may 
lack complexity. For instance, social psychological theories typically rely on broad descriptions 
of social structure, such as ingroup/outgroup structures (e.g., Sherif, Harvey, White, Hood, & 
Sherif, 1961/1988) or majorities/minorities (Moscovici & Doise, 1994), although some recent 
work has recognized the relevance of more complex social topologies (Latane & L'Herrou, 
1996). 

More sophisticated modeling of social influence structures is relatively rare outside the net- 
work analytic literature. An early instance of the general approach adopted in this article--the 
use of spatially-based models to relate individual attributes to a network--is provided by Wins- 
borough, Quarantelli and Yutzky (1963). Network researchers, such as Carley (1986, 1989), and 
Dunn & Ginsberg (1986), have also explicitly modeled the interplay between cognition and so- 
cial structures, modeling that can be seen as relating to social influence processes. Perhaps the 
best-known mathematical model in this tradition is the network effects model (Doreian, 1982; 
Erbring & Young, 1979; Friedkin & Johnsen, 1990; Marsden & Friedkin, 1994): 

x = a Y x + Z ~  + ~  (1)  
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where x is a vector with an attitude of each person as entries, Y a matrix representing the rela- 
tionships among the actors, Z a matrix of exogenous attribute variables that may be influential in 
shaping the attitudes, and e a vector of residuals. Here ce is a parameter for the effect of the net- 
work in transmitting attitudes, and [3 a vector of parameters for the effect of exogenous attributes 
on an individual's attitude. Friedkin and Johnsen (1997) summarize a discrete time version of 
this model and discuss the results emerging from different balances between the network and 
exogenous variables. Friedkin (1998) develops these models further, with an integration of social 
theory and mathematical modeling in the examination of social influence, and the incorporation 
of particular local structural information. 

We view our own work as being in the tradition of these mathematical network models, 
but our starting point is the p* class of models. The p* family is a class of models for social 
networks with parameters reflecting a wide variety of possible structural features. The similarities 
between the models described here and the network effects tradition are clear. Importantly, both 
approaches explicitly model social influence in terms of dependencies arising from network ties. 
As discussed below, there are similarities in parameters and statistics relating to network effects 
in the models. As mentioned above, Friedkin's (1998) approach, as with ours, allows various 
structural features to be incorporated, although in his approach these effects enter the models 
less directly than in our modeling framework. 

Some differences are also apparent. We use an auto-logistic framework, not the auto- 
regressive approach of the network effects model, and the Hammersley-Cliflbrd theorem un- 
derpins our models. As a result, potentially complex dependency structures can be used as a 
basis for model specification. The models described below include terms analogous to main 
effects that network effects models do not utilize, and also "allow examination of a wider range 
of possibly important interactions. Network effects approaches, as in Friedkin (1998), on the 
other hand, allow a potentially large selection of other structural consUucts to be included in the 
modeling process (as predictors of the "probabilities of interpersonal attachments"--Friedkin, 
p. 60; although his actual models, p. 57, do not use predictors that go beyond the structural effects 
discussed in this paper). Network effects apwoaches also make explicit use of various exogenous 
variables that are not present in the models below. In principle, these various innovations are 
aspects that might be included in further elaborations of the models presented here. 

Section 2 of this paper presents an overview of p* models. Section 3 provides the theoretical 
basis to generalize the models by incorporation of attribute variables through a directed depen- 
dence graph. For binary attributes, a variety of social influence models are presented in sections 
4 and 5. Section 6 argues that these models allow the simultaneous investigation of individual, 
group-level and relational social influence effects. The theory for polytomous attribute models is 
presented in section 7. Empirical examples are provided in section 8. 

2. p* Models for Social Networks 

2.1. Social Network Data Structures 

For a set of n persons or actors, we represent a relational tie between persons i and j as a 
binary random variable Yij where Yij = 1 if person i considers person j as a partner under the 
relationship, and where Yij = O, otherwise. 

The matrix Y = [Yij] can also be regarded as corresponding to a random (directed) graph 
with the fixed node set N = {1, 2 . . . . .  n} and a (random) edge directed from node i to node j if 
Yij = 1. Let y = [Yij ] denote the matrix of realizations of the variable Yij, w i t h  Yij = 1 if there 
is an observed tie from person i to person j, and Yij = 0 ,  otherwise. 

Relational ties between some ordered pairs of actors may be regarded as impossible. Con- 
ventionally, in social network analysis actors are assumed not to have ties with themselves. In the 
models below, we follow this convention so that diagonal cells in the manix Y (that is, variables 
of the form Yii) have entries that are not defined. In principle, however, the models can permit 
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more general patterns of excluded cells. An ordered pair of actors between whom a relational tie 
is possible is termed a couple, and the set of all couples is denoted C. 

2.2. p* Network Models 

The difficulty in modeling network data structures arises because the substantively inter- 
esting cases assume dependencies among the Yij. The simplest model of any interest assumes 
dyadic-independence: Yij is assumed independent of Ykz for {i, j } # {k, l}. A loglinear dyadic in- 
dependence model, the Pl model (Holland & Leinhardt, 1981), is simple enough to be amenable 
to standard statistical techniques. More complicated dependencies, however, require different 
approaches. 

In the area of spatial statistics it has long been recognised that dependencies among obser- 
vations create special difficulties for the construction of probability models. Besag (1974), who 
was interested in stochastic models for spatial processes, used the Hammersl©,-Clifford theorem 
to formulate a conditional probability model for a finite system of spatially interacting random 
variables. Besag construed a lattice arrangement of sites to represent the spatial distribution as- 
sociated with the random variables. A discrete-valued variable Zi is associated with site i and a 
neighborhood relation among sites is used to specify conditional dependencies among variables. 
If two sites i and j are neighbors, then the corresponding variables are assumed to be condi- 
tionally dependent. If zi is a realization of Zi, then Zi and Zj are conditionally independent 
if 

# ~_~ Z # P (Zi = zi, Zj = zj IZs_{i,j } "S-{i,j}) 

P (Zi # = =  ilZs_ i,j  = = = 

and conditionally dependent otherwise. In this expression, S refers to the entire set of sites cor- 
responding to the vector of all random variables Z = (Z1, Z2 . . . . .  Zs), S - T refers to the set 
S A T, and Z~_ T refers to the vector of variables from which Zk has been deleted for all k E T. 
(This notation with the suffix # is more fully explained in Appendix 1 where it is used to distin- 
guish between different transformations of vectors.) Besag defined a clique as either a single site 
or a set of sites that were all neighbors of each other. In these terms, the Hammersley-Cliflbrd 
theorem can be stated as follows. 

HammersIey-Cliffordtheorem. For a system of s interacting variables Z = (Zi), where 
each Zi has a finite range of values and where the set of variables obey certain positivity condi- 
tions (see below'), there is a set of functions F a such that the probability distribution of Z will 
obey a relationship of the following form: 

Z# P ( z , - -  # 2 Zs-{i} U zk, I ru{i} (ZTu{i}) 
log P(Zi 01Z~-{i} ---- Z#S-{i}) J = Zi TC_S-{i}Z ~ # kcT 

(2) 

where FA is a function of z #, and where, if the set of sites T = 0, the term lqkcr zk is taken to 
have the value 1. Moreover, FTU{i} = 0 unless T U {i} is a clique. 

Besag's (1974) proof of this theorem used the positivity conditions P (Z = 0) # 0, and that, 
if P(Zi = zi) > 0 for all i, then P(Z1 = za, Z2 = z2 . . . . .  Zs = zs) > 0. (Robins et at., 1999, 
showed that the second condition can be relaxed.) Besag showed that any set of F-functions 
resulted in a coherent probability description of the system. If tile system is binary, so that zi = 0 
or 1, the F-functions become constants, the parameters of the model. 
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In what follows below, we often use the term COl to specify the conditional probability ex- 
pression 

log 

Equation (2) is the conditional form of the Hammersley-Cliflbrd model. It is straightforward to 
derive an equivalent joint form, which expresses a probability distribution of spatially arranged 
variables: 

1 
P(Z = z) = - e x p  Z r r ( z ~ )  I-I  Zk, (3) 

c TC_S kcT 

where 

c = Z exp Z F r  (z~) I-I  Zk 
Z TC_S kET 

normalizes the probability distribution. 
Frank and Strauss (1986) were the first to apply this probability description to social net- 

works. In place of a spatial array, they envisaged a more abstract dependence graph. Translating 
Besag's system, a vertex in the dependence graph represented a site and an edge represented a 
neighborhood relationship between the two respective sites. For social network data, our notion 
of a couple is the equivalent of site, and each vertex in the dependence graph represents a couple 
(i, j )  corresponding to a network variable, Yij. The presence of an edge in the dependence graph 
between couples (i, j )  and (s, t) signifies a conditional dependence between Yij and Yst. For a 
single dichotomous network, the Hammersley-Cliflbrd theorem then specifies that 

p * ( y ) = P ( Y = y ) =  exp gr H Yst 
(s,t)cT / 

(4) 

where 

i. T is a subset of C, the set of all couples; 
ii. gr is a parameter corresponding to T and is nonzero only if T is a clique (that is, T comprises 

a single couple, or (i, j )  and (s, t) are neighbors for all pairs of couples in T); and 

iii. c = ~ y  exp(~r_c c Yr l~(s,t)cr Yst). 

