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It is shown that measurement error in predictor variables can be modeled using i tem response theory 
(IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, axe 
treated as latent variables. The normal ogive model is used to describe the relation between the latent 
variables and dichotomous observed variables, which may be responses to tests or questionnaires. It will  
be shown that the multilevel model with measurement error in the observed predictor variables can be 
estimated in a Bayesian framework using Gibbs sampling. In this article, handling measurement error via 
the normal ogive model is compared with alternative approaches using the classical true score model. 
Examples using real data are given. 
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Introduction 

In many research areas, and especially in social sciences, studies may involve variables 
that cannot be observed directly or are observed with error. Further, many forms of human re- 
sponse behavior are inherently stochastic in nature. In the sequel, all these types of variation will 
be categorized under the heading measurement error. In this context, Lord and Novick (1968, 
chap. 2) adhere to the so-called stochastic subject view in which it is assumed that responses of 
the subjects depend on small variations in the circumstances in which the response is generated. 
Accordingly,  response variance is the variation in responses to the same question repeatedly 
administered to the same person. The use of unreliable explanatory variables leads to biased 
estimation of the regression coefficients and the resulting statistical inference can be very mis- 
leading unless careful adjustments are made (see, e.g., Carroll, Ruppert, & Stefanski, 1995; Cook 
& Campbell,  1979; Fuller, 1987). 

Models  developed to account for measurement error in regression models are commonly 
known as measurement error models. The enormous amount of literature on measurement error 
in linear regression is summarized by Fuller (1987). Generally, measurement error is handled by 
the classical additive measurement error model. An example is the classical test theory model  
used in educational measurement. Goldstein (1995) extended some of the techniques to handle 
measurement errors in the independent variables in linear models to the multilevel model. 

In the present paper, attention is focused on an alternative way of handling response error 
in the independent variables using an item response theory (IRT) model. This has several advan- 
tages. First, measurement error is defined conditionally on the value of the latent ability. That 
is, measurement error can be defined locally, for instance, as the posterior variance of the ability 
parameter given a response pattern. This local definition of measurement error results in het- 
eroscedasticity. In the Rasch model, for instance, the posterior variance of the ability parameter 
given an extreme score is greater than the posterior variance of the ability parameter given an in- 
termediate score (see, for instance, Hoijt ink & Boomsma, 1995, pp. 59, Table 4.1). Second, IRT 
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separates the influence of item difficulty and ability level, which supports the use of incomplete 
test administration designs, optimal test assembly, computer adaptive testing and test equating. 

In the presentation below, a multilevel model  will be used as the regression model. The 
combination with an IRT measurement model will be called the multilevel IRT (MLIRT) model. 
A Bayesian approach will be adopted for parameter estimation in the MLIRT model. The formu- 
lation of measurement-error problems in the framework of Bayesian analysis has recently been 
developed (Carroll et al., 1995; Richardson, 1996; Zellner, 1971). It provides a natural way of 
taking all sources of uncertainty in the estimation of the parameters into account. Computation 
of the posterior distributions involved entails high-dimensional numerical integration but this 
can be carried out straightforwardly by Gibbs sampling (Gelfand, Hills, Racine-Poon, & Smith, 
1990; Gelman, Carlin, Stern, & Rubin, 1995). Furthermore, the Bayesian formulation supports 
a straightforward approach to model identification. That is, the model is identified by fixing the 
latent ability scale, without needing prior knowledge about the variances of the measurement 
errors. 

This article consists of eight sections. The next section presents a general multilevel model  
with covariates observed subject to error. In the following section, two measurement error mod- 
els will be discussed and is followed by a section that describes a Markov Chain Monte Carlo 
(MCMC) estimation procedure for estimating the parameters of a multilevel model  with mea- 
surement error in covariates on both levels. Then, measurement error in correlated predictors 
will be discussed and is followed by a section that presents a small simulation study and some 
real-data examples. The last section contains a discussion and suggestions for further research. 

The Structural Multilevel Model  

Data often consist of observations measured at different levels. Examples of this nested 
structure include data from surveys where respondents are nested under an interviewer, test data 
obtained from students nested within schools and data with multiple observations gathered over 
time. As an example, consider school effectiveness research, focused on the effects of school- 
variables on the educational achievement of the students. Both information at the student- and the 
school-level plays a role in the evaluation of school effectiveness. This requires a statistical model  
that takes the variation and relationships within and between levels into account. Multilevel mod- 
els (Bryk & Raudenbush, 1992; de Leeuw & Kreft, 1986; Goldstein, 1995; Raudenbush, 1988, 
Snijders & Bosker, 1999) meet these requirements. 

