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Several concepts are introduced and defined: measurement invariance, structural bias, 
weak measurement invariance, strong factorial invariance, and strict factorial invariance. It is 
shown that factorial invariance has implications for (weak) measurement invariance. Definitions 
of fairness in employment/admissions testing and salary equity are provided and it is argued that 
strict factorial invariance is required for fairness/equity to exist. Implications for item and test 
bias are developed and it is argued that item or test bias probably depends on the existence of 
latent variables that are irrelevant to the primary goal of test constructers. 

Key words: measurement invariance, test bias, item bias, factor analysis, factorial invariance, 
selection, group differences, fairness, equity. 

Introduction 

The results of  a factor  analysis of  12 cognitive tests are presented in Table I. The  
data were taken from the archives of  the Institute of  Human  Development  at the 
Universi ty of  California at Berkeley and consist of  the scores of  86 female and 71 male 
participants in the longitudinal studies carried out at the Institute. These subjects are 
quite bright, mean adolescent IQ equal 119, and well educated. Further  details on IHD 
longitudinal studies and participant characteristics can be found in Sands, Ter ry  and 
Meredith (1989). The age of the subjects at the time these particular data were collected 
was approximately 53 years. The variables chosen for this example were,  with one 
exception,  taken from the WAIS-R (Wechsler,  1981) and the ETS Kit (French,  Ek- 
strom, & Price, 1963). The WAIS-R subtests are Information (INFO), Vocabulary 
(VOCY), Comprehension (COMP), Digit Symbol (DSBL),  Block Design (BDSN) and 
Object Assembly (OBSL). The ETS Kit tests are Word Beginnings and Endings 
(BGEN),  Number  Comparisons (NMCP), Subtraction and Multiplication (STML),  Hid- 
den Patterns (HDPT) and Card Rotation (CROT). The twelfth test is a highly speeded 
Let ter  Series test (LSER) developed by John L. Horn  (personal communication,  1981). 

The analysis presented in Table 1 is based on data that, for ease of interpretation, 
were standardized employing the grand means and pooled variances over  the two 
groups. The analysis uses maximum likelihood in L I S R E L  7 (Jrreskog & Sr rbom,  
1988) and the scale-free properties of  maximum likelihood ensures that the standard- 
ization is of  no consequence in this analysis. The factor  pattern matrix, common factor  
dispersion matrices and common factor  means are similarly standardized. 

The results presented in Table 1 are quite elegant. The structure in the factor  
pattern matrix is based on Horn ' s  (1985, 1986) Gf, Gc, Gs theory,  although Factor  3 is 
more nearly Horn ' s  Gv than Gf. The sex differences in unique means for S TML and 
CROT are consistent with findings in the literature. The sex difference for INFO is 
almost surely due to the fact that these men are more highly educated than the women.  
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Table 1 

INVARANT FACTOR UNIQUE VARIANCES 
PATTERN MATRIX FEMALES MALES 

UNIQUE MEANS 
FEMALES MALES 

INFO 0.687 0 0 0.527 0.527 -0.207 0.255 

VOCY 0.858 0 0 0.256 0.256 0 0 

COMP 0.727 0 0 0.480 0.480 0 0 

BGEN 0.430 0.428 0 0.574 0.574 0 0 

NMCP 0 0.693 0 0.502 0.502 0 0 

STML 0 0.695 0 0.517 0.517 -0.319 0.387 

DSBL 0 0.530 0.282 0.621 0.389 0 0 

HOPT 0 0 0.779 0.405 0.405 0 0 

CROT 0 0 0.646 0.584 0.584 -0.176 0.214 

BOSN 0 0 0.782 0.380 0.380 0 0 

OBSL 0 0 0.622 0.762 0.424 0.126 -0.151 

LSER 0.241 0.305 0.345 0.500 0.500 0 0 

FACTOR DISPERSION MATRICES 
FEMALES MALES 

FACTOR MEANS 
FEMALES MALES 

0.662 1.410 0.107 -0.129 

0.i04 1.015 0.298 0.982 0.385 -0.469 

0.556 0.286 0.917 0.812 0.575 i.i01 -0.137 0.164 

CHI SQUARE = 135.23 DF = 127 PROB = 0.292 

The sex  differences in c o m m o n  factor means  appear to be cons is tent  with past findings 
in the literature. The differences in unique variances are a puzz le ,  as is the sex  differ- 
ence  for the unique means  o f  OBSL.  

S o m e  alternative analysis  yielded the fol lowing results.  
1. I f  sex  differences in unique variances are suppressed the chi square b e c o m e s  

I43.27 (df = 129, p = . I84) .  The subtractive chi square is 8.04 (df = 2, p = .018) .  If  
sex  differences in unique means  are suppressed,  forcing all sex  differences to be con-  
veyed  through the c o m m o n  factors,  and differences in unique variances  are also sup- 
pressed,  the chi square statistic rises to 191.05 (df = 137, p = .002) .  Without  s imple 
structure the chi square is 158.59 (df = 123, p = .017) and letting everything (pattern, 
unique variances)  be free over  groups except  the unique means  y i e M  a chi square o f  
129.23 (dr = 84, p = .001) .  Thus w e  may conc lude  that a fully satisfactory fit is 
obtained only  when  differences in unique means  and variances are introduced. 

2. I f  the two groups are combined  and sex differences are ignored, an identified 
3-factor solution yields a chi square o f  51.67 (df = 33, p = .020) .  Adding s imple 
structure constraints increases  the chi square to 75.52 (df = 47, p = .005) .  An  identified 
4-factor model  gives  a chi square o f  32.79 (dr = 24, p = . 109) and adding simple 
structure constraints raises the chi square to 51.54 (df = 38, p = .070) .  The fourth 
factor is essential ly uninterpretable unless  one  k n o w s  that it represents  sex differences.  

3. If individuals' scores  are represented as deviat ions from their same-sex  mean  
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and the data are subsequently combined into a single sample, a 3-factor model yields a 
chi square of 45.26 (df = 33, p = .076). Adding simple structure constraints increases 
the chi square to 71.04 (df = 47, p = .013). 

Thus the only approach that provides a fully satisfactory fit with theory-driven 
simple structure is that embodied in Table I. Nevertheless, we propose that there may 
be something deeply troubling about that solution. The problem has to do with the sex 
differences in unique means and variances and is the topic of the rest of this paper. 

We remark that in the analysis presented, the Word Beginnings and Endings score 
was replaced by its natural logarithm and the Card Rotation and Subtraction and Mul- 
tiplication scores were replaced by their square roots. Without these transformations 
the fit is not as good and more differences in unique variances are found. The justifi- 
cation for these transforms is partly based on the plots of squared differences of two 
separately timed sections against their sum and is partly theory-driven (Kearns, 1971; 
Meredith, 1971; Silney & Meredith, 1973). 