This model was introduced by Frank and Strauss (1986) and more fully explicated in three papers 
that dealt with a single dichotomous relation (Wasserman & Pattison, 1996), networks of multiple 
relations (Pattison & Wasserman, 1999) and valued relations (Robins et al., 1999). 

Maximum likelihood estimation of parameters is computationally intractable for network 
models with complex dependence graphs (e.g., those that are connected). Strauss and Ikeda 
(1990) proposed the use of maximum pseudo-likelihood estimation as an approximate technique, 
a suggestion adopted by Wasserman and Pattison (1996). For a binary network, the pseudo- 
likelihood function is given by: 

= Oly # ~(1-Yu) PL(F)  1--[ P(Yij = llY~c_(i,j))YUP(Yij = c-(i,j)j 
(i,j)cC 

where F is a vector of all parameters Yv in (4). The maximum pseudo-likelihood estimator is 
the value of F that maximises the pseudo-likelihood function. Strauss and Ikeda showed that 
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pseudo-likelihood estimation can be conducted using standard logistic regression procedures 
(see Wasserman & Pattison for a description of how this is done). 

As discussed by Robins, Elliot, and Pattison (2001), the use of pseudo-likelihood estimation 
may be an interim phase: The development of Monte Carlo techniques (Besag & Clifibrd, 1989; 
Crouch & Wasserman, 1988; Geyer & Thompson, 1992), may provide alternative estimation 
procedures. Other possible alternative estimation procedures recently used in network studies 
include the method of moments (e.g., Van de Bunt, Van Duijn, & Snijders, 1999). 

3. Generalizing p* for Social Influence Models 

A useful generalization of the p* class of models is obtained by including attribute variables 
in the dependence graph. We assume polytomous attribute variables. Moreover, to model social 
influence processes, whereby relational ties shape attributes, a form of directionality needs to be 
incorporated into the dependence graph. The directionality is required to represent the hypothesis 
that relational ties may affect attributes, but that attributes do not shape relational ties. In contrast, 
the dependence graph used by Frank and Strauss (1986) represented nondirected dependencies 
among variables. 

3.1. Graphical Modeling 

The graphical modeling literature (Cox & Wermuth, 1996; Edwards, 1995; Lauritzen, 1996; 
Whittaker, 1990; see also Prendergast et al., 1996) provides insights into the representation of di- 
rected dependencies. As with the Frank and Strauss (1986) dependence graph, graphical models 
have variables represented as vertices, with the absence of an edge between vertices signifying 
that the two variables are conditionally independent. 

Directed edges in a graphical model relate explanatory to response variables (Cox & Wer- 
muth, 1996). As is standard in graph theory, an arrow in the graph represents a directed edge. 
So, a directed edge from a to b in the graph can be used to represent the situation where Zb 
is assumed to be a variable in response to explanatory variable Za. We adopt the terminology 
whereby Za is referred to as aparent of Zb and Zb as a child of Za (Lauritzen & Spiegelhalter, 
1988). We utilize such a directed graph to represent dependencies in models that examine the 
distribution of one set of variables (the child block of variables), given the values of another set 
of variables (the parent variables). In our particular case, we wish to examine the distribution of 
attributes, given a set of observed network ties. The dependencies are directed in the sense that, 
if Za is a parent of Zb, then the functional form of a probability expression for Zb, conditional 
on all other variables, depends on the value of Za (see Appendix 1). On the other hand, we make 
no claims about the form of a conditional probability expression for Za. 

Graphs including both directed and undirected edges can represent a coherent probability 
structure when the vertex set satisfies a particular partial ordering. The vertices are able to be 
partitioned into blocks, with nondirected edges within a block, and with only directed edges from 
one block to another, such that all arrows are pointed in the one direction. A graph satisfying this 
condition is termed a chain graph (Wermuth & Lauritzen, 1990). In this paper, we use a two- 
block chain graph, which can be defined as a graph containing two sets of vertices--which may 
be termed parent and child vertices, respectively--with the only edges between the two sets 
being directed from parent vertices to child vertices, these being the only directed edges in the 
graph. Nondirected edges may occur within blocks. 

In general, an undirected graph can be derived from a chain graph with equivalent condi- 
tional independence properties (in graphical modeling, these are referred to as Markov proper- 
ties--see Lauritzen, 1996, or Whittaker, 1990, for a summary of the various results). The undi- 
rected graph derived from a directed dependence graph is often referred to as a moral graph 
(Lauritzen & Spiegelhalter, 1988), because it involves introducing edges between parents of the 
same child (the so-called marrying of the parents). For the two-block chain graphs of this arti- 
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cle, we define a moral graph as the undirected graph with the same vertex set, but with edges 
between two vertices a and b in the moral graph if they are connected by an edge or an arrow 
in the original graph, or if they are both parents of the same child. (This is a particular case of a 
more general definition; see Lanritzen, p. 7) 

A clique in a (moral) graph is a single vertex, or a subset of vertices with each pair connected 
by an edge. A maximal clique is a clique that is not a subset of any other clique. 

3.2. A Variant of  the Hammersley-Clifford Theorem 

For social influence models we concentrate on the two-block chain graph, with attribute 
variables X = (Xi), i E N in the child block (response variables) and network variables Y in the 
parent block (explanatory variables). (Although in what follows we do not consider exogenous 
variables as in the network effects model of (1), exogenous variables could be simply incor- 
porated as additional parent variables.) The interest is in a conditional probability description 
P (X = xlY = y), modeling the probabilities of observing particular attributes as a function of 
the network ties. 

Theorem. Given a block of parent network variables Y and assuming appropriate positivity 
conditions, a conditional probability description for a block of attributes X = (Xi), i E N, of a 
set of actors is given by: 

- P(Xi  = xi IX~_{i} = x~_{i}, Y = y ) ]  

COl = log P ( X i -  01X~_{i--- ~ =--x~_{i}__ Y ------Y5 J 
=xiZ Z Z FRUQU~i)(XRu~i)' Y~) 1--I Xk 

J6¢(i) RC_J-{i} Q_Cpa(R) k6R 
I - I  y~,t (5) 

(s,t)E Q 

Here, (( i)  is the set of maximal cliques relating to the attribute variable of actor i (that is, if 
we treat the child block as a dependence graph in its own right, ignoring the parent block, then 
((i)  is the set of maximal connected subgraphs that include i). In the expansion, J represents the 
subsets of actors that are involved in the maximal cliques, ((i) ,  and R represents the actors in J ,  
excluding i. As well, pa(R) is the set of network couples on which parent variables are defined 
for the set of attribute variables indexed by R. If Q or R are empty, then the relevant product is 
taken to have the value 1, and Fo = 0. Moreover, the expansion in (5) can be represented by a 
moral graph wherein each directed edge of the chain graph is replaced by a nondirected edge, 
and an edge is inserted between two parent variables of the same child. F r  is nonzero only if its 
index set T is a clique in the moral graph. 

The proof of this theorem is given in Appendix 1. 
Equation (5) is the conditional form. As for (3), there is a joint form that expresses a proba- 

bility distribution for vectors of attributes, conditional on an observed network: 

1 e x p Z  Z FRUQ(X~,y~) 1-Ixk 1-I Yst, (6) P(X = xlY = y) = 
c R_c~- Q_Cpa(R) kcR (s,t)cQ 

where ( is the set of maximal cliques relating to the attribute variables. Again, FRUQ is nonzero 
only if R U Q is a clique in the moral graph. 

When attributes are dichotomous, xi = 1 in (5), and the F-terms become constants (la- 
beled V) that constitute the parameters of the model. We then have a simplified version of (5): 
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P(X~ = IIX~_{~ } = x~_{~},._____~Y = y~)] 
log O) i 

P(Xi = OIX~_{i ) x~_{i }, v 

= Z Z Z gRUQU{i} 1-Ixk 1-I Yst. 
J6~(i) RCJ-{i} Q Cpa(R) k6R (s,t)6Q 

(7) 

In the case of binary attributes, suppose that Xi = 1 signifies that i "possesses" the attribute 
and that Xi = 0 signifies the opposite. Then, the parameter ~'RUQU{i} is associated with the 
statistic 

--I xk 1--I Yst. 
keR (s,t)eQ 

If the parameter is positive, the odds of i possessing the attribute is enhanced as long as the actors 
in R also have the attribute and as long as the network ties are in place on the couples in Q. Social 
influence arises because i 's attribute is affected by the attributes of the actors in R, who may have 
social relations with i through the network ties in Q. In sections 4 and 5, we give examples of 
models based on specific dependency structures that define certain classes of R and Q. 