In a commonly used hierarchical model for continuous outcomes, Level 1 regression param- 
eters are assumed multivariate normally distributed across Level 2 units. Suppose that students 
(Level 1), indexed i j  (i = 1 . . . . .  n j ,  j = 1 . . . . .  J) ,  are nested within schools (Level 2), indexed 
j ( j  = 1 . . . . .  J ) .  In its general form, Level 1 consists of J regression models, one for each 
Level 2 group. In each regression model, the observations are a function of Q manifest predictor 
variables A U , . . . ,  A Q j ,  that is, 

Yij  = flOj ~- f l l j A l i j  ~- • . .  ~- f l q j A q i j  ~- . . .  ~- f l Q j A Q i j  ~- e i j ,  (1) 

where ej is an (nj  x 1) vector of normally distributed residuals with mean vector 0 and covariance 
matrix c~2Inj. The regression parameters are treated as outcomes in a Level 2 regression model  
given by 

fiqj = gqo + gqlFlqj  + . . .  + gqsFsqj + . . .  + gqsFsqj  + uqj, (2) 

for q = 0 . . . . .  Q, where the Level 2 error terms uqj, q = 0 . . . . .  Q, have a multivariate normal 
distribution with mean vector 0 and covariance matrix T, and where gqs and Fsqj are Level 2 
regression coefficients (fixed effects) and predictor variables, respectively. Although the coeffi- 
cients of all the predictors in the Level 1 model could be treated as random, it may be desirable to 
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constrain the variation in one or more of the regression parameters to zero. This will be returned 
to in the MCMC estimation procedure. 

The explanatory variables at Level 1 comprise students' characteristics, such as, gender or 
age. Level 1 explanatory variables can also be latent, such as, socio-economic status, intelligence, 
community loyalty, social consciousness, managerial ability or willingness to adopt new prac- 
tices. Explanatory variables, such as, region, school-funding or gender are observed without an 
error. Latent variables can not be observed directly and have to be estimated, which implies error. 
Below, an example will be given of an analysis where students' mathematics abilities are pre- 
dicted by an IQ test as a Level 1 variable and an adaptive instruction test for teachers as a Level 2 
variable. Both explanatory variables are measured with an error due to the limited number of 
items in the tests and due to the response variance. 

The latent Level 1 covariates are denoted by 0 whereas the observed covariates without an 
error are denoted by A. Therefore, Level 1 of the structural model (1) is reformulated as 

Yij = flOj ~- flljOlij ~- • .. ~- flqjOqij ~- f l(q+l)jA(q+l)ij  ~- . . .  ~- f lQjAQi j  ~- eij, (3) 

where the first q predictors correspond to latent variables and the remaining Q - q predictors 
correspond to observable variables. The regression coefficients are allowed to vary across Level 2 
groups. This variation can be accounted for by treating the Level 1 regression coefficients as 
outcomes of Level 2 predictors. The explanatory variables at Level 2 consists of latent predictors 
denoted by ~ and covariates observed without an error denoted by F. The Level 2 model in (2) 
is reformulated as 

flqj = gqo + gql~lqj + . . .  + gqs~sqj + gq(s+l)F(s+l)qj + . . .  + gqsFsqj  + Uqj, (4) 

for q = 0, . . . ,  Q, where the first s predictors correspond to latent variables and the remaining 
S - s predictors to known fixed constants. The set of latent variables 0 is not observable but 
information about 0, denoted as X, is available. X is called a surrogate for 0, that is, X has no 
information about Y other than what is available in 0. This is a characteristic of nondifferential 
measurement error (Carroll et al., 1995, pp. 16-17). On Level 2, W is defined as a surrogate 
for ~. The surrogates X and W are also called manifest variables or proxies. The effects from 
disregarding measurement error can range from biased parameter estimates to situations where 
real effects are hidden and signs of the estimated coefficients are reversed relative to the case 
without measurement error (Carroll et al., 1995, pp. 21-23). 

An obvious generalization of the model given by (3) would be to assume that also the 
dependent variables Yij a r e  latent also. Latent dependent variables, however, are treated in detail 
in Fox and Glas (2001), and, for the sake of the simplicity of the presentation, they will not be 
considered here. 

Measurement Error Models 

This section focuses on two parametric response models: the classical true score model and 
the normal ogive model. 