Formulation 

Let X denote an n dimensional manifest random variable with realization x. Let W 
denote the p dimensional latent variable, with realization w, that X "measures" or, 
alternatively, that "underlies" X. Consider some parent population of individuals for 
which "measurement" of W by utilization of X is deemed appropriate. Let V denote an 
m dimensional random variable, with realization v, that furnishes a basis for selection 
of a subpopulation from the parent by application of a selection function s(V), 0 -< s(v) 
-< 1. We would ordinarily suppose the coordinates of V to be representations of such 
attributes as race or ethnicity, sex, age, etcetera, but the precise nature of the coordi- 
nates of V is immaterial and in some applications could be themselves latent variables. 
The selection function s(v) gives the conditional probability of an individual's being in 
the subpopulation given V = v. 

To avoid trivialities, the following assumptions are made throughout: 

1. for every realization of W, the conditional distribution of X given W = w is not 
degenerate; 

2. W and V are not independent; 
3. all first and second moments, first and second order conditional moments and 

other expectations employed in this paper exist. 

Suppose that F(. ) denotes the (cumulative) distribution function of the argument in 
the parent population. Then dF(u) denotes f(u)du, where f(u) is a density function if U 
is continuous, dF(u) denotes prob(U = u) if U is discrete, or dF(u) denotes a com- 
bination thereof in situations involving combinations of discrete and continuous vari- 
ables. Integrals are to be interpreted in the sense of Stieltjes. We introduce the notation 
J" ug(u) dF(u) to indicate integration and/or summation of the product of a function g(u) 
and dF(u) over all possible values of U in the sample space or a sample subspace. It will 
be clear from the context whether the total or a subsample space is involved. Note that 
the integral may denote a multiple integral. Evaluated conditional distribution functions 
such as F(X = x[W = w) will be written as F(xlw). We adopt the convention that 
vectors are rows. We define the total sample space in the parent population to be the 
set of n + p + m dimensional real vectors (x, w, v) with the property that dF(x, w, 
v) > O. This avoids problems that may otherwise arise with conditioning. Observe that 
the total sample space is not necessarily the same as the Cartesian product of the 
sample spaces of X, W and V, but may be a proper subset thereof. We want to 
consider, for example, cases in which the range of W is dependent on V and/or the 
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range of X is dependent on W. We note that according to this definition a subsample 
space typically will be a proper subset of the total sample space after selection on V. 
We note that the marginal distribution of V may become degenerate (i.e., V a constant). 

Finally, % will denote the expectation operator and the expectation of vectors or 
matrices will consist of the vector or matrix of expectations of the elements. 

Measurement Invariance 

Definition I. The random variable X is said to be measurement invariant with 
respect to selection on V if F(xlw, v) = F(xiw) for all (x, w, v) in the sample space. 
This definition was introduced by Mellenburgh (1989). We shall show that this definition 
implies the definition employed by Meredith and Millsap (1992) and Lord's  (1980) 
definition of lack of bias. 

Theorem 1. The random variable X is measurement invariant with respect to se- 
lection on V if and only if X and V are locally independent when conditioned on w for 
all w in the sample space. 

Proof. Suppose local independence. It follows immediately from the factorization 
of dF(x,  w, v) that dF(xlw, v) -- dF(xlw). Suppose dF(xlw, v) = dF(xlw). Then 
dF(x,  w, v) = dF(xlw, v) dF(vlw) dF(w) = dF(xlw) dF(vlw) dF(w). []  

We introduce selection on V. The joint conditional distribution function of X, W 
and V in a selected population can be obtained by integrating 

s (v)dF(x, w, v)/fvS(V ) dF(v) 

where s(V) is the selection function that determines the subpopulation. The integral in 
the denominator is over all values of V in the induced sample space, i,e., those values 
of V for which s(v) > 0. In the event that V is continuous we assume that s(V) is such 
that the denominator is > 0. Denote the altered distribution function by Fs(x,  w, v). 
Note that the sample space, according to our definition, typically will be altered to a 
proper subset. 

Theorem 2. If X is measurement invariant with respect to selection on V then 
Fs(xlw, v) = F(xlw) for all selection functions and all (x, w, v) in the induced sample 
spaces, 

Proof. Given measurement invariance dF(x,  w, v) factors into dF(xl w) dF(w, v) 
for every (x, w, v) in the total sample space. It follows immediately that dFs(x,  w, v) 
= dF(xlw)dFs(w, v) for every (x, w, v) in the induced sample space, hence 
dFs(xlw, v) = dF(xlw). []  

Corollary I. If X is measurement invariant with respect to selection on V then 
Fs(xlw) = F(xlw) for all selection functions and all (x, w) in the induced sample space. 

Proof. It was established in the proof of Theorem 2 that dFs(x, w, v) = dF(xlw) 
dFs(w, v) from which it follows that dFs(x, w) = dF(xlw) dFs(w), hence dFs(xlw) = 
dF(xlw). []  

Corollary 2. ff X is measurement invariant with respect to selection on V, given 
any two selection functions s(V) and t(V), Fs(xlw) = Ft(xlw) for all (x, w) in the 
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intersection of the induced sample spaces. Note that the sample spaces after selection 
need not be identical in various special cases, such as the range of X dependent on W, 
the range of W dependent on V, and ordinarily occur only when the selection functions 
have s(v) = 0 and/or t(v) = 0 for some (different) values of V. 

Proof .  A direct consequence of Corollary 1. [] 

Theorem 2 and Corollary 1 establish that the definition of measurement invariance 
employed in this paper implies that Fs(xlw) is invariant in subpopulations derived by 
selection on V and is equal to F(x[w) in the parent which is the definition of measure- 
ment invariance used by Meredith and Millsap (1992). In that paper it was shown that 
for the case of a discrete and finite V, measurement invariance as defined therein 
implied local independence of X and V when conditioned on w in the parent popula- 
tion. Then from Theorem 1 local independence of X and V implies the definition of 
measurement invariance used here, namely F(x[w, v) = F(xlw) in the parent popula- 
tion. The extension to continuous or countable V seems straightforward but will not be 
attempted here inasmuch as it is tangential to our main concern. Corollary 2 is a 
generalization of Lord's (1980) definition of lack of bias. 

Consider a set of selection functions, sl (V), s2(V) . . . .  , Sk(V), • . .  , sq(V). The 
question arises as to whether the invariance of Fk(XlW) over k is diagnostic of mea- 
surement invariance. Generally this is not true. The following Theorem provides con- 
ditions that ensure that invariance of the Fk(XlW) implies measurement invariance. 