Our strategy for model development is to hypothesize a dependence structure represented 
by a chain dependence graph. This can then be expressed in terms of the expansion of (5), or 
of (7) for binary attributes. We then derive simpler models by restricting the number of vertices 
we consider in R U Q. This last step is akin to concentrating on main effects and lower order 
interaction terms, by setting higher-order interaction terms to zero. 

3.3. Suf~cient Statistics and Homogeneity Constraints 

Frank and Strauss (1986) assumed a Markov condition for conditional dependence among 
network variables. In a Markov directed graph, possible ties are assumed to be conditionally 
dependent whenever they have an actor in common: that is, the variables Yij and Yst are condi- 
tionally dependent if and only if {i, j} A {s, t} ¢ 0. By assuming that these are the only depen- 
dencies, Frank and Strauss (1986) showed that sufficient statistics for the model are confined to 
indicators of certain network configurations: ties, reciprocal ties, in-stars, out-stars, mixed-stars, 
and all possible triadic configurations. 

A reciprocal tie occurs between i and j when Yij = Yji = 1. A star has a number of ties 
directed towards and away from a particular node. We refer to an (s, t, r)-star when s + r ties are 
directed to a node, t + r ties directed away from a node, and r of these incoming and outgoing 
ties are reciprocated (in other words, the actor represented by the node has s incoming ties, t 
outgoing ties and r reciprocated ties). The order of an (s, t, r) star is said to the s + t + 2r. A 
reciprocal tie can then be considered as a (0, 0, 1) star of order 2. A k-in-star is a (k, 0, 0) star, 
whereas a k-out-star is a (0, k, 0) star. A k-mixed-star is of the form (s, t, 0) where s, t # 0 and 
s + t = k. Figure 1 depicts these configmations for stars of order 2. 

Reciprocal tie 2-in-star 2-mixed-star 2-out-star 
(0,0,1) (2,0,0) (1,1,0) (0,2,0) 

FIGURE 1. 
Stars of order 2. 
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To make the models identifiable, homogeneity constraints of some sort are required. Fol- 
lowing the homogeneity strategy originally introduced by Frank and Strauss (1986), Pattison and 
Wasserman (1999) discussed a general strategy of assuming that parameters corresponding to 
certain isomorphic configurations of array entries of Y are equal. For Markov directed graphs, 
sufficient statistics then become counts of various stars and triads. In the models below, we take 
a similar approach to homogeneity. The attributes can be construed as colorings on the nodes of 
the graph of the network, so that we impose homogeneity across parameters when they refer to 
isomorphic configurations with the isomorphism preserving both edges and colorings. The iso- 
morphism classes represent various types of local configurations in the network. An example of 
isomorphic configurations for an important model discussed below is depicted in Figure (4). The 
model includes simple star and reciprocal configurations with colored nodes. 

We note that the model defined by (7) is autologistic. Equation (7) represents a set of equa- 
tions (one for each observation i). The variables appear as "explanatory" variables for certain 
equations in the set (i.e., Xj appears on the RtIS in the equation for coi) and as "response" 
variables in other equations (i.e., Xj appears on the LHS in the equation for coj). If  there are 
conditional dependencies among attribute variables, certain parameters appear in more than one 
equation and therefore need to be equated as there is only one parameter for each clique in (5) 
and (6). 

The equating of parameters has important implications that are quite interpretable. For in- 
stance, consider the parameter '/v for the index set {i, j ,  (i, j)}. This corresponds to the statistic 
Xi Xj Yij in (6). This parameter relates to the effect of a tie between actor i and actor j (Yij) on 
the attributes of each of the two actors (Xi and X j). Assuming binary attributes, as in (7), for COl, 
VT arises when R = {j} and Q = {(i, j)}, and the estimator for the parameter is YijXj. In this 
case, the parameter relates to the effect on an actor (i) possessing the attribute, when the actor's 
choice of network parmers (i.e., all j such that Yij = 1) also possess the attribute (Xj = 1). 
Because this effect involves choices by the actor we term it an out-network effect. On the other 
hand in the version of Equation (7) for wj, VT arises when R = {i} and Q = {(i, j)}, and the 
estimator for the parameter is Yij Xi. In this case, the parameter relates to the effect on an actor 
(j)  possessing the attribute, when those who choose the actor as a network partner (i.e., all i such 
that Yij = 1) also possess the attribute (Xi = 1). Because this effect involves choices of the 
actor by others, we teffn it an in-network effect. Even though these two cases involve out- and 
in-network effects, respectively, the parameters are identical. 

There may be theoretical reasons to distinguish between those who select or nominate a per- 
son as a network partner, and those whom that person selects, as representing possible different 
generators of influence. For instance, a person may be influenced by those who give him or her 
attention (in-network influence), or a person may be influenced by those he or she respects (out- 
network influence). It is also possible that influence is transmitted by reciprocal ties (reciprocal 
network influence). Although the distinction between in-network and out-network influence may 
have theoretical value, models without a temporal component cannot distinguish between them. 
This makes good sense: supposing actor i nominates actor j as a network partner, it is impossible 
to determine whether similar attitudes of i and j arise through the out-network or ttn'ough the 
in-network. It is precisely such parameters that are equated through the requirements of (5), (6) 
and (7). 

4. Binary-Attribute Influence Models: Independent Attributes 

The framework described above allows a method to generate and fit models arising from 
particular dependency assumptions. In social behavioral research, appropriate dependency struc- 
tnres are not self-evident and the challenge for effective model development is to specify realistic 
dependency structures. While there are some theoretical leads, it is impossible at this stage of 
knowledge to defend a single set of dependencies as most plausible. Our approach is to construct 
models under several different sets of assumptions in order to understand the relationship of 
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model form to dependence assumptions. By developing a hierarchical set of nested models, we 
are also able to compare simpler with more complex models. We can then assess the contribu- 
tion provided by a more complex dependency structure, and so gain understanding about social 
behavior when a more complex dependency assumption improves explanatory power. 

With this approach in mind, we start with simple dependency structures. We assume that 
attributes are binary and that the attributes are conditionally independent of each other. 

For independent attributes, ((i) = {i } and (7) becomes: 

O)i = Z V{i}UQ I ~  Yst 
QGpa(i) (s,t )c Q 

and if homogeneity across actors is assumed so that the ?/-terms are not dependent on i, the result 
is 

o i= yQ I ]  y,'- (8) 
Q__pa(i) (s,t)cQ 

One of the simplest descriptions of influence would be to assume that an individual's at- 
tribute is conditionally dependent only on the individual's expressed ties. In the directed depen- 
dence graph, Yij is then a parent variable to Xi for all j.  The directed dependence graph and 
moral dependence graph for this case are presented in Figure 2. 

The network variables here all relate to oulgoing ties. The only possible isomorphic network 
configurations are out-stars of various orders. With homogeneity imposed across out-stars, (8) 
becomes 

o9i = O + tYO, l,o Z Yik + CrO,2,0 Z Z )'ikYij + . . . 
k#i k#i j<k 

where 0 is an intercept term and a ~r,s,t parameter refers to the effect of an (r, s, t)-star. The 
parameter c~o, 1,0 relates to the number of network partners selected by actor i (outdegree) and can 
be interpreted as representing the effect of an actor making a large number of network choices 
(an expansive actor). If O-o, 1,0 is positive, then actors who are expansive are more likely to possess 
the attribute, compared to actors who are not expansive. As each of the parameters relates to out- 
stars of increasing order, this model is referred to as an out-star independent attribute model. 
The formula is equivalent to an arbitrary polynomial of degree n - 1 in the out-degree of actor i 
and, therefore, an arbitrary function of the out-degree. 

r,k ~x~ 

(a) (b) 

FIGURE 2. 
Representation of (a) directed dependence graph and (b) moral dependence graph for out-star model. Note: Only nodes 
connected to Xi are represented. 
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It is simple to formulate a counterpart in-star model, with actors assumed to be influenced 
by those who report ties to them and parameters interpreted in texans of the number of choices 
made by others of the focal actor (in-degree), which is related to popularity. Again this is an 
arbitrary polynomial of degree n - 1, but this time of the in-degree. 

It is also not complicated to combine these models, hypothesizing that an individual's at- 
tribute is conditionally dependent on both ingoing and outgoing ties. The moral graph is similar 
to that represented in Figure 2, except that every network variable involving i is included as a 
parent variable of Xi, that is, pa(i) = {Yij, Yji : j ¢ N, j 7~ i}. This implies that every possible 
network star involving i is rel~'esented by a clique in the moral graph. Imposing homogeneity 
constraints across stars of the same order and type, and--purely for the sake of illustration-- 
limiting the order of configurations to two, the lbllowing model results: 

COl = O + O:O,O,1Z Yki Yik + ¢rl,O,O Z )'ki q- CrO, l,O Z yil: 
k#i k~i k#i 

+ Z Z + Z Z + Z (9) 
k#i j<k k#i j<k k#i j#i  

j~ki j~i 

where, as before, 0 is the intercept term and the o parameters refer to various reciprocity, in- 
star, out-star and mixed-star effects. What we have done hem is to simplify the out-degree and 
in-degree polynomials to an arbitrary quadratic of the in- and out-degrees. 