The Classical True Score Model  

In the classical true score model (Lord & Novick, 1968), the individual's score on a par- 
ticular test form, the observed score, is considered to be a random variable with some, usually 
unknown, distribution. This distribution is generally called the propensity distribution. The ex- 
pected value of this distribution is defined as the true score. The error of measurement is the 
discrepancy between the observed scores and the true score. So if Xijk is the observed score of 
individual i j ,  and Oij is the expected value of the distribution of Xijk,  then eijk is the error of 
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measurement for the k-th response, that is, 

8ijk = X i j k  -- Oij. ( 5 )  

It follows that the expectation of the errors of measurement is zero. It is assumed that true scores 
and error scores are uncorrelated. This model coincides mathematically with the classical addi- 
tive measurement error model (Fuller, 1987, Eq. 1.1.2), where a normal distribution of the error 
variable is assumed. In practice, inferences about measurement error and true scores are made 
on the basis of the number correct s c o r e  Xij, which is the sum of the item s c o r e s  Xijk.  

It is not strictly necessary to assume that the response distribution variances are equal for 
persons. Some persons' responses may be measured more accurately than others. But error vari- 
ances for individual examinees are usually subject to large sampling fluctuations. Therefore, the 
average population variance is used as an approximation to the individual error variances (Lord 
& Novick, 1968, pp. 155). This means that the response distribution variances are assumed to be 
equal. Further on, a single normal distribution will be assumed as the propensity distribution. 

The classical true score model is often used and attractive due to its simplicity but the as- 
sumptions of the model may not always be realistic. For instance, the variance of measurement 
errors is assumed to be equal for different true score levels. Dependence is a more realistic as- 
sumption here, because the errors for students of an average proficiency level administered a test 
of average difficulty will be smaller than the errors when the same test is administered to students 
with an extremely high or low proficiency level. Another problem is that the reliability of mea- 
sures is not easily assessed. The error variance could be estimated from repeated measurements. 
Besides the practical difficulties, however, it is not realistic to assume that the repeated measures 
are independent. To overcome these problems it is assumed that the variances and covariances of 
the measurement errors are known in advance, or that suitable estimates exist (Goldstein, 1995, 
pp. 142). But the estimates of the response variance are generally imprecise. Further, in case of 
the usual maximum likelihood approach, the ratio of the error terms' variances or one or both of 
the variances ought to be known to identify the model (Fuller, 1987, pp. 9-11). 

The Normal  Ogive Model  

For dichotomous items, the item response function defines the probability of a correct re- 
sponse as a function of ability. In this section, the normal ogive model is considered as a measure- 
ment error model (see Lord, 1980, pp. 2 7 4 1 ) .  The probability of a correct response of person i j  
on item k (k = 1 . . . . .  K) is given by 

P(Xi jk  = 1 I Oij, ak, bk) = dP(akOij -- bk), (6) 

where qb denotes the standard normal cumulative distribution function, and ak and bk are the 
discrimination and difficulty parameter of item k, respectively. The model provides the frequency 
distribution of the number correct s c o r e  Xi j  of an examinee with ability level Oij. The  variance 
of this conditional distribution is 

K 

0"2 = ~ P ( X i j k  = 1 I Oij, ak, bk)[1 - P ( X i j k  = 1 I Oij, ak, bk)] Xij [Oij 
k = l  

K 

= ~ dP(akOij -- bk)dP(bk -- akOij).  (7) 
k = l  

Notice that this implies response variance given 0. That is, different values of 0 can imply differ- 
ent response variances with regard to the corresponding observed scores. The posterior distribu- 

tion of Oij given Xij, 1)(Oij I Xij), is proportional to the distribution of Xij given the ability level 
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Oij, p(xij I Oij), multiplied by the standard normal distribution. Therefore, the posterior vari- 
ance of p (Oij I Xij ), say c~ sou ixu, is closely related to response variance c~2j io u , and this implies 

heteroscedasticity, c~ s is often called local reliability. Furthermore, the measurement scale is Oij IXij 
independent of the items in the test. 

An MCMC Estimation Procedure for a Multilevel Model with Measurement Error 

In this paper, the response error in the observed predictor variables of a structural multilevel 
model is modeled by an item response theory model and a classical true score model. The struc- 
tural multilevel model combined with an IRT model will be called the multilevel item response 
theory (MLIRT) model, and the structural multilevel model combined with a classical true score 
model will be called a multilevel true score (MLTS) model. In this section, the estimation proce- 
dure for both models will be outlined. 