T h e o r e m  3. Suppose: 

1. V is discrete and finite, taking on values v l ,  v2 . . . . .  v k,  . . .  , Vq; 

2. q selection functions s l ( V ) , . . . ,  Sq(V) which assign Sk(Vk) = 1; 0 otherwise, 
k = 1 , . . . , q ;  

3. for each pair of selection functions sj(V) and Sk(V), Fj(x[w) = Fk(X[W) for 
every (x, w) in the intersection of the induced sample of spaces. 

Then X is measurement invariant with respect to selection on V. 

Proof .  Let G(xiw) = Fj(xlw) = Fk(xlw) for every value of (x ,  w) in the union of 
the intersections. In the event that a particular (x, w) occurs in only one of the induced 
spaces let G(xlw) = Fk(xlw) for that (x, w). Then G(xlw) is defined for every (x, w) 
in the total sample space. For a particular selection function V is a constant (its dis- 
tribution is degenerate after selection), hence 

dFk(X, w, Vk)= dG(xlw) d F ( w l v k ) d F ( v k )  

for every vk. It follows immediately that F ( x l w ,  vk) -- G(xlw) = F(xlw) for every 
(x, w, v) in the total sample space. [] 

Presumably Theorem 3 could be proven for a set of q linearly independent Sk(V ) 
with the property that the sum of the Sk(V ) = 1 for every Vk since the set chosen in the 
theorem is a vector basis for any such set. 

An obvious implication of Theorem 3 is, for example, if V is univariate and di- 
chotomous (e.g., sex) and Fl(xlw) = F z ( x l w )  then X is measurement invariant with 
respect to selection on V. This cannot be taken to mean, however, that a further 
breakdown, say dividing the sexes into age groups, would yield measurement invari- 
ance for X with respect to the new V implied by the breakdown. 

The failure of measurement invariance can occur when X is directly dependent on 
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V, when the functional form of F(X]w, v) is dependent on V, or when the parameters 
(regression function, scedastic function) of F(X]w, v) are dependent on V. We intro- 
duce the concept of structural bias to indicate the third form of measurement invariance 
failure, namely, parametric differences in F(Xlw, v) that depend on V. It would seem 
to be the case that given a particular form of F(XIw, v) in which w is a Bayes sufficient 
statistic for x, measurement invariance automatically holds. This need not be the case 
inasmuch as structural bias can still occur. 

Weak Measurement Invariance 

The definition of measurement invariance as F(xlw, v) = F(xlw) in the parent 
population clearly has implications that are consistent with our primitive notions of the 
conditions that measurement invariance should satisfy. In this section we define a 
weaker form of measurement invariance that does not require that the conditional 
distribution of X given w and v be solely dependent on w, and turns out to have 
consequences similar to the consequences of measurement invariance. 

Definition 2. The random variable X is said to be weakly measurement invariant 
with respect to selection on V if %(Xtw, v) = %(Xtw) and ~,(XIw, v) = 
%[(X - ~(Xtw))'(X - %(XIw))lw, v] = ~(XIw) for all (w, z)) in the sample space. 

In many situations weak measurement invariance would imply measurement in- 
variance. Suppose, for example, that the i-th component of X, Xi is conditionally 
binomial [Ni, gi(w)], i = 1, . . .  , n, where 0 < gi(w) < 1 is a function of W and that 
the components are locally independent. Then we would have weak measurement 
invariance and also measurement invariance. One can construct compound binomials, 
however, that are weakly invariant but not invariant. The difference lies principally in 
the fact that higher order conditional moments may be dependent on V. 

One could define weak measurement invariance in terms of the conditional expec- 
tation of X alone. But consider the following. Suppose X provides a basis for choosing 
employees or students from an applicant pool. Clearly, differences in Y(XIw, v) intro- 
duces an element of unfairness into the situation. This is especially true if the condi- 
tional variances are systematically larger in one group vis-a-vis another. The implica- 
tion is that individuals with the same qualifications would have different likelihoods of 
being chosen depending on group membership. 

Lemrna 1. Suppose a function of X, g(X), such that %(g(S)lw, v) = %(g(X)lw) for 
all (w, v) in the sample space. Suppose further a function of V, h(V). Then the 
conditional covariance (correlation) of g(X) and h(V), given W = w, is zero for all w. 

Proof. ~(g(S)h(V)lw) = f v f x g(x) dF(xlw, v)h(v) dF(v[w) = 
fv ~(g(X)lw)h(v) dF(vlw) = ~(g(X)lw)~(h(V)lw) [] 

The converse of Lemma I is not true. Note that Lemma 1 is true for all possible 
functions of V that meet the conditions of the Lemma; in particular h(V) = Vi where 
Vi is the i-th component of V, and h(V) = s(V) where s(V) is a selection function. 

Lemma 2. Suppose a function of X, g(X), such that %(g(X)lw, v) = ~(G(X)Iw) 
for all (w, v) in the sample space. Consider any selection function s(V). Then 
%s(g(X)tw, v) = %(g(X)lw) for all (w, v) in the sample space induced by s(V). 

Proof. The joint distribution of (x, w, v) after selection on V is obtained from 
s(v) dF(x, w, v)/ fv s(v) dF(v) for all values of (x, w, v) in the induced sample space 
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(i.e., s(v) > 0). Consequently Fs(xlw, v) = F(xlw, v) for all values o f (x ,  w, v) in the 
induced space after selection. Hence %s(g(X)lw, v) = %(g(S)lw). []  

Let Vec(X'X) denote the n(n + 1)/2 random vector whose elements are Vec(X'X) 
= x l x 2 ,  x l x 3 , . . . ,  x2. . 

Theorem 4. If the random variable X is weakly measurement invariant with re- 
spect to selection on V, then the components of X and Vec(X'X) are all conditionally 
uncorrelated, given W = w, with any function, h(V), of V, for all w in the sample 
space. 

Proof. Note that "2(XIw, v) = %(X'XIw, v) - %(X'lw, v)%(Xlw, v) so that given 
weak measurement invariance %(X'XIw, v) = %(X'XIw). Apply Lemma I to the 
functions gl(X) = XI ,  g2(X) = X 2 . . . . .  g n ( g )  = X n ,  g n + l ( X )  = X ? ,  gn+2(X)  = 
X1X2, etcetera in turn. []  

Theorem 5. If X is weakly measurement invariant with respect to selection on V 
then %s(XIw, v) = %(XIw) and Xs(X)lw, v) = X(XI w) for all selection functions and 
all (w, v) in the sample space induced by selection on V. 

Proof. Analogous to the proof of Theorem 4 with Lemma 2 applied instead of 
Lemma 1. []  

Corollary 3. I f X  is weakly measurement invariant with respect to selection on V 
then %s(X[w) = %(X[w) and Xs(XIw) = X(X[w) for all selection functions and all w in 
the induced sample space. 

Proof. Established by integrating%s(g(X)lw, v) dFs(w, v) = %(g(X)lw) dFs(w, v) 
with respect to V. Then let g l(X) = X1, etcetera. 