It is worthwhile commenting on the interpretation to be applied to out- and in-star param- 
eters of order higher than 1. Robins (1998) showed that in univariate p* models higher order 
out- and in-star parameters provided a refinement of expansiveness and popularity interpreta- 
tions based solely on the lowest order out-star and in-star parameters. The effect of the higher 
order parameters is to vary the strength of the expansiveness and popularity effects across dif- 
ferent ranges of outdegrees and indegrees, respectively. Robins (1998) concluded that, as a first 
approximation, it is often convenient to ignore these refinements and set to zero higher order 
out-star and in-star parameters, unless the interest is specifically dhected toward the detail of 
expansiveness or popularity. For hierarchical models, it follows that parameters pertaining to 
mixed-stars other than (1, 1, 0)-mixed stars should also be set to zero: for instance, a higher order 
(r, 1, 0) mixed-star with r > 1 contains an (r, 0, 0) in-star as a lower order configuration, and 
with lower order parameters set to zero it makes sense to set the higher order parameter to zero 
as well. As a simplifying first approximation, this approach is followed below. What in effect we 
are doing here is to investigate models in which the major effects in the polynomial expressions 
concerning in- and out-degrees are assumed to be linear. 

5. Dependent Binary Attribute Models 

A more interesting, and arguably more realistic, notion of social influence allows influence 
effects to arise not just from the ties that an individual has with others but also from the at- 
tributes of those others. Such models relax the assumption of independent attributes. A possible 
alternative is that an individual's attribute is conditionally dependent on the attributes of every 
other individual. In other words, all Xi are conditionally dependent on each other in the depen- 
dence graph, so that the subgraph of the dependence graph with attribute variables as vertices is 
complete (i.e., there are edges between all vertices). 

Unfortunately, any model with a complete dependence graph among the response variables 
is not identifiable and does not meet the positivity conditions of the Hamanersley-Cliflbrd theo- 
rem (Robins, 1998). Several alternative approaches are discussed by Robins, including selective 
homogeneity constraints arising from partial conditional independence structures, the subject of 
ongoing work (Pattison & Robins, 2000). For the purposes of this article, we confine ourselves 
to an alternative item-response model. 
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5.1. Modeling Responses to Individual Items 

This approach requires that the attribute variables are measured by responses to a set of 
items intended to measure the one shared construct. Instead of modeling an overall attribute 
variable based on the total score of responses, the proposal is to model responses to individual 
items. This type of model is particularly suited to investigating attitudes among a group of people 
measured through multi-item scales. 

The following simple Markov-related assumptions are made for a dependence ~aph. Item 
responses by an actor i are assumed to be conditionally dependent on network variables in which 
i is one of the actors in the network couple. Item-responses are conditionally dependent on each 
other if they are responses by the same actor, or if they are responses to the same item. 

Denote i 's response to the s-th item as X} s). Let X be the matrix with --i as the entry for 
the cell (i, s). The dependency assumptions can be represented in the directed dependence graph 
and moral graph depicted in Figure 3. Note that there is no longer a complete dependence graph 

(s) and (t) among the response variables, because there is no dependency between Xj X i for distinct 
(j, s) and (i, t). 

.(s) refer to the conditional logit for i 's response to the s-th item. Then, with some Let co i 
simplifying assumptions described immediately below, the following model results: 

w(S) = O + L Z x~S) + v Z x ff) + crO,l,0 E yik + ~l,0,O Z y k i  + ~o,o,l Zy ikyk i  i 
k#i t#s k#i k#i k#i 

" ~  x!t) Z YikYki q- VO, I,O Z Xff) Z Y i k  q- Yl,O, O Z Xff) Z Yki + Y0,0,1L~, "t 
t#s k#i t#s k#i t#s k#i 

(lO) 
k#i k#i 

In this model, interactions among item-responses are assumed to be zero, and interactions among 
network variables are restricted to reciprocal ties. Here, the k parameter relates to responses by 
other actors to the same item, the v parameter relates to responses by the focal actor to other 
items, the V parameters concern an interaction of the tbcal person's responses with network 
variables, and the ~1 parameters deal with interactions between other actors' responses to the 
same item and network variables. 

Homogeneity constraints have again been applied across isomorphic configurations of the 
same order and of the same type. The isomorphism classes of configurations are depicted in 

rj, ~ x f l ;  r;, 

(a) (b) 

FIGURE 3. 
Representation of (a) directed dependence graph and (b) moral graph for item-response model. Note: Only nodes con- 

nected to X~ s)- axe represented. 
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Figure 4. Constraints relating to the )v and v parameters assume, respectively, that actors influence 
each others' responses to the same degree, irrespective of the item (that is, no particular item is 
more likely to be the subject of influence than any other item), and that no particular actor is 
more predisposed to be influenced than any other. (The latter constraint assumes that there is a 
homogeneous predisposition to respond to items in a particular way--such as, to agree to items-- 
and can be relaxed if there are sufficient items to allow individual parameters to be modeled.) 
Analogous constraints are applied to the g parameters. 

5.2. Relations with IRT and Network Effects Models 

It is worthwhile commenting on similarities and differences between this approach and 
standard Item Response Theory (IRT) models. IRT models contain individual item parameters. 
Our homogeneity assumptions above imply that items are modeled as interchangeable. This is 
primarily a matter of simplicity at this point, and there are no impediments to a more constrained 
homogeneity assumption that would allow different effects for different items. (In the small-n 
examples below, there is simply not enough data to fit such a model.) A model for individual 
item parameters would have the same form as (10) but with separate parameters (except for the 
o- parameters) for different items. 

IRT models, however, typically assume local independence once individual item and person 
parameters are incorporated in the model. The models that we are presenting here do not make 
that assumption. For instance, in Figure 3, an approach analogous to IRT would be to incorpo- 
rate in the parent block an additional indicator variable for each item and for each person, each 
item indicator variable being a parent of all responses to that particular item, and each person 
indicator variable a parent of all responses by that person. Local independence then would imply 
that responses by different individuals to the same item are explained by the item and person 

( 
(s) in Figure 3, given that is, that there would be no connection between Xi s) and variables, Xj 

that they are both responses to the same item. An IRT-type model based on this type of depen- 
dency assumption would then have the following form (ignoring interactions between network 
variables and item indicator variables): 

o,(s) = 0  i jr_ ~s Jr- 0-0,1,0 ~__~Yik Jr- 0-1,0,0 ~__~Yki Jr- 0-0,0,1ZYikYki,  i 
k#i k#i k#i 

(11) 

where Oi is a parameter relating to each person while fis relates to each item. 

But in so doing, terms such as x~S)Yik are lost to the resulting model. These are precisely 
the terms that relate networks and attributes, not just in the models developed here but also in the 
Network Effects models. Of course, there are many circumstances when a local independence 
assumption is appropriate. The models here, however, deal with situations when local indepen- 
dence may not be observed. 

It is also worth comparing this model with network effects models. Some differences are ap- 
parent in that our framework is auto-logistic, rather than auto-regressive. In addition, the network 
effects model in (1) applies to a single attribute, rather than a scale of items as is the case in (10) 
(although conceptually the generalization of (1) would not be difficult). Nevertheless, as noted 
above, both models contain parameters relating to the interaction between network and attribute 
variables, parameters from which inferences can be made about social influence effects arising 
from the network. An auto-logistic version of the network effects model, then, would include the 
r~ parameters but other parameters in (10) have no counterparts in (1). Such a model in effect 
would assume certain interactions without assessing main effects, and would also set some other 
interactions to zero. 
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Configuration Parameter 

~c~J • 

O 
X~ Y~k 
A 
W 

X~ ~ Yki 
A ~  
W "  

~¢~J EkYk, 

~c~J • 

Xk(s) 

O 

Y#k 

Yki 

Xi sJ O "  "" 

~¢~J Ek Xk ¢~J 

x{ ~J Yk~ xk ¢~J 

~¢~ EkYk~ Xk ¢~J 

0 

V 

O'o,l,o 

0"1,0,0 

cro,o,i 

Y0,1,0 

Y1,0,0 

70,0,1 

r/ 

FIGURE 4. 
Classes of isomorphic configurations. Note: Single headed arrows represent ties; double headed arrows represent recip- 
rocal ties; dots represent a positive response to an item by an individual. 
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6. Interpretation: Models tbr Group Processes 

For model (10), there are several possible approaches to the interpretation of a parameter 
such as L. In more traditional IRT terms, such a parameter could be seen as a consequence of the 
distribution of item difficulties. In tlre development of network effects models, however, similar 
parameters have been discussed in terms of a more substantive interpretation relating specifically 
to social influence phenomena. In (10),)~ relates to the responses of all other persons to item 
s, irrespective of relationships within the group. Erbrmg and Young (1979) discusse~ such a 
parameter as a "contextual" effect. They were concerned that in the absence of any interaction 
among individuals, such an effect represented "social telepathy" and that to invoke constructs 
such as "common fate" or "group norms" as an interpretation was to ignore other mediating 
variables that might be better modeled directly. 'l]ley prefen'ed to drop the parameter from their 
models, but their arguments were applied to a closely supervised examination, where no public 
responses are available. Our data sets, however, relate to groups of people who discuss issues 
both privately, as well as publicly in group meetings. Here the possibility of public responses 
shaping others' attitudes is obviously possible, irrespective of network ties, without any need to 
invoke social telepathy, common fate or group norms. 