Bayesian analysis of parametric models requires the specification of a likelihood and prior. 
Often a noninformative prior is used. The posterior distribution, derived from the joint density of 
the data and parameters according to Bayes formula, summarizes the information about the pa- 
rameters. The expected a posteriori values of the parameters can be used as a point estimate and 
the posterior standard deviation as an estimate of its precision. In general, complex models, such 
as the proposed multilevel model with measurement error in the covariates, require sophisticated 
analytical and numerical methods to obtain estimates of the parameters of interest. However, 
Markov Chain Monte Carlo algorithms (MCMC), in particular the Gibbs sampler, have proven 
a powerful tool for estimation in complex models (Bernardo & Smith, 1994; Gelfand & Smith, 
1990; Geman & Geman, 1984; Robert & Casella, 1999). Gibbs sampling succeeds because it 
reduces the problem of dealing simultaneously with a large number of unknown parameters into 
a much simpler problem of dealing with one unknown quantity at a time, by sampling each un- 
known quantity from its posterior distribution given a sample of all other unknowns and the data. 
This sampling-based method is conceptually simple and easily implemented. The Gibbs sampler 
generates a Markov chain which converges in distribution to the joint posterior distribution of the 
parameters of interest (Tierney, 1994). That is, a Markov chain is constructed in such a way that 
its stationary distribution, also denoted limiting distribution, is the joint posterior distribution of 
all model parameters. 

First, the implementation of the Gibbs sampler is described for a multilevel model with a 
normal ogive model for the predictor variables. In this first implementation the predictor variables 
are assumed to be uncorrelated; this assumption will be dropped later. Second, this implementa- 
tion of the Gibbs sampler is adapted to the classical true score model as measurement model. 

Estimation Using Gibbs Sampling 

Evaluation of the model for the observed data is complicated by the fact that some elements 
are missing. In particular, the O's and ~'s are treated as unobserved random parameters. Let Oij 
be the first q explanatory variables on Level 1, which are latent, as in (3). The set of explanatory 
variables on Level 1 for predicting Yij is defined as  ~ij = (Oij, Aij),  where Aij consists of the 
remaining Q - q  observable covariates on Level 1. Further, let ~vj be the first s latent explanatory 
variables predicting ~qj on Level 2, as in (4). To complete the description of the covariates on 
Level 2, let qJvj = (4~vj, Fqj) be the set of explanatory variables for fiqj, where Fqj are the 
remaining S - s directly observable variables, also according to (4). 

The MCMC algorithm is implemented by introducing a continuous latent variable that un- 
derlies each binary response. This approach follows the procedure of Albert (1992), which builds 
on the Data Augmentation algorithm of Tanner and Wong (1987), and has been extensively used 
in other latent variable problems (see, e.g., Bdguin, 2000; Bdguin & Glas, 2001; Fox, 2001; Fox 
& Glas, 2001; Johnson & Albert, 1999, pp. 194-202; Robert & Casella, 1999, pp. 414-438). 
The latent variables Oqij are related to the observed responses Xqijk of person ij  on an item k. 
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An observation Xqijk is the indicator whether a continuous variable Z (x) with normal density is qijk 
positive. It follows that 

p(Zqijk I Oqij, ~k, Xqijk) O( f(Zqijk; akOqij -- bk, l)[I(Zqijk > O) 

I(Xqijk = 1) + I(Zqijk <_ O)I(Xqijk = 0 ) ] ,  

where ~k = (ak, bk), f ( . ;  akOqij -- bk, 1) stands for the normal density with mean equal to 
akOqij --bk and unit variance, and I (.) is an indicator variable taking the value one if its argument 

is true, and zero otherwise. Further, Oqi j and ~x) are the person and item parameters for person 

ij  and item k, respectively. The ensemble of augmented data Z (x) serves to simplify calculations 
and the value of Z (x) does not affect the value of the estimator, that is, Z (x) is only a useful 
device. 

Let Wsqjk be a dichotomous response variable of a Level 2 unit, indexed j ,  on an item, 
indexed k, related to the s-th Level 2 latent variable, ~sqj, for predicting fiqj. Augmented data 

are also generated for Level 2. The generation of these augmented data, denoted by Z (~) is sqjk 
7(x) 

analogous to the generation of ~qijk at Level 1. 
The Gibbs sampler entails sampling from one set of parameters conditionally on all other 

parameters in a number of steps. The procedure consists of 10 steps. 

1. Draw Z (x) conditional on 0, ~(x) and X. 
2. Draw ~(x) conditional on 0 and Z (x). 
3. Draw 0 conditional on Z (x), ~(x),/3, o-2, S2, and Y. 
4. Draw/3 conditional on S2, vp, o-2, y, T and y. 
5. Draw g conditional on/3, vp and T. 
6. Draw o-2 conditional on/3, S2 and y. 
7. Draw T conditional on/3, vp and g. 
8. Draw Z (~) conditional on ~, ~(~) and W. 
9. Draw ~(~) conditional on ~ and Z (~). 