It follows from Corollary 3 that for every pair of selection functions, s(V) and t(V), 
%s(Slw) = %t(Xlw) and Xs(X[w) = Xt(Xlw) ifX is weakly measurement invariant with 
respect to V. []  

Theorem 4 is the weak measurement invariance analogue of Theorem 1 although 
unlike Theorem I it is not an if-and-only-if theorem. It establishes that if X is weakly 
measurement invariant with respect to V, then every component of X and vec(X'X) is 
conditionally uncorrelated with every component of V when conditioned on w. A 
converse to Theorem 4 might be developed by imposing more restrictive conditions 
(e.g., monotonicity). Theorem 5 and Corollary 3 are the weak measurement analogues 
of Theorem 2 and Corollary 1 and establish the invariance Of%s(Xlw ) and Es(Xlw) over 
all possible selection functions, or, put another way, that the regression of X on W and 
the conditional dispersion of X given w is unaffected by selection if weak measurement 
invariance holds. 

It is customary to assume that latent variables "explain" the covariation of  man- 
ifest variables (i.e., that X(Xlw) is diagonal for all w in the sample space. The following 
corollary shows that the diagonality holds in selected subpopulations. 

Corollary 4. If X is weakly measurement invariant with respect to selection on V 
and if E(XIw) = ®(w), diagonal, for all w, then Xs(Xlw) = ®(w) fo r  all selection 
functions and all w in the corresponding induced sample space. 

Proof. Follows directly from Corollary 3. []  
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It could be an interesting exercise to attempt to introduce Stout's (1990) concepts 
of essential dimensionality, perhaps dramatically reducing p as a consequence, and 
essential independence instead of ®(w) diagonal into this sort of development. 

We state without proof the weak measurement analogue of Theorem 3. 

Corollary 5. Suppose conditions (1) and (2) of Theorem 3 hold and that for every 
pair of selection functions sj(V) and Sk(V), %j(X[w) = %k(Xlw) and Xj(X[w) = 
Xk(X[w) for every w in the intersection of the induced sample spaces. Then X is weakly 
measurement invariant with respect to selection on V. 

Now consider that W is a random variable. Taking expectations with respect to W, 
standard theorems yield %(X) = %[%(XIW] and 2~(X) = E[%(XIW)] + %[E(X[W)]. 
This holds true in any population, with double expectations both occurring in the 
particular population. The following corollary follows immediately: 

Corollary 6. If X is weakly measurement invariant with respect to selection on V 
then %s(X) = %s[%(XIW)] and Xs(X) = Xs[%(XIW)] + %sE(X[W) for every subpop- 
ulation generated by selection on V. Furthermore, if X(X[w) = ®(w), diagonal, for all 
w in the total sample space then %s E(XIW) = %sO(W) is diagonal in every subpop- 
ulation. 

Proof. Follows directly from Corollary 3. [] 

We remark that obviously every theorem and corollary proven for the case of weak 
measurement invariance holds for measurement invariance. 

Factorial Invariance 

Partition W into W = (Z, U) where Z is of dimension r < n and U has dimension 
n. Let A denote an n x r matrix of full column rank and a a vector of length n. 

Definition 3. The factor analysis model holds in a population if the following con- 
ditions are met: 

(i) There exist random variables Z and U such that x = a + zA' + u for 
every (x, z, u) in the sample space, 

(ii) Z and U are uncorrelated in the population, 
(iii) the components of U are mutually uncorrelated in the population. 

The random variable U consists of latent factors specific to each individual manifest 
variable plus measurement error. So u is in some sense indeterminate. This infelicity 
will be corrected in the next section. Combining specific and error random variables 
makes the notation and proofs simpler in this section. The usual assumptions about 
errors of measurement are implicit but generally are not needed in this development. 
When the factor analysis model holds in a population we shall say X is factorial in the 
population. 

In the population, let/x and E denote the mean vector and dispersion matrix of X, 
and qb the mean vector and dispersion matrix of Z, r /and W, diagonal, the mean 

vector and dispersion matrix of U. As in the discussion of measurement invariance, we 
suppose a selection variable V and a selection function s(V) that produces a selected 
subpopulation from the parent. The corresponding symbols subscripted with s will 
denote the equivalent vectors and matrices after selection. We remark that Condition 
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(i) of Definition 3 implies that x = a + zA' + u for every (x, z, u) in the induced 
sample space after selection on V. 

The usual factor analytic consequences follow from Definition 3; 

tz = a + CA' + n,  (1) 

and 

£ = A@A' + ~ .  (2) 

Without loss of generality we may take C and 77 to be null vectors. In the sequel we will 
make frequent use of the fact that the dispersion matrix of a random variable is the sum 
of the dispersion matrix of conditional expectations with respect to another random 
variable plus the expectation with respect to that other variable of the conditional 
dispersion matrices. The selection variable will be the conditioning variable and (z, u) 
the variables of interest. 

The fact that X is factorial in the population does not imply that Z and U will be 
uncorrelated, nor that the elements of U will be mutually uncorrelated in a selected 
subpopulation. Nor need Cs and 7/s be null vectors. Let Fs denote the matrix of cova- 
riances of Z and U, and Os the dispersion matrix of U, in a selected subpopulation. 
Corollary 7 follows immediately from (i) of Definition 3. 

and 

Corollary 7. If X is factorial in the population, then after selection on V 

~s = a + CsA' + ~Ts, 

£s = A@sA' + FsA' + AF~ + f~s. 

Equation (4) was derived by Bloxom (1972) as his Case Ia. 

(3) 

(4) 

Theorem 6. Suppose that X is factorial in the population, and that for some se- 
lection variable, and for every v in the sample space, %(Ulv) = ~7 = 0 and the 
conditional dispersion matrix of (Z, U) given V = v takes the form 

qb(v) F'(v)] with ~(v) diagonal. Then 
r(v) w(v) J 

in every selected subpopulation 

and 

/~s = ot + CsA', (5) 

£s = Ad*bsA' + FsA' + AFs + ~ ,  (6) 

with q~s diagonal. 

Proof. Established by taking expectations of the elements of the conditional mean 
vector and conditional dispersion matrix with respect to Fs(z, ulv) and noting that 
since %(U Iv) = 0, ~7 s and the dispersion matrix of %(UI V) are null, as is the covariance 
matrix of %(Z I V)%(U I V), in every subpopulation. Equation (6) is essentially Bloxom's 
case Ib. Note that Us, diagonal, can vary over subpopulations. Also observe that 
somewhat weaker assumptions have been made. [] 
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If we add to the assumptions of Theorem 6 the assumption that F(v), the matrix of 
conditional covariances of Z and U, is null we obtain the following corollary: 

Corollary 8. Given the assumptions of Theorem 6 and F(v) = 0 for every v in the 
sample space, then for every selected subpopulation equation (5) holds and 

Xs = A~sA'  + q*s. (7) 

Definition 4. X is said to be strongly factorial invariant with respect to selection on 
V if equations (5) and (7) hold for every subpopulation derived by selection on V. 