In this article, we construe the parameter as a general attitudinal level effect, one that could 
possibly be interpreted as representing "public" effects. In this case L might encapsulate two 
different influence processes: first, the "public influence" process, whereby the group as a whole 
exerts influence on individuals and, secondly, influence transmitted through networks other than 
Y. (Although we are attracted to and use this type of interpretation in what follows, we accept that 
the interpretation of the parameter is likely to depend strongly on the circumstances in which the 
data is collected. More work is required both in model development and in empirical situations 
to identify the various components that might contribute to the effects associated with )~.) 

In a similar way, the v parameter relates to i 's response to items other than s. This effect 
describes a propensity for people in the group to respond in a particular way. If we accept these 
interpretations of the )~ and v parameters, together they pertain to effects associated with others 
in the group without consideration of the pattern of network ties. We term these types of effects 
collective effects. (We are assuming throughout this discussion that higher order effects are absent 
or negligible.) 

The cr parameters pertain to network ties (incoming and outgoing ties), regardless of the 
item-responses of other actors. The csl,0,0 and c~0,1,0 parameters relate to i 's levels of popular- 
ity and expansiveness in both directed and reciprocated networks. In a very rudimentary sense, 
these parameters relate to the social position of i in the network. The V parameters concern the 
interaction of i 's  responses to other items with social position statistics. The effects pertaining to 
the cr and V parameters are termed social position effects. 

The rf parameters, on the other hand, concern the interaction of network ties and others' 
item-responses. A substantial r/implies that an important predictor of i 's  response is the item- 
responses among the network partners of i. A resultant inference is that social influence is trans- 
mitted through the network. These social influence parameters are termed network effects. 

If  these interpretations are accepted, then (10) contains ttn'ee different elements: collective 
effects, social position effects, and network effects. These are utilised to predict individual at- 
tributes. The model, then, contains several features of the modeling of group process that are 
usefully combined into the one model: 

i. variables relating to individuals in the group (xlS)); 
ii. parameters relating to the "collective functioning" of the group ()~ and v); 

iii. parameters relating to an individual's social position (the a and V parameters); 
iv. parameters that specify the spread of influence through the network (rl). 
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We do not claim (10) as a particularly sophisticated model of group structure and process. 
Nevertheless, it does begin to address a number of different features that are theoretically inter- 
esting in group process (see, for instance, Markovsky & Chaffee, 1995; Markovsky & Lawler, 
1994). An aspect that is not addressed in the model is the emergence of group structure over 
time (see Arrow & McGrath, 1995; Stokman & Zeggelink, 1996), a feature that is particularly 
apposite in influence processes (Friedkin & Johnsen, 1990). 

Desirably, models of group structure and process should allow some interpretation of the 
nature of individual group members; the nature of the group "as a whole"; interactions among 
members; process within the group; and temporal change. To incorporate these features in the 
one model is not straightforward. Equation (10) is a simple example that may allow some inter- 
pretation in the first four of these features through the variables and parameters listed above in 
the items i through iv. Temporal change is discussed in the conclusion. 

7. Attitudes: Polytomous Attribute Measures 

The above discussion has been restricted to binary item-responses. This section derives 
polytomous models for an attitude questionnaire with three response categories for each item: 
agreement, neutral, disagreement. Following the approach of Robins et al. (1999), we develop a 
trichotomous logit model, with the neutral response as the baseline category. 

An attribute model derived for binary data, such as (10), can be generalized to a trichoto- 
mous version with the same dependence structure. The imposition of homogeneity demands a 
more complicated parameterization to account for three possible responses to each item. Robins 
et al. (1999) showed that conversion of a trichotomous data structure to a three-way binary (per- 
son by item by response) array permits estimation of the model. Certain cells that represent 
situations with zero probability (that is, cells that imply a variable can have two distinct val- 
ues simultaneously) need to be excluded from the model. The response dimension of this array 
can be decomposed into two levels--an a and a d level corresponding to the agreement and 

disagreement. We create two dummy variables, a} s) and d} s)" 

if neutral response, a} s) = d} s) = O; 

if agreement, a} ~') = 1 and d} ~') = O; 

if disagreement, a} ~') = 0 and d} ~') = 1. 

As can be seen from this coding, for estimation purposes we omit cells in the three-way array 

that imply that a} ~') = d} ~') = 1. 
Denote agreement and disagreement conditional logits, respectively, as: 

co}S)(a) = l o g [ P ( @  ) = y, d?  1 ) / P ( a ?  = y, ,d ¢1,,]1 

and 

i (d) = log = = , 

where x is the observed three-way array of binary variables, indexed by the set of cells with 
nonzero probabilities, J,  where (i, s, a) E J refers to the cell for the variable recording person 
i 's possible agreement to item s, and with y the set of observed network ties. 

The resulting model expands (10) in that each parameter has several counterparts in the 
trichotomous case. For instance, a parameter involved in predicting the conditional log odds of 
i 's agreement to an item is distinct from a parameter relating to the prediction of i 's disagree- 
ment. Moreover, the prediction of i 's agreement may be based on the agreements of others, or 
the disagreement of others, so that different parameters result. For example, the rl parameter in 
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(10) has three counterparts in a trichotomous model: rl aa (the chances of agreement to an item 
when network partners agree to that item); ~S d (the chances of disagreement to an item when net- 
work partners also disagree); and rj ad (the chances of having the opposite opinion from network 
partner.) 

The agreement logit is as follows: 

= 0 + + W" 

k#i k#i t #s t#s k#i 

a aa ad V "  d(t) Z Yik ~-'a!t) ~-'Yik + ~)!~,l,O i_., i +a~Qo Z Y k i  +CrO, O,1ZYikYl:i -t- Yd, l,O z_.~ l 
k#i k#i t/=s k#i t#s k#i 

+Yl,0,O~_,a~O~_,Yki+×l,0,O~_.,a}O~Yki+×d,O, l z _ , ~  ~_~YikYki 
t#s k#i t#s k#i t/=s k/=i 

+ VO,0,ad 1 Z d { t ) Z Y i k Y k i  +r laaZa~S) (Y ik+Yki )+ ' fdZUk~(S)  ~.tyik+yki) 
t#s k#i k#i k¢=i 

+ 'lRa Z ak s)yiky~:i + ' lg  Z dk s)yikyki" (12) 
k#i k#i 

There is an analogous formulation tbr the disagreement logit. Homogeneous effects that oc- 
cur "across categories" (such as the network effects association between agreement and disagree- 
ment, i.e., rl ad) are represented in both logits and require the equating of parameters. When we 
consider parameters from both agreement and disagreement logits we have the following equal- 
ities: L ad Lda, ad da ad cla ad da rlad rlaRd rlda. = Y(),I,0 = g(),l,0' Yl,0,0 = ~/1,0,0' Y0,0,1 = ?/0,0,1' = rl da, a n d  = So,  
the disagreement logit is 

co} ,) (d) = 0 d + )fd ~ a~,) + )~dcl ~_, ~k ~l(s) + vad z_, a (t) + v dd ~__d} t) 
k#i k#i t#s t#s 

+ trod 1,0 Z Y i k  + cr d l,O,o Z Yki + cY¢~,O, 1 Z  YikYki 
k#i kT~i k#i 

,,ad ~-~,(t) Z Yik + dd " ~  d!t) ad +ro ,  l,o/__,"i V6,1,o~., ~ ~_,Yik + Yl,O,O~_,a}tl~_,Yki 
tC:s k#i t#s k#i t#s k#i 

-}- //1,0,0"dd ~-~"(t) E Y k i - I  )/O,o,ad 1L_ ,g - 'a ! t tS - 'Y ikYk i+×~_,d} t )~_ ,Y ikY  /_.., , , 
t#s k#i t#s k¢=i t#s k#i 

k#i k#i 

+ ,,~d Z aks)Yi~Yki + rind Z dk "~')yikyki" (13) 
~#i k#i 

7.1. Fitting the Model: Model Selection Process 

The principal model that we fit includes all the parameters in (12) and (13). In considering 
the fit of the model, we are guided by the pseudo-likelihood deviance and the mean absolute 
residual, as in Wasserman and Pattison (1996), but we also compare the principal model to a 
simpler model that does not include any network terms, that is, a model with only the L and v 
parameters. As these parameters relate to the group as a whole, we term this model the Collective 
Effects Model. To infer that the network transmits social influence, a model with network effects 
parameters has to improve on the Collective Effects model. 