10. Draw ~ conditional on Z (~), ~(~),/3, vp and g. 

Step 1 and 2. Sampling of the augmented data Z (x) and the item parameters ~(x) is described 
in detail by Albert (1992) and Fox and Glas (2001). 

Step 3. The variables, Olij, . . . ,  Oqij, can be sampled individually because they are uncorre- 

lated. They are independent given Z({! ~(x), 13j and o-2, and distributed as a mixture of normal --qtj' 
- ~  z ( X )  distributions. That is, the augmented aata qij and the observed data Yij are normally distributed 

with, among others, an a priori normally distributed parameter Oqij. The two-parameter normal 
ogive model is identified by fixing the origin and scale of the latent dimension. Therefore, the 
mean and variance of the ability distribution are fixed to zero and one, respectively. According 
to (3), the definition of the augmented data and the prior for Oqij, it follows that 

~ ( - q )  . ~ ( x )  p(Oqij I zqij,-(x) ~(x), i] j '  o'2, hdij , Yij) O( p(Zqi j I Oqij, ~(X))P(Yij I Oqij, I]j, o "2, ~lTq))p(Oqij) 

(8) 

where S2}j q) c- is the set of all manifest and latent predictor variables for person ij  on Level 1, 
~ J  

without the latent predictor Oqij. Partition the set of regression coefficients on Level 1, 13j, into 
/ X 

fiqj and tl! -q) to distinguish the regression coefficient of explanatory variable Oqij from the r - j  

regression coefficients of the other explanatory variables ~ !7  q) Formula (8) is the product of - - t ]  " 
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a normal model for the regression of Z (x) ctij k -]- bk on  ak with Octi j as  a regression coefficient, a 

normal model for the regression of Yij (-q) (-q) -- I'~j ~ij  on flctj with Octi j as a regression coefficient 
and a standard normal prior for Oqij. Due to standard properties of normal distributions (e.g., see, 
Box & Tiao, 1973; Lindley & Smith, 1972) the fully conditional posterior density Of Oqij is also 
normally distributed, 

where 

and 

A 

( 1 Octij I z ( x !  ~(x) ,  ~ j ,  o_2, ( - q )  Yi j  ~ N ~ -  + ~ 1 
' 1 1 1 ' 1  1 ' tit j ~'~ij ' ~ + ~ + ~ + ~ + 1 

A 2 a k ( Z q i j k  -[- bk ) ,  Octi j = a k 

k = l  k = l  

1 (_(1) (_(1) 
= - ). 

a 2 and ~b 2 2 
~) : k : flctj (~ " 

Further, 

(9) 

The posterior expectation in formula (9) is the well-known composite or shrinkage estimator. The 
estimate of Oqij is a combination of two estimates, Oqij and Oqij, with the weights proportional 
to their respective precisions. Further information about the shrinkage estimator can be found in 
Gruber (1998). 

Steps 4 through Z The modification of the multilevel model to handle measurement error in 
the covariates causes minimal change in the complete conditional distributions of the parameters 
of the multilevel model, (/3, 3,, c~ 2, T). The full conditionals of the multilevel model parameters, 
required in the estimation procedure, can be found in Fox and Glas (2001) and Seltzer (1993) 
and Seltzer, Wong, and Bryk (1996). 

Steps 8 through 9. Measurement error in the predictor variables on Level 2 is treated com- 
pletely analogous the measurement error on Level 1. As a consequence, Step 8 and Step 9 are 
completely analogous to Step 1 and Step 2. 

Step 10. Partition the set of the regression coefficients "Zq into Vqs and ,Z(-s). The coefficient 

Vqs is related to the predictor ~sqj and the coefficients ,Z(-s) are related to the covariates ~ (7  s) qj , 

respectively, where ~ (7  s) is the set of explanatory variables for fiqj on Level 2 without ~sqj. qa 
The latent predictor variables ~lqj, • • •, ~sqj can be sampled individually, because they are inde- 

pendent. The parameters ~sqj given augmented data Z (~) and parameters {f(~), fiqj, ~(-s )  and sqj qj 
yq are independent and distributed as a mixture of normal distributions. That is, augmented data, 

Z (~) and regression coefficient, flctj , a r e  normally distributed with, among others, parameter ~sct j sq j '  
which is a priori normally distributed. Analogous to Step 3, for identification of the model the 
prior for ~sqj is a standard normal distribution and the fully conditional posterior density of ~sqj 
is given by 
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A 

(sqj ] Z  (~? ~(~), • (7s) T -  - > 1 (10) 
sq2' fiqJ' q2 ,'yq ~ N 7 +T- 1' 7q_~7q_11 

(~) 
w h e r e  ~.qj is the least squares estimator following from the regression o~ Zsqjk -]- b i on a~ and 

K the variance of g~qj, as in Step 3. The item parameters ~.(~)k = (a~, b~) are sampled in Step 9. 