Further results can be obtained by assuming that W(v) = W. 

Corollary 9. Given the assumptions of Theorem 6, F(v) = 0, and W(v) = W for 
every v in the sample space, then for every selected subpopulation equation (5) holds 
and 

Xs = AqbsA' + ~ .  (8) 

Definition 5. X is said to be strictly factorial invariant with respect to selection on 
V if equations (5) and (8) hold for every subpopulation derived by selection on V. 

Equation (8) is Bloxom's Case IIb and was originally derived by Meredith (1964). 
In those derivations the conditions are stronger, to wit, independence of U and V and 
linearity and homoscedasticity of the regression of Z on V. 

Observe that our version of Bloxom's Case Ib (Corollary 7) and the definitions of 
strong and strict factorial invariance all require that (5) hold, i.e., that mean differences 
in X between selected subpopulations all be conveyed through mean differences in the 
common factor Z between subpopulations. Clearly, then, the evaluation o f  strong or 
strict factorial invariance requires modeling mean vectors as well as dispersion matri- 
ces. Modeling mean vectors in multiple group factor analysis was introduced by S6r- 
bom (1974). 

The question arises as to whether or not a selection variable can exist such that X 
is factorial in the population with Equations (3) and (7) or (8) holding. That is the topic 
of the next Theorem and Corollary. 

Theorem 7. Given that X is factorial in the population, without loss of generality, 
= 0, and %(UIv) # 0 for some subset of V with probability measure > 0. Then/z s # 

a + ~s A' for some subpopulations derived by selection on V. 

Proof. Suppose %(Ujlv) # 0 for some component of U and subset of V. Given the 
conditions of the theorem, we can always determine a selection function that assigns 
s(v) > 0 to those values of V for which %(Ujlv) > 0 and s(v) = 0 to those values of 
V for which %(Ujlv) < 0, or vice versa. Note that such values of v must exist since 
~/= 0. For such a selection function tz s = a + ~s + ~s- []  

Corollary I0. If X is factorial in the population, X is strongly factorial invariant 
with respect to selection on V if and only if 

(i) the conditional expectation of U given v is null; 
(ii) the conditional covariances of Z and U given v are all zero; 

(iii) the conditional dispersion matrix of U given v is diagonal 

for all v in the sample space (except a set of measure zero). 



WILLIAM MEREDITH 535 

Proof .  Follows directly from Theorems 6 and 7, and Corollary 8. A similar result 
holds for  strict factorial invariance. [ ]  

Consider some selection variable such that X is not  strongly (or strictly) factorial 
invariant with respect to selection on it. Then Corollary l0 establishes that (3) and (7) 
(or (8)) cannot  hold for every subpopulation generated by selection on that selection 
variable. Corollary 10 does not rule out the possibility that (3) and (7) (or (8)) hold for 
some selection function. The subsequent development  addresses subpopulation differ- 
ences in r/. 

Consider,  for example,  the following. Suppose V is discrete and finite, taking on 
values vk ,  k = 1, . . . ,  q .  Suppose further t h a t / z  k = a + ~kA' + r/k and .E', k = 
AqbkA' + ~ k  for k = I ,  . . . ,  q. Then any selection function such that s(v k) = 1 ; 0 
otherwise,  yields (3) and (7) or (8) in the selected subpopulation. And if for some subset 
of  k, ~k = constant,  more general selection functions could yield (3) and (7) or (8) for 
selected subpopulations. 

There  is a problem here. Suppose that it has been established that/~k = a + ~kA' 
+ r/k and Xk = A ~ k A '  + ~ k  for k = 1 . . . .  , q disjoint populations with the 'Ok all 
distinct. Does this imply that a factor model with x = a + z A '  + u holds in the 
population that is the union of  these disjoint populations? 

T h e o r e m  8. Suppose that for q disjoint populations/~k = a + ~k A' + r/k, ~k = 
A ~ k A '  + ~ ,  diagonal, the r/k are all distinct, Zvk~  k = 0, and Y.vkr/k = 0, where v~ 
is the relative proport ion of  members of  the kth population in the union of  these 
populations. Then a factor analytic model holds, with x = a + zA'  + u, in the union 
of populations if and only if Z Vk ~ r/k = 0 and Y vk r/~ r/k is a diagonal matrix. 

Proof .  The conditions of the theorem imply the existence of  random variables Z 
and U in each population such that x = a + zA'  + u with %kZ = ~k, % k U  = r/h, 
dispersion matrices ~k  for Z,  ~ k  for U and %k(Z  -- ~k) ' (U -- r/k) = 0. (In fact,  one 
of  the problems of  factor  analysis, factorial indeterminacy, is that " t o o  many such 
variables ex is t" ,  Guttman,  1955). It follows that in the union we may write x = a + z A '  
+ u and that %Z = Y.vk~ k = 0; similarly, %U = 0. 

It can readily be shown that qb = y vkq~ k + ~ .vk~ 'k~k%(Z'U)  = 

Y~vk%k(Z -- ~ k ) ' ( U  -- r/k) + ~ k~kr/k = Y.vk~'kr/k and % ( U ' U )  = ~..VkXttk + 
Y.vkr/kr/k Then Z and U are uncorrelated in the union if and only if Y k ~ k r / k  is null 
and since ~ k  is diagonal, k = 1 . . . . .  q,  % ( U ' U )  = a diagonal matrix if and only if 
Y. vk r/'k r/k is diagonal. [ ]  

Note  that if r/k = 0, hence /~k = a + ~k A' for all k, Theorem 8 goes through 
trivially. Given the freedom of  choice for ~k and r/k, that is, a choice of identification, 
these restrictions seem relatively weak. But consider the following theorem. 

Theorem  9. Let  A denote the q x r matrix whose k-th row is ~k, B denote  the 
q × n matrix whose k-th row is r/k, N a diagonal matrix whose kk- th  element is vk and 
let D denote  a diagonal matrix some of  whose diagonal elements may be zero. Now 
suppose rank (A) < q -< n. Then  the conditions, (i) Y.vk(kr /k  = 0 and, (ii), Zvkr/ 'kr/k  
= D hold if and only if the number  of  nonzero diagonal elements of  D is less than or 
equal to q minus the rank of  A. 