For both the collective effects and the network models, we reduce the models by removing 
unimportant parameters. We use a backward selection approach, removing parameters that do 
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not make a contribution of  4 to the pseudo-l ikel ihood deviance. (The analogous maximum likeli- 
hood p-value  would be about 0.05.) In the reduced network model, we retain all parameters that 
are retained in the reduced collective effects model  to ensure a nested relationship between the 
two models, and we also assess effects involving interactions with discarded "collective effects" 
terms. We check our backward selection of parameters by forward selection. (Occasionally, with 
smaller data-sets, we find that collinearity or other features of  the data can lead to estimation 
problems when all parameters are entered in the network model. In these cases, forward selec- 
tion is the preferred approach.) Any network-related parameter  retained in the model  is then 
interpreted. As an exploratory aid to interpretation, we have also fitted submodels involving only 
the network of  reciprocal ties, to investigate the effect, if any, of  reciprocal influence. 

8. Empirical  Example: Attitudes on a Training Course 

An example of  a trichotomous model  based on the logits in (12) and (13) is presented by 
fitting the model  to data from a training course conducted by a major Australian government 
business enterprise. The training course was designed to improve staff participation in the work- 
place and had a heavy emphasis on group work, either in collective discussions or in smaller 
subgroups. The group comprised six males and eight females. After four days of training, partic- 
ipants were asked to complete two sociometric questions, listing those with whom they had most 
communicated during the course (Course Interaction); and with whom they had most interacted 
socially outside training (Social Interaction). 

Participants were also asked to respond to twenty statements relating to teamwork within the 
group (Appendix 2), indicating their agreement or disagreement with each statement on a five- 
point Likert  scale, with the midpoint  signifying "undecided". (The two points on the scale for 
agreement and for disagreement were subsequently collapsed into agree and disagree categories.) 
Relevant items were scored in reverse, so that all agreements were in the direction of  a positive 
statement about the group's  performance. In what follows, then, the term "agreement" signifies 
satisfaction about the functioning of the group, whereas "disagreement" indicates a view that the 
group was not functioning as fully or as cohesively as it might  have. 

Table 1 presents the levels of  agreement by course participants to each of  the items. A 
number of  items were quite uncontroversial and, overall, trainees responded positively about 
their group, with some 77% of responses expressing agreement. Some items, however, suggested 
dissension from the notion of  a smoothly functioning or completely consensual group, with a 
total of  12% of  responses undecided and 11% disagreements. The imposition of  homogenei ty 

TABLE 1. 
Matr ix  of responses to 20 training items on a 5-point  Likert  scale (n = 14) 

1 2 3 2 5 1 2 1 2 1 1 3 2 1 2 2 1 4 1 2 
2 2 2 2 2 2 3 2 2 1 2 2 2 2 2 2 2 2 2 2 
2 2 2 2 2 2 3 4 2 2 2 2 4 2 2 2 2 4 2 3 
2 2 2 2 2 2 2 2 2 1 2 1 2 2 2 2 1 2 2 1 
2 2 2 3 2 1 2 2 2 2 3 2 2 2 2 3 2 3 2 2 
2 2 3 3 3 2 2 4 2 2 3 2 3 2 2 2 2 2 2 2 
2 2 3 2 2 2 3 2 2 2 2 3 3 2 3 2 2 3 2 2 
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 
2 2 2 4 2 2 2 4 3 2 3 2 4 4 4 4 2 4 2 3 
1 1 4 1 2 1 2 4 4 1 1 2 5 2 4 4 1 4 2 4 
1 1 3 2 2 1 2 5 4 2 2 3 4 3 4 4 1 4 2 3 
1 1 1 1 2 1 3 2 2 1 3 1 1 2 2 2 1 2 1 2 
2 2 2 2 5 2 2 3 2 2 2 2 2 2 2 2 1 2 2 1 
2 2 3 3 4 2 2 2 3 2 2 2 3 2 2 4 2 4 2 2 
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TABLE 2. 
Collective effects model 

Parameter Pseudo-likelihood estimate Standard error (approx.) 

0 a -3.00 1.43 
0 d -3.28 0.91 

),aa 0.26 0.09 
) d d  0.63 0.20 
v aa 0.16 0.06 
v dd  0.52 0.14 
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acToss items has to be seen as a first approximation, and with a larger data set there might be 
value in investigating the effects of relaxing this homogeneity assumption. 

For each of  the two networks, maximum pseudo-likelihood baseline logits were fitted. The 
two networks were modeled separately. It would be possible to develop a multi-network model 
by incorporating multivariate p* models (Pattison & Wasserman, 1999) into (12) and (13). The 
number of parameters, however, would escalate accordingly, and given the small number of ac- 
tors in this example, estimation problems result. 

8.1. C o l l e c t i v e  E f f e c t s  M o d e l s  

The collective effects model is used as a basis to compare later network models to establish 
the presence of  network effects, which have to improve the fit of  the collective effects model 
to be regarded as meaningful. The collective effects model had a pseudo-likelihood deviance of 
185.8 with 6 parameters retained and a mean absolute residual of 0.246. Parameter estimates are 
provided in Table 2. The Table includes standard errors as calculated by the logistic regression 
procedure as a guide only. Given the pseudo-likelihood estimation procedures, these have to be 
seen as approximate at best. 

Brief inspection of  the estimates reveals that, as might be expected, there are effects re- 
flecting a tendency for actors to agree when others also agree (2aa) and to disagree when others 
disagree (2rid). There are also effects for actors having propensities generally to agree and to 
disagree (fiaa and fidd). The absence of  substantial 2ad and ~ad effects suggests that, overall, 
tendencies to take a contrary view are not strong. 

8.2.  C o u r s e  l n t e r a c t i o n  N e t w o r k  

Parameter estimates for the model for the course interaction network (with insubstantial 
parameters removed according to the criteria above) are presented in Table 3. The model has 
a pseudo-likelihood deviance of  196.6 with 7 parameters, an improvement over the collective 

]~B LE 3. 
Course interaction model 

0 a - 3 . 0 0  1.43 
0 d -4.60 1.28 

)v aa 0.26 0.09 
)v dd 0.40 0.25 
v aa 0.16 0.06 
v dd 0.70 0.19 
~]dd 0.98 0.35 

Parameter Pseudo-likelihood estimate Standard error (approx.) 
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effects model of 10.8 for one parameter. The mean absolute residual of the model is 0.234, com- 
pared with the mean absolute residual of 0.246 for the collective effects model. (A trichotomous 
version of the IRT-type model in (11), but with homogeneity imposed across persons, and with 
parameters removed according to the above criteria, results in a similar deviance level of 197 but 
with 11 parameters. The model, however, shows clear overfitting with several extreme parameter 
estimates, so that more detailed comparison is pointless.) 

The effects in the agreement logit are the same as for the collective effects model, but 
there is an additional effect in the disagreement logit, rl dd, which COlTesponds to the levels of 
disagreement by network partners. A person is more likely to disagree with an item if network 
partners also disagree with that item. This effect also showed up in a submodel based only on the 
network of reciprocal ties 0 ~  c~) but the reciprocal parameter dropped out in the presence of ryd. 
The full network is presented in Figt~e 5 and the reciprocal network in Figure 6. 

Residual analysis is revealing here. We present this analysis not to overemphasize results 
arising from a single case study, but to illustrate the type of interpretations that can be made 
under this approach. By comparing residuals from both models across each of the twenty items, 
we can determine where the course interaction model improves the collective effects model. For 
most items, residuals are not greatly changed, but there is a substantial improvement for the fifth 
item, "The training group has been dominated by a few individuals". (Recall that the item is 
scored in reverse, so disagreement here signifies endorsement of the item.) For the disagreement 
logit, for items other than the fifth item the absolute mean differences between residuals from 
the two models was less than 0.13, and for the majority of items less than 0.1. For the fifth item, 
however, the mean difference between residuals from the two models was 0.37. (As the only 

FIGURE 5. 
Course interaction network. 
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D 

D 

FIGURE 6. 
Reciprocal course interaction network. 

additional parameter in the network model relates to the disagreement logit, there is no change 
in residuals for the agreement logit.) Three individuals (1, 13, 14) disagreed with the fifth item, 
and one (6) was undecided. 

Ignoring the directionality of ties in the directed network, we can see that these four in- 
dividuals make up a clique in the network. (Of course, the directionality of ties is irrelevant 
here because the model does not differentiate in-network and out-network influence.) In fact, 
these four individuals participate in the majority of cliques in the network and, in most of these 
cliques, they make up at least half the membership. The ties among the four, then, are an impor- 
tant feature of the network structure. Because of the simpler nature of the reciprocal network it is 
easier to examine possible influence structures among the fot~ actors. The four are a connected 
subgroup in the reciprocal network (Figure 6). 