Finally, "~sqj w i t h  variance 1/~ = 2 2 rFlq/?'ds is the least squares estimator for (sqj following from the 

regression offiqj g(-s) (-s) -- q2qj on gqs. 
This implementation of the Gibbs sampler is easily changed into a procedure for estimating 

the parameters of the structural (multilevel) model with the classical true score model  as mea- 
surement error model. It is assumed that the variance structure, ~o, is known and given by formula 
(5). This is also necessary for identification of the model. The surrogates X and W are provided 
by observed sum s c o r e s  Xij on Level 1 and observed sum scores, Wj, on Level 2. Thus, in 
this case the classical true score model replaces the normal ogive model  as a measurement error 
model on Level 1 and Level 2, and the MLIRT model is transformed into the MLTS model. In 
this case, augmented data and item parameters do not have to be sampled. Therefore, Steps 1, 2, 
8 and 9 can be left out. Step 3 and Step 10 change into the following two steps. 

Step 3 I. Let Xqij  denote the observed score of a person, indexed i j ,  in relation to  Oqij, the 
q-th latent covariate on Level 1 in predicting Yij. Again, the latent predictors on Level 1 can be 
sampled separately because they are independent. Further, Xqi j is a random variable taking on 
values from independent repeated measurements, which is normally distributed with m e a n  Oqi j 
and variance ~o. The complete conditional of Oqij follows from the regression of Xqij  on Oqi j and 

the regression of Yij on ~}7 q ) ,~  Formula (3). The prior information for Oqi j is incorporated into 
the measurement error model, where the distribution and variance structure of the true score is 
determined. It follows that the fully conditional posterior density of 8qij is given by 

,Q!-q) Yij ~ N 7 -  ~ (11) Oqij I --U ' ~ j '  o-2, q)' Xqi j ,  1 ' 1 ' 
~ +  ~ +  

with O//j and ¢ as in (9). 
The classical true score model  can also be used for modeling the measurement error in 

the predictor variables on Level 2. Let ~sqj be the expected value of the observed score Wsqj, 
where the expectation is taken with respect to the normal distribution, the assumed response 
distribution. Further, define K as the variance, a priori known, over parallel observations of Wsqj. 
It follows that gsqj can be sampled in the same way as in Step 3 I. That is, Step 101 boils down to 

• (7 s) and ~q. drawing ~sqj conditional on Wsqj,  ic, flqj, qJ 
In (3) it is assumed that every regression coefficient varies across Level 2 groups. In certain 

applications, it can be desirable to constrain the effect of one or more of the Level 1 predictors 
to be identical across Level 2 units. An implementation of the Gibbs sampler where regression 
coefficients are treated as nonvarying across Level 2 groups needs a further division of regression 
components.  This calls for a division in regression coefficients related to observed predictors and 
latent predictors, with a further subdivision of both parts into components treated as random 
and components treated as nonrandom across Level 2 groups. Finally, the complete conditional 
distribution of each subset, given the other parameters and the data, must be specified (see, e.g., 
Seltzer et al., 1996). 

The presented 10 steps define the Gibbs sampler for estimation of the parameters of the 
multilevel model with measurement error in the predictor variables, where the normal ogive 
model or the classical true score model  is used as measurement error model. With initial values 
for the parameters, the Gibbs sampler repeatedly samples from the full conditional distributions 
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with systematic scan, that is, the sampler updates the components in the natural ordering. A 
different strategy of updating the components can affect the speed of convergence (Roberts & 
Sahu, 1997). The values of the initial parameters are important for the rate of convergence. Initial 
estimates can be obtained by estimating the normal ogive model using Bilog-MG (Zimowski, 
Muraki, Mislevy, & Bock, 1996), initial parameters of the multilevel model can be estimated 
with HLM for Windows (Raudenbush, Bryk, Cheong, & Congdon, 2000) with the parameter 
estimates of the normal ogive model imputed as constants. 