Proof .  Condition (ii) requires that B 'NB = D. If  n > q, n - q columns of  B must 
be null for  this to be true, since the rank of  B is equal at most  to q. Fur thermore ,  
condition (i) requires A 'NB = 0, which is true if and only if the non-null columns of  B 
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lie in the orthogonal compliment of the column space of A. This, in turn, implies that 
the rank of the nonnull columns is less than or equal to q minus the rank of A. Condition 
(ii) still must hold so the maximum number of nonnull columns of B is q minus the rank 
of A. []  

So the restrictions on A'NB and B'NB turn out to be more than trivial unless q > 
n + r and remark that B'NB = D is never trivial. In particular we note that only a 
relatively small number of variables can have nonzero elements in the ~?k for Theorem 
9 to hold. We also note that if rank (A) = q then we must have ~?k = 0 for all k, in order 
for the factor model represented by A to hold in the union of populations. Referring 
back to the example in the introduction, we see that the three-factor simple structure 
solution presented there cannot hold in the population that is the union of males and 
females. 

Combining disjoint populations into a parent population which is their union im- 
plies the existence of a discrete, finite, selection variable which was employed to 
generate the subpopulation. The next corollary ensues. 

Corollary 11. Suppose the conditions of Theorem 8 hold with ~?k = 0 for all k. 
Then X is strongly factorial invariant with respect to selection on the implied V. 

Proof. Follows directly from the fact that X is factorial in the population and 
Corollary 10. [] 

The following theorem is of some interest because of the light it sheds on the nature 
of possible selection variables. 

Theorem 10. I fX  is strongly factorial invariant with respect to selection on V, then 
U and V are uncorrelated. 

Proof. Strong factorial invariance implies %(Ulv) = 0 for all v, hence %(V' U) = 
~ ( v ' ~ ( u l v ) )  = o. [] 

Clearly this rules out any function of X as a candidate for a selection variable 
yielding strong or strict factorial invariance. 

Muthrn (Muthrn, 1989) has addressed some of the issues discussed in this section. 

Factorial and Measurement Invariance 

We now separate measurement errors and specific factors, retaining U to denote 
the specific or unique factor random variable. The first condition of Definition 3 is 
altered to 

(i') %(Xlz, u) = a + zA'  + u for every (z, u) in the sample space. 
Since fixing an individual fixes (z, u), %(X[z, u) is a weak true score random 

variable (Lord & Novick, 1968). It follows that measurement errors are uncorrelated 
with true scores. We will also assume that for every individual, the dispersion matrix 
of measurement errors is diagonal (e.g., experimentally independent measures). 

Denote the expected dispersion matrix of errors over individuals with same value 
of (z, u, v), where V is a selection variable, by O(z, u, v). Observe that in the 
development of weak measurement invariance the condition %(Xlw) = %(Xtw, v) 
implies that %(X[ w) is an average true score, the averaging taking place over individuals 
with the same value of v. 

It would appear that if a factor model holds for true scores in some population and 
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if ®(z, u, v) = ®(z, u) for every (z, u, v) in the sample space, X would be weakly 
measurement invariant with respect to selection on V as a consequence. The ensuing 
discussion shows that more stringent conditions are needed. 

In what follows we shall assume that V is discrete and finite and let A denote the 
dispersion matrix of the specific factors and ® the dispersion matrix of measurement 
errors in the population. Then q~ = A + 0 .  

What are the implications of fitting factor analytic models for weak measurement 
invariance? Suppose that for q subpopulations defined by v 1 , v 2 . . . . .  Vq it has been 
established that/z k = a + ~kA' + ~k and Xk = Ak~kAk + ~Fk and that there exists 
no rotation that will yield identical factor pattern matrices over the k subpopulations. 
Obviously X is not weakly measurement invariant (is structurally biased) with respect 
to selection on V. Even if A k = A, k = 1, . . . ,  q, X cannot be weakly measurement 
invariant unless the ~/k and ~k satisfy the conditions of Theorem 8, that is, that a factor 
model holds in the union of subpopulations. 

It turns out that there is still a problem. Suppose A(V) is a vector function of V and 
D(V) is a diagonal matrix function of V (A(V) bears no obvious relation to the matrix 
used in Theorem 9). Suppose %(XIz ,  u,  v) = A ( v )  + z A '  + uD(v). Clearly X is 
structurally biased in this case. Write A k for A(vk), etcetera. It follows immediately 
that/x k = A k + ~kA' + 71kDk and Xk = A~kA' + D2Ak + Ok. Letting a = ~'.vkA k, 
q~k = DEAk + Ok and substituting ~Tk for rlkD k + A k - ct we may write /~k = t~ + 
~k A + r/k and Xk = AdPkA' + qtk. Obviously conditions on the Ak vector can be 
found that satisfy the conditions of Theorem 8. Consequently structural bias is not 
inconsistent with factorial invariance of the sort exemplified by Theorem 8. Further- 
more, if ~Tk = 0 for all k we have %(XIz ,  u, v) = ~x + zA' + uD(v) andX is strongly 
factorial invariant with respect to V but also structurally biased with respect to V. In 
other words, structural bias is indistinguishable from natural group differences in 
unique variances and (minimal) differences in specific factor means. The foregoing 
discussion leads to the following Theorem. 

T h e o r e m  11. ff the true score random variable, %(X[ z, u), underlying X is strictly 
factorial invariant with respect to selection on some selection variable, V, and if ®(z, 
u, v) = ®(z, u) for every (z, u, v) in the sample space, then X is weakly measurement 
invariant with respect to selection on V. 

Proof .  Follows directly from conditions required for strict factorial invariance and 
the definition of weak measurement invariance. [] 

Note that Theorem 11 is not an if-and-only theorem. Weak measurement invari- 
ance can hold without factorial invariance. 

The conditions of Theorem 11 imply that in every selected subpopulation ix s = 
+ ~sA' and 

Xs = A~sA'  + A + Os (9) 

(which is a special form of strong factorial invariance). Practical evaluation requires 
knowledge of average measurement error variances, ®s, and could be accomplished by 
employing tau equivalent measures (Lord & Novick, 1968), or beta equivalent mea- 
sures (Meredith, 1971), or linearly equivalent (congeneric) measures (JOreskog, 1971). 

Nevertheless, successful fitting of (5) and (9) to a set of disjoint subpopulations 
does not necessarily imply that X is weakly measurement invariant with respect to 
selection on the implied selection variables. The second condition ®(z, u, v) = @(z, 
u) for all (z, u, v) in the sample space remains to be evaluated and requires either a 
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strong modeling (e.g., strong true score theory) approach or perhaps approaches along 
the lines being developed by Mazzeo and Chang (1993) and Chang and Mazzeo (1993). 