The position of actor 6 in the reciprocal network is interesting. This individual provides the 
only connection between the "dissenting subgroup" of actors 1, 13 and 14 and a second con- 
nected subgroup of actors (2, 3, 8, 10 and 11) who did not believe the course was dominated. 
In technical terms, actor 6 is a cutpoint in the graph of the mutual network (e.g., Wasserman & 
Faust, 1994), meaning that if actor 6 were not present, the graph would break down into further 
separated components. In substantive terms, actor 6 provides the only reciprocal ties that could 
carry influence between the two subgroups. Actor 6 is also the only individual who was unde- 
cided about whether the comse was dominated. It is tempting to speculate that the position of 
actor 6, connecting two groups with opposing attitudes on this issue, could have shaped his or 
her neutrality; and that the two groups are insulated from each other on this issue by the neutral- 
ity of their only connection, actor 6+ It is unclear whether the neutrality of an individual in such 
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TABLE 4. 
Social interaction model 

Parameter  Pseudo- l ike l ihood es t imate  Standard error (approx.)  

0 a -3.00 1.43 
0 d -3.48 1.01 

) ,aa 0.26 0.09 
)v d d  0.34 0.23 
v a a  0.16 0.06 
"O d d  0.49 0.15 
7t dd 0.91 0.36 

a position might be an effort to preserve different options for action (Leifer, 1988), perhaps to 
maximise the powerful position of bridging two otherwise unconnected subgroups (Burt, 1992), 
or- - in  contrast--arises because different subgroups are presstmng that individual to adopt con- 
tradictory positions, preventing the individual sustaining both ties and strongly-held attitudes 
(Krackhardt, 1997). 

It is worthwhile summarizing what this model together with the residual analysis has shown. 
Although the model is homogeneous across both individuals and items, the residual analysis has 
indicated four individuals who form a clique in the network and who share a common concern 
about one particular aspect of the course's functioning. Despite the approximations in pseudo- 
likelihood estimation, the modeling approach developed here provides some evidence that net- 
work effects do indeed arise from network processes, and that this can be interpreted as an in- 
stance of social influence. 

Moreover, it may be claimed that this network effect is primarily a private exchange between 
individuals, given that variables from the collective model are included. The network effect seems 
to be over and above the public effects incorporated in the collective model. The inference might 
be that the perception of a few dominating the course, rather than being openly discussed, was 
shared privately among some individuals through their interaction ties. 

8.3. S o c i a l  I n t e rac t i on  N e t w o r k  

Parameter estimates for the social interaction model are presented in Table 4. The model has 
a pseudo-likelihood deviance of 194.9 with 7 parameters and a mean absolute residual of 0.236. 

Here the parameter estimate ~dd, as with the course interaction network, suggests that an 
actor is more likely to disagree with an item if network partners also disagree with that item. The 
social interaction network is depicted in Figure 7. 

Residual analysis here reveals that file mcxlel improves residuals, not so much for particular 
items, but for some individuals. The disagreement predictions for actors 1, 3 and 11, especially, 
are improved for a number of items. It is interesting to note that these actors form a clique with 
actor 10 who has the highest levels of disagreement. This might suggest that when those four 
actors were together socially (either as the one subgroup, o1 dyadically), their disagreement with 
the group's functioning could have been a topic they discussed. 

9. General Conclusions 

The course and social interaction models presented above describe how certain influence 
processes work in this training group from the perspectives of two different networks. This simple 
empirical example, however, is suggestive of some possible hypotheses for further exploration 
with more data. For instance, various networks may be involved in the transmission of influence 
in different ways, over and above the collective effects model. Influence might occur not only 
through public knowledge but also through private dyadic interactions. 
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E/' 

FIGURE 7. 
Social interaction network. 

In the example, the two networks demonstrated social influence effects through the trans- 
mission of disagreement and neutrality. The type of influence that is transmitted through net- 
works may be different from that arising from public knowledge. For instance, in the training 
group, non-agreement may have been less publicly acceptable and so was discussed more pri- 
vately through network structures. Moreover, individuals may choose different networks for the 
transmission of influence. Some local features of networks, but not others, may have signifi- 
cance in transmission of influence. For instance, some cliques may be important to the shaping 
of particular attitudes, whereas others may not be. 

Of course, the issue of what constitutes a properly specified model remains. The proper 
specification of dependencies among particular structural or individual variables is crucial to the 
efficacy of the models we have developed. In this paper, we have not taken a strong position on 
what are the appropriate variables for inclusion in social influence models, nor are we suggest- 
ing that the type of dependencies we utilize as illustrations are necessary or optimal. Our aim is 
simply to set up a particular modeling framework that we believe will prove useful in answering 
such questions, in conjunction with more empirical and theoretical work relating specifically to 
social influence phenomena. The issue of what is an appropriate dependency structure for social 
processes in general (including social influence processes) is inevitably a vexed one that will per- 
haps always be open to question and further investigation. In ongoing work, we are investigating 
the effects of generalized dependency structures other than the Markov random graph assump- 
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tion, considering both more constrained and more generalized dependencies (Pattison & Robins, 
2000). 

We wish to avoid any confusion between the models we have developed and standard lo- 
gistic regression. As noted above, these models are auto-logistic, not logistic. The principal and 
major difference is that in the p* framework there is no clear differentiation between dependent 
and independent variables. In the case of the models of this paper (as distinct from previous work 
on p*, such as Wasserman & Pattison, 1996), at least some of the variables--those in the parent 
block of the two block chain graph--are clear counterparts of independent variables. Neverthe- 
less, as pointed out above, the variables in the child block enter into the models in the form of 
both independent and dependent variables, at least when there are dependencies within the child 
block (which is the case for the more interesting models). Moreover, the Hammersley-Clifford 
theorem requires the equating of certain parameters, a process without any counterpart in stan- 
dard logistic regression. We know from otu" own experience in developing these models that 
lack of attention to the equating of parameters can result in models that are not justified by the 
theorem, and that the equating of particular parameters is not an immediately intuitive step. 

The general approach of this article can also be adapted to model processes other than so- 
cial influence. The variant of the Hammersley-Clifford theorem presented in Appendix 1 can be 
adapted with attributes as parent variables and network ties as child variables. This enables the 
modelling of what Leenders (1997) refen'ed to as selection models, where relationships emerge 
from the similarities and dissimilarities among the attributes of individuals. Models along these 
lines are explicated in Robins, Elliott and Pattison (2001) and are the subject of further investi- 
gation in an applied empirical context by Elliott (2000). 

The next step is to develop models that allow the simultaneous modelling of social influence 
and selection processes, for, as discussed above, the two processes are likely to be intertwined in 
many circumstances (Leenders, 1997). This will require a further adaptation of the Hammersley- 
Clifford theorem and is a matter for ongoing work. The formulation of these models will involve 
the consideration of temporal network models, including models that can differentiate between 
in- and out-network effects discussed in this article. 

Appendix 1: The Hammersley-Clifford Theorem and Directed Dependence Graphs 

The directed network dependence graph for the models of this article has two blocks with 
network variables in a "parent" block and attribute variables in a "child" block. Following the 
proof of Besag (1974), this appendix proves a version of the Hammersley-Clifford theorem ap- 
propriate to a general two-block chain graph, where the aim is the prediction of the child vari- 
ables. Let X = (X1, X2 . . . . .  Xs) denote the child variables and Y = (Y1, Y2 . . . . .  Yf) the parent 
variables. Let S = {1, 2 . . . . .  s} and T = {s + 1, s + 2 . . . . .  s + t}. Define the complete set of 
variables as Z = (Zk Ik ¢ S U T), where Zk = Xk for k ~ S and Zk = t~-s for k E T. 

For the proof, the notation used by Robins et al. (1999) is helpful. Firstly,, the notation 
provides a simple means to express the setting to zero of a number of variables. Let w be an 
arbitral T vector (wl, w2 . . . . .  w~) with J = {1, 2 . . . .  , n}. Denote by wa, for A _c J, the vector 
w with the entries indexed by J - A set to zero. For instance, w{i} = (0 . . . . .  0, uJi, 0 . . . . .  O) 

and wj_{i} = (Wl, we . . . . .  wi-1,  O, Wi+l . . . . .  wn). 
Secondly, the notation can be used to represent a subset of variables. Let IAI = m. Denote 

by w # the ordered m-tuple derived from w by excluding the entries indexed by J -  A but retaining 

the natural ordering induced by J, so that w # = ('t/dal , LUa2,  . . . , tUam ) where {al, a2 . . . . .  am} = 

A and aj < aj + 1. For instance w~/l = (wi) a n d  w #  {i} = (1/01, 1/) 2 . . . . .  W i _ l ,  w i q - 1  . . . . .  Wn). 
AS Robins et al. explain, more generally the notation can be applied to higher-way arrays. 

Mutual conditional dependencies occur among the X variables and directed dependencies 
from the Y to the X variables. We lollow Besag (1974) in defining a mutual conditional depen- 
dence (neighborhood) as occun'ing among child variables Xi and Xj  if 
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~# # 
P(Xi : xi IZsuT_{i} : ZSUT_{i}) 

can be expressed in a functional form dependent on xj and if 

P (Xj # # = xj IZsuT_{i } : ZSUT_{i}) 

can be expressed in a functional form dependent on xi. For a directed dependence, where Yk is a 
parent of  site Xi we mean that lhe functional lbrm of  

P(Xi : xilY, X~._{i}) 

is dependent on Yk but not so dependent if Yk is not a parent of  Xi. As the models of  interest are 
based on the conditional probability P (X = xIY = y), we are not concerned about conditional 
probability expressions for Y. 