Convergence can be evaluated by comparing the between and within variance of generated 
multiple Markov chains from different starting points (see, e.g., Robert & Casella, 1999, p. 366). 
Another method is to generate a single Markov chain and to evaluate convergence by dividing the 
chain into subchains and comparing the between- and within-subchain variance. A single run is 
less wasteful in the number of iterations needed. A unique chain and a slow rate of convergence is 
more likely to get closer to the stationary distribution than several shorter chains. In the examples 
given below, the full Gibbs sample instead of a set of subsamples from this sample was used 
to estimate the parameters. The latter procedure leads to losses in efficiency (MacEachern & 
Berliner, 1994). Further, the CODA software (Best, Cowles, & Vines, 1995) was used to analyze 
the output from the Gibbs sampler and the convergence of the Markov chains. Finally, after the 
Gibbs sampler had reached convergence and "enough" samples were drawn, posterior means of 
all parameters of interest were estimated with the mixture estimator, to reduce the sampling error 
attributable to the Gibbs sampler (Liu, Wong, & Kong, 1994). The posterior standard deviations 
and highest posterior density intervals can be estimated from the sampled values obtained from 
the Gibbs sampler (Chen& Shao, 1999). 

Measurement Error in Correlated Predictor Variables 

A multivariate IRT model can be used as measurement error model if it is not realistic 
to assume that the predictor variables are independent. Assume that the latent variables Oqij 
are related to observable variables Xqij, ( q  = 1 . . . . .  O) via a normal ogive IRT measurement 
model. Let Xqi j = ( Xqi  j 1 . . . . .  Xqi j  Kq )t, with realization (Xqij 1 . . . . .  Xqij Kq )t, denote a response 
vector on a test with Kq items. Before the actual parameters 0 will be identified, consider a 
parametrization 0 ' .  Let 0~ be the vector of latent predictor variables, that is, 0~ has elements 

O*.. Further, suppose that for every predictor a two-parameter normal ogive model holds, that is, qtj " 

P ( X q i j k  = 1 I Oqij, aqk, bqk ) = dP(aqkOqij -- bqk ), 

where a qk n * a d bqk are item parameters of an item of predictor q. Because the predictor variables 

Octij are dependent, it will be assumed that 0~ has a multivariate normal distribution with mean 
zero and covariance matrix N*. However, the parametrization 0* can be transformed such that 0 
has a multivariate normal distribution with mean zero and covariance matrix I, that is, the vari- 
ables Octi j become independent. Under this transformation, the normal ogive model transforms 
to 

P ( X q i j k  1 I Oij, aqk, bqk) t = = d p  (aqk Oij -- bqk),  

where aqk is a vector of discrimination-parameters or factor loadings (see, e.g., McDonald, 1967, 
1982, 1997; Bdguin & Glas, 2001). Notice that every item response now depends on all latent 
dimensions. This gives rise to the following procedure. 

Analogous with the above procedure, see Step 1 through Step 3 above, a random vector 
Zi j  : (Z l i j  1 . . . . .  Z o i j K o ) t  is introduced, where Zqijk  ~ N (aqk Oij -- bqk, 1), and it is supposed 
that Xqijk = 1 when Zqijk > 0 and Xqijk = 0 otherwise. After deriving the fully conditional 
distributions, the Gibbs sampler can again be used to estimate the posterior distributions of all 
parameters. 
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Step 1: Sampling Z. Given the parameters Oij a n d  {fuk, the variables Zctij k a re  independent 
and 

t Zctijk I Oij, ~qk, Xctijk ~ N(aqkOij -- bqk, 1), 

truncated at the left by 0 if  Xctijk = 1 and truncated at the right by 0 if Xctijk = 0. 

(12) 

Step 2: Sampling Oij. Let Oij be the vector with Q predictor variables for a person indexed 
ij. These are the regression coefficients in the normal linear model 

where 

Zij ~- b = AOij ~- F4j, 

b = ( b l l  . . . . .  blK 1, b21 . . . . .  bQKQ) t, Oij = (Olij . . . . .  OQij) t 

t for items k = 1, . . .  Kq and predictors and A is a ( ~ q  Kq × Q) matrix with row vectors aqk, 
q = 1, . . . ,  Q. Furthermore, the vector F4j has elements 8clijk , which are independent and 
standard normally distributed. It is assumed that all Level 1 predictors are unobserved and their 
regression coefficients are treated as varying across Level 2 groups. For identification of the 
model, Oij has a multivariate standard normal prior, and it follows that 

p(Oij I zij, Yij, ~qk, ~j ,  0"2) (3( p(zij I Oij, ~qk)P(Yij I Oij, ~j ,  a2)f(Oij; O, I Q ) .  