Now if measurement errors are assumed homogeneous, O(z, u, v) = ®, and i fX 
is strictly factorial invariant, it must be the case that A k = A, k = I . . . . .  q. We make 
the following assertion. I f  X is strictly factorial invariant with respect to selection on V, 
X is almost certainly weakly measurement invariant with respect to V. We make this 
assertion on the grounds that Ak + Ok = ~ ,  k = 1, . . . ,  q is an extremely unlikely 
event, not as a proven assertion. It is possible for Ok = O, for all k, even if Condition 
(ii) of weak measurement invariance does not hold; O k is an average measurement error 
in a group. 

Item Bias 

The developments in this section were stimulated by the work of Stout (1990) and 
Shealy and Stout (1993a, 1993b) and their remarks on bias. Also see Muth6n (1989) and 
Muth6n and Lehman (1985) for an approach similar to the one taken here. We now 
suppose that X is a latent variable, that for some population, we observe Y of dimension 
n, dichotomous, and assume conditions similar to those employed by Lord (1952) in his 
derivation of the normal ogive model. We state the following assumption. 

1. If the i-th component, Xi,  is greater than equal some constant ci, then Yi = 1 ; 
Yi = 0 otherwise. 

2. X is factor analytic in the population with one common factor. 
3. The conditional expectation of X given z is a + Az and the conditional disper- 

sion matrix is A, not depending on z. 
4. The conditional distribution of X given z is multivariate normal. 

These conditions result in normal ogive item response functions for the set of dichot- 
omous variables, Y. Again, consider a selection variable V. We assert the following. 
Given Conditions 1, 2, 3 and 4, the same normal ogive model holds in every subpop- 
ulation if  and only i f  X is strictly factorial invariant with respect to V. We will not prove 
this assertion, but claim it is fairly obvious. 

What is item bias and where does it come from? First, it is clear that if the selection 
variable is such that X is not strictly factorial invariant, then apparent item bias will 
occur. This wilt happen when either Bloxom's case Ia or Ib holds, when group differ- 
ences in means consistent with Theorem 8 hold, and when strong factorial invariance 
holds with natural group differences in unique variances. Thus a normal ogive model 
may characterize a parent population and items can appear to be biased. Note that 
Bloxom's Ib implies a two-factor model in subpopulations. 

A second possibility is that X actually has multiple common factors with group 
differences in common factor means and dispersion matrices. We argue that fitting a 
normal ogive model to selected subgroups would be tantamount to extracting the dom- 
inant factor with each group with different pattern elements in the different subgroups 
yielding apparent item bias. In this case a further source of apparent bias would arise 
from mean differences in the "ignored" common factors. In particular, then, we note 
that group differences in relatively unimportant factors, both unique and common, will 
give rise to evidence of item bias. 

Suppose we have q disjoint subpopulations and that a one-factor model holds for 
the latent variable X in every subpopulation w i t h / ~  = a + %kA~ + r/k and Ek = 
Akd~kA'k + Ak. Then imagine that we fit a normal ogive item response function model 
for Y in each subpopulation and, using a common metric for the one latent variable that 
results, look for differences in the item response functions. Now we clearly have 
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structural bias and would get different item response functions in different groups. Even 
if there were no differences in the factor pattern vectors, bias would be revealed as a 
consequence of additive and multiplicative structural bias of the sort introduced in the 
previous section. We remind the reader that natural differences in specific factor vari- 
ances cannot be distinguished from multiplicative structural bias and natural differences 
in specific factor means may not be distinguishable from additive structural bias. 

The ideas developed here clearly apply to models with guessing parameters and 
have obvious implications for other IRT models such as the logistic. 

Fairness and Equity 

Suppose again that X is manifest and that the first component of X, X 1 , is a 
measure of job performance, academic success or "salary."  Let the remaining com- 
ponents of X, X 2 . . .  , X n ,  be measures of qualification such as test scores, GPA's and 
educational level if X 1 is job performance or academic success; or measures of merit 
and/or qualification if X 1 is salary. We give the following definitions of fairness and 
equity. It is presumed that X2, . . .  , X n furnish the basis for choosing an applicant 
from a pool; or the basis for salary allocation. 

Def in i t ion  6. When choosing among candidates from an applicant pool the situa- 
tion is fair if every individual with same " t rue"  value of X1 (e.g., % ( X l l z ,  u))  has the 
same likelihood of being chosen regardless of the applicant's sex, ethnicity, etcetera 
(i.e., identical conditional distributions of (X2 . . . .  , X n ) .  

Def in i t ion  7. When XI is salary the situation is equitable if individuals with the 
same true merit (e.g., %(X2, • • • ,  Xn [z, u)) have the same conditional distribution of 
salary, regardless of sex, race, etcetera. 

Now, again, imagine k = I . . . . .  q disjoint populations defined by sex, race, 
etcetera, and that a factor analytic model holds in each group (subpopulation). We 
assert that if the following three conditions hold, then fairness (Definition 6), or equity 
(Definition 7), as the case may be, exists: 

(i) X is strictly factorial invariant with respect to the implied selection 
variable. 

(ii) In the first row of A only All is nonzero 
(iii) for all k, only the first element of ~k is nonzero. 

Condition (ii) can always be satisfied trivially by rotation. Condition (iii) is not trivial 
and requires no group differences in the common factors that are irrelevant to X1. 
Similarly, Condition (i) implies no group differences in specific factor means and vari- 
ances. We note that differences in the q~k, that is, strong factorial invariance, are 
problematic. A case can be made that xIt k = A + Ok is satisfactory if X is weakly 
measurement invariant. This requires esta~ishment of weak measurement invariance 
by external means and knowledge of the O k. 

Proofs of this assertion will not be provided here. For a more extensive discussion 
of these issues see Gregory (1991) and Millsap and Meredith (in press). In Gregory 
(1991) it is argued that multiple measures of job performance and/or success are vital for 
the full establishment of fairness and some weakening of the restriction to strict facto- 
rial measurement invariance is introduced. 

N o t e  tha t  s tr ic t  f a c t o r i a l  invar iance  f o r  the  q subpopu la t ions  does  no t  imply  tha t  
the  regress ion  o f  X l on X 2, . . .  , X n or  the  regress ions  o f  X 2 . . . .  , X n on X 1 are 
ident ica l  in the  var ious  subgroups .  The finding of homogeneity of regression equations 
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on the other hand is generally not consistent with strict factorial invariance, even with 
an additional assumption of homogeneity of variances about regression. So homoge- 
neity of regression equations cannot imply fairness or equity as defined herein. (See 
Birnbaum, 1985, for a discussion of this result with respect to salary equity.) 

We finally note that (LISREL) testable models occur when n = 2, that is, one 
"dependent"  variable and one measure of qualification or merit. 