Because 

P ( X  = x[Y = y )  
P(X~ = x~ Ix~,_~i} # : = xs_{i }, Y = y), 

P(X~_{i} # IY = Y) = Xs_{i } 

then  

P(X = x s - ~ } l v  = y) 

P (X~_{i} = x~,_{i} IY = y) 

w h e n  xi = O, so tha t  

= P(Xi = 01X~,_{i} = X~_{i }, Y = y) 

P(X = xlY = y) 

P(X = xs -~} lY  = Y) 

= P ( X i  = Xi IN'Hi} = x~'-{i}'  Y = Y) (A1) 

P(Xz = o lx~4 i }  = X~, {i}, Y = y)" 

Define 

Q(z) = log [ P ( X  = xlY = y ) / P ( X  = 01Y = y)] .  

From (A1), for i c S, 

P ( X = x I Y = y )  
Q(z) - Q(ZSUT-{i}) : log P ( X  = Xs_{i}IY = y) 

-P(Xi  = xilX~_{i} -- x],_{i}, Y -- 31) ] (A2) 

= log P(Zi = 01X~._{i} = x~_{i}, Y = y) _]' 

Given the RHS of  this equation and the definitions of  neighborhood and parent associations 
among the variables, the functional form of  Q(z) - Q(ZsuT-{i}) can only include xi itself, xj 
where Xj is a neighbor of  Xi, or Yt where Y~ is a parent of  Xi. 

Now a series of  functions of  the zk are introduced, indexed by various subsets of  S U T, 
and defined recursively. First define F{k} (Zk) by Zk F{k} (Zk) = Q (Z{k}). Define a F-function for a 
subset of  S U T with only two elements, say {i, j}: 

Z i Zj  F{i,j} (Z i,  Zj  ) = Q (z{i,j}) - zi F{i} ( z i )  - z j  F{j} ( z j ) .  

Note that F{i,j} (Zi,  Zj  ) = F{i,j} (Z~/,j}). In general, a F-function is recursively defined for a subset 
A of S U T in terms of the Q-expression for the relevant variables and the F-functions for the 
subsets of  A: 

:A Z#A I-Izi= Q ZA -- S, 1-I 
iEA M c A  i cM 
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With these definitions in place, there is an expansion of Q 

Mc_SUT iEM 

where Fo is defined as zero. 
It then follows that 

Mc_SUT kEM MC_SUT-{i} 

= FMU{i}(ZMu{i} ) 1-I  Zk 
Mc_SUT-{i} k~MU{i} 

Zi Z # " : FMU{i}(ZMu{i} ) 1-1 Zk, 
Mc_SUT-{i} k~M 

Q ( z )  - Q ( z s u r - { i } )  = 

(A3) 

l-I zk 
kEM 

(A4) 

where if M = 0 then I~k~M Zk is defined as one. 
This equation holds for all possible observed values z. In particular, take a set of variables 

Z~ where i E R and assume that all other observed values are zero. Then because Zk = 0 unless 
k E R we have from (A2) and (A4): 

# # # ] 
-P(Xi  = xi IZR_{i} = ZR_{i }, ZSUT_ R : O) 

J Q ( Z R )  - -  Q(zSUT-{i})  = l o g  P ( X i  = 01ZR_{i  } = ZR_{i }, ZSUT_ R 

Yi Z # ( A 5 )  = FMU{i}(ZMu{i} ) l--I ZI¢ 
McR-{ i}  kEM 

Now suppose that the variables indexed by R - {i} are all child variables but none is a 
neighbor of Xi. In this case Q(z) - Q(zsuv-{i}) does not depend on any of the values from that 
set of variables. Then it follows from (A5) that • # FMU{t}(ZMu{i}) : 0 VM C R - {i}. If, on the 
other hand, R does index a set of neighbors of Xi, because i has been chosen arbiU'arily there 
will be an equation of form similar to (A5) for all elements of R. It follows that, for nonzero 
FMU{i}, the variables indexed by elements of M are all neighbors of each other, that is, they form 
a clique. 

Suppose that R indexes only parent variables, but that none is a parent of Yi. Then, again, 
Q (z) - Q (zsuT-{i}) does not depend on any of the values from that set of variables, so it follows 
that 

# 
FMU{i}(ZMu{i}) = 0 VM C_ R - {i}. 

So for n o n z e r o  FMU{i}, where M indexes only parent variables, these are all parents of Yi. 
Suppose M indexes a union of parent and child variables. In the simplest case, suppose 

the variables are Yk and xl. As the functional form of Q(z) - Q(ZSUT-{i}) can only include 
variables that are neighbors of Xi or parents of Yi, if Yk is not a parent of Xi or if Xl is not a 
neighbor of Xi, then F{i,l..s+k} = 0. Suppose that Yk is a parent of Xi, that X~ is a neighbor of 
Xi, but that Yk is not a parent of Xl. Then, as Q(z) - Q(zsur-~z}) can only include neighbors 
or parents of Xz, so I~{i,/,s+k}, which is a term in the expansion of both Q(z) - Q(zsur-{i}) and 
Q(z) - Q(zsur-{~}), must be zero. Accordingly, F{i,t,s+k} is nonzero only when two conditions 
hold: Yk is a parent of both Xi and Xl; and Xi and Xz are neighbors of each othel: Analogous 
arguments show that FAUB, tbr A _c S and B _c T, is nonzero if and only if the variables indexed 
by A (child variables) form a clique of neighbors, and if and only if each of the variables indexed 
by B (parent variables) is a parent of every variable indexed by A. 

In other words, the only nonzero F-terms in the expansion (A5) are those pertaining to 
variables that comprise a clique in the moral graph of the chain graph. This moral graph is 
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formed from the chain graph by drawing an edge between any two parent variables of the same 
child variable ("marrying the parents") and by replacing all arrows by undirected edges. 

Note that this definition of the moral graph differs slightly from the graphical modeling ver- 
sion for a chain graph given by Lauritzen (1996, p. 7). In the Lauritzen version, parents of subsets 
of connected children are married whereas here only parents of the same child are married. Our 
definition and the graphical modeling version concur in the special case of a directed acyclic 
graph (a chain graph with all chain components consisting of one vertex, Lauritzen, p. 7.) Our 
version of a moral graph applies to a two block chain graph when the aim is to model a con- 
ditional factorization P (X = xlY = y), rather than a more general recursive factorization (see 
Lauritzen). If, for instance, it was intended also to model P (Y = y), then the Lauritzen version 
would have to be used. As it is, the additional edges in the Lauritzen moral graph never enter into 
a model for P(X = xlY = y) because they never form part of cliques that include any of the X 
variables. 

Denote conditional logits by 

COl = log P(Xi = x_/lX~,_{i} _ x~_{i},Y _ y).] 

P(Xi = 0IX],_{i} = x],_{i}, Y = y) J 

Then from (A2) and (A5) the Hammersley-Cliflbrd set of equations is: 

COl = xi Z Z Z # # (A6) FRUQU{i}(XRu(i)' YQ) 1-I xk 1-I YJ 
Mc((i) RC_M-{i} Q_Cpa(R) kcR j c Q  

where ((i)  denotes the set of maximal cliques of neighbors that include Xi and pa(R) denotes 
the set of parent variables of all child variables indexed by R. When R = 0 or Q = 0, the 
products l~kcR Xk and I~jEQ Yj are defined as equal to 1. 

Appendix 2: Teamwork Questionnaire Items 

1. The training group has consistently worked together in a cooperative and understanding 
manner. 

2. I feel an atmosphere of honesty and trust exists within this group. 
3. Some members of the group seemed reluctant or unable to participate fully or freely. 
4. The training group did not complete all the tasks of the course adequately. 
5. The training group has been dominated by a few individuals. 
6. The facilitators really got everyone involved in the group exercises. 
7. The training group has been able to develop consensus on the central issues of the course, 

even if there have been some strongly held opinions. 
8. I was cautious about expressing my full opinions in this group. 
9. Communication within the training group has not been as open and effective as it might have 

been. 
10. I feel there is a very friendly environment within this group. 
11. The training group has been highly motivated to tackle the course exercises. 
12. There were such strong disagreements on some issues that the training group has become 

fragmented or split. 
13. I felt the training group could have handled the tasks and exercises of the course more 

smoothly and efficiently. 
14. The training group has given plenty of feedback--including praise and encouragement--to 

members during the course. 
15. I participated in the course exercises as they came up but without feeling fully involved in 

the group itself. 
16. The training group could have done with clearer direction. 
17. Every member of the group has been listened to and has had their opinions heard. 
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18. On some important issues, my own opinions were different from most others in the group. 
19. The training group has approached the course in an intelligent and responsible way. 
20. There could have been better team spirit within the training group. 

Statements 3, 4, 5, 7, 8, 9, 12, 13, 15, 16, 18 and 20 were scored in reverse, so that all 
agreements were in the direction of a positive statement about the group's performance. 
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