As in the unidimensional case, the mixture of multivariate normal distributions results in a mul- 
tivariate normal distribution with a shrinkage estimator as expectation, 

\ xlt{Y-lOij ~-~_l~_lQ~-l'oiJ ( y - 1  ~_ ~ - I ~ _ I Q ) - I )  , (13) oij I z i j ,  r j, t j, o , 

where 

Oij = (AtA)- lAt(z i j  + b) and 0ij = ( /3t_j/3-j)- l /3t_j(Yij  - ~ o j ) ,  

w i t h  ~ _ j  = (fllj . . . . .  flQj) and the corresponding variances are 

Y = (AtA) -1 and • = a2([3t_j[3_j)-l. 

Step 3: Sampling ~zk. Let ~zk = (aqk, bqk) t, k = 1 . . . . .  Kq and q = 1 . . . . .  Q, which 
represent the i tem-parameters of i tem k of a test relating to predictor q. Further, define 0 = 
(01 . . . . .  Oo) with 0q = (0qu . . . . .  Oqnsj) t. Given O, the Zqk = (Zquk . . . . .  Zqnsjk) t satisfy 
the linear model 

Zqk = [0 --1]~zk + eqk (14) 

where eqk = (eqllk, . . . ,  eqnsJk) t are standard normally distributed. Combining the prior for 

P(~zk) = ~IqQ1 I(aqk > 0) with (14) gives 

Q 

~,k I O, Zqk ~ N(~,k, (HtH) -1)  E I(aqk > 0), 
q=0 

where H = [0 - 1 ]  and ~uk is the least squares estimator based on (14). 
Again, this procedure could be extended to handle observed and nonobserved explanatory 

variables with regression coefficients varying or fixed across Level 2 units. Notice that the steps 
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for sampling the other parameters of the structural model, described in the previous section, 
remain the same. Modeling measurement error in correlated predictor variables with the classical 
true score model needs a lot of prior information. The average population variance regarding all 
tests has to be known a priori, that is, the covariance matrix of the (2 explanatory variables of 
person i j  has to be known in advance. The covariance matrix of the correlated latent predictor 
variables also identifies the model  when the classical true score model is used as measurement 
error model. Then the conditional distribution of Oij becomes 

{y-lxijy-1 ++ *-l"oiJ,-1 ) Oij [ Xij, Yij, ]~j, o'2, Y ~ N \ , ( y - i  + (i)-1)-1 , 

where xij = (Xlij, • .., XQij) and Xqij is the sum score of person i j  on a test related to predictor 
q. Further, Y is the a priori known covariance matrix of the sum scores of person i j .  In most 
cases, the covariance matrix is population dependent and fixed over respondents to get a reliable 
estimate. 

A Simulation Study 

A simulated example was analyzed to illustrate parameter recovery. This example is in- 
tentionally constructed to show the advantages of the MLIRT model over the MLTS model. In 
the section following this one, a real data set will be analyzed to get an indication whether the 
theoretical advantages of MLIRT also pay off in practice. 

Data were simulated using a multilevel model  with two latent predictors. The model is given 
by 

Yij = floj + fllOlij + eij (15) 

fioj = Voo + '/olgloj + uoj 

fll = YlO 

where eij ~ N(O, o-2) and uoj ~ N(O, r2). Furthermore, it was assumed that the observed 
variables X and W were related to the latent predictors 0 and ~ through a normal ogive model. 
Response patterns X and W were generated for a test of 50 items and a test of 100 items, re- 
spectively. For the test related to 0, 5,000 response patterns, divided over J = 500 groups of 
10 students each, were generated. The generating values of the discrimination parameters were 
sampled from a log-normal distribution with a standard deviation of .6, for reasons that will be 
returned to below, the difficulty parameters were all set equal to one. For the test related to ~, 
500 response patterns were generated with discrimination parameters sampled from a log-normal 
distribution with a standard deviation of .6 and, for reasons that will be explained below, the dif- 
ficulty parameters were set equal to - . 5 .  The true values of y,  o-2 and T, are shown under the 
label Generated in Table 1. 

The two normal ogive models were estimated with Bilog-MG. Next, the initial parameter 
estimates for the multilevel model  were computed with HLM. In case of the MLTS, initial values 
of the multilevel parameters were obtained by HLM using the observed scores as explanatory 
variables. Subsequently, the MCMC procedure was run with 50,000 iterations. 

Convergence of the Gibbs sampler was checked by examining the plots of sampled param- 
eter values. In Figure 1, the MCMC iterates of model parameters Voo and VlO, and a fit statistic, 
E[L  2] which will be explained in detail below, are plotted. The left three figures correspond to 
the MLIRT model and the right three figures correspond to the MLTS. Visual inspection indi- 
cates that the chains converged quite fast to the stationary distribution. With the CODA software 
(Best et al., 1995) a variety of diagnostic tools, with default values, were used to check the con- 
vergence. Geweke 's  convergence