Configural Invariance 

It has been argued by Horn, McArdle and Mason (1983) that configural invariance 
is an important finding when modeling disjoint populations. We take configural invari- 
ance to mean that the same simple structure exists in the subpopulations in the sense 
that zero elements are found in the same locations in Ak in the several subpopulations 
studied and that homologous non-zero elements all have the same sign across subpop- 
ulations. We develop a scenario that could lead to such a result in practice. We suppose 
two "common" latent variables. Partition X into X = {X1, X2, X3}, and U homolo- 
gously. Suppose Z1, Z2, and U are independent and ~ ( X l l z ,  u) = HI(z1)  + Ul, 
%(X2]z ,  u) = H2(z2) + u2, and %(S3lz, u) = H3(Z 1) + Ha(Z  2) + l/3, where Hj(zi)  
is a vector of ogival functions of Z i .  Further suppose these ogival functions have 
different "s lopes"  but are all "centrally located" in the sense that their inflection points 
are near the medians of Z 1 and Z 2 respectively. 

Now imagine some selection variables independent of U, and selection functions 
that produce the following subpopulations. Population 1 is recruited from the high end 
of Z z and Z 2; Population 2 is recruited from the central parts of the distributions of Z 1 
and Z2; Population 3 is "high" on Z1, and "central" on Z2 ; Population 4 is "central" 
on Z 1 and " low"  on Z2 ; etcetera. Within each of these subpopulations H i ( z i )  could be 
well approximated by a linear function aj + z i A  'k, i = 1, 2 , j  = 1, 2, 3, k = 1, 2 . . . . .  
Given the seeming robustness of factor analytic models to mild departures from lin- 
earity we might expect to find that the model Ek = A k ~ A ~  + ~k  fits reasonably well, 
so well in fact that its inadequacy could not be detected in reasonably sized samples. 
Then matrices Ak could be found with configural invariance. 

Clearly other scenarios using other kinds of functions and selection strategies 
could be developed. 

Rema~s  

It should be obvious that measurement invariance, weak measurement invariance, 
strong and strict factorial invariance are idealizations. They are, however, enormously 
useful idealizations in their application to psychological theory building and evaluation. 
Their validity and existence in the real world of psychological measurement and re- 
search can never be finally established in practice. It would be of enormous utility if a 
factor model incorporating Tryon's (1958) notion of salient dimensionality (Stout's, 
1990, essential dimensionality) and Stout's concept of essential independence could be 
developed and shown to have invariance properties analogous to those developed in 
this paper (see also McCallum & Tucker, 1991, in this regard.) Work appears to be 
progressing along these lines (Junker, 1991). 

The concept of a parent population for which measurement with X is deemed 
appropriate is slippery at best. If weak measurement invariance fails we would be 
justified in asserting that measurement with X is inappropriate. We are often unsure as 
to what the selection variables actually are and whether they meet the criteria that 
"legitimate" selection variables must meet, namely, non-degeneracy of the joint dis- 
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tribution of X and V. We also note that a given X may turn out to be, for example, 
measurement invariant with respect to selection on one particular V but not even 
weakly measurement invariant with respect to selection on some other V; or strongly 
factorial invariant for one V but not so for another, and so forth. 

Our discussion of item bias from the normal ogive model point suggests strongly 
that the most appropriate methods of evaluating bias and DIF are those developed, and 
continuing to be developed, by Stout and his coworkers (Shealy & Stout, 1993a, 1993b; 
Stout, 1990). In particular this body of work recognizes the multifactorial nature of 
"ability" and the fact that apparent item bias can be a consequence of group differences 
on what can be viewed as relatively unimportant latent variables. 

It is the purpose of this paper to provide a conceptual framework for thinking about 
problems of measurement invariance (or bias), to define concepts such as measurement 
invariance and factorial invariance, to demonstrate conditions under which invariance 
can occur and to furnish tools for addressing further issues such as fairness in employ- 
ment testing, salary equity, and cross-sectional developmental change. Parenthetically, 
we remark that most of the published work on employment and salary equity is either 
wrong (and hanaaful) or inadequate. 

Let us consider what can be done in actual factor analytic practice. It would appear 
that, setting aside the difficulties of defining a parent population, obtaining a reasonably 
large representative sample from it, and evaluating the fit of a factor model, fitting (well) 
a factor analytic model to data obtained from a parent population would establish 
factorial invariance with respect to selection on almost any legitimate selection vari- 
able. But such is not the case. 

Consider simultaneous factor model fitting to disjoint populations which, we insist, 
must involve modeling means as well as dispersion matrices. The following cases can 
arise. 

I. Different factor pattern matrices and different means and variances of 
the unique (specific plus error) factors over groups. 

II. Different means and variances of the unique factors over groups. 
III. Strong factorial invariance, i.e., different unique factor variances over 

groups. 
IV. Strict factorial invariance. 

If Case I is the result, a factor model for the union of the disjoint populations may 
still be found. This presupposes that either the supermatrix formed by adjoining the 
different factor pattern matrices has low column dimensionality or low rank (approxi- 
mately in practice) and that restrictions on the unique factors analogous to those of 
Theorem 8 hold. (Note that Bloxom's Case Ib is a special case of Case I and is 
consequently problematic, although still informative.) So fitting a factor model to the 
union of populations is not necessarily consistent with any sort of factorial invariance. 

If Case II is the result, a factor model may be found in the union with the number 
of common factors exceeding the common column dimensionality of the factor pattern 
matrices unless the conditions of Theorem 8 hold. So a factor model for the union of 
populations can contain factors that are solely the result of group differences. Consider 
the example in the introduction when the sexes are combined, yielding a four factor 
solution. 

If either Case III or Case IV is the result, then we can be assured that x = a + zA' 
+ u holds in the union of populations. But, observe that Cases III and IV require 
simultaneous model fitting and cannot be presumed on the basis of a factor analysis of 
the union. 

The results of simultaneous model fitting are clearly informative no matter which 
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case holds. Now distinguish the scientific from the practical use of simultaneous fac- 
toring. From the point of view of the scientist all four cases are meaningful and ac- 
ceptable if the results fit into a substantive theoretical framework. For Case I we would 
surely want configural invariance to hold. For Case II we would want simple structure, 
or some other form of theoretical driven structure to hold, and the mean differences of 
the unique factors to fall in some pattern consistent with psychological theory. We 
argue, however, that invariance of A should take primacy over simple structure in this 
case and in Cases III and IV as well. This means, in our view, that simply identified 
invariant models should be fit first and simple structure specifications introduced sub- 
sequently (see McArdle & Cattell, in press). It can be shown that underrepresentation 
of "primary" factors, that is, fewer than three "markers", can lead to Case II. Adding 
manifest variables can turn unique factors into common factors with Cases III or IV 
resulting. 

From the point of view of the scientist either Cases III or IV are the most desirable 
outcomes. The fact that so many of our samples are samples of convenience adds 
intuitive weight to this argument. 

We claim that for the practical user of tests and other measures, strict factorial 
invariance is essential and that outcome measures ("success," salary) should regularly 
be included in the analyses. 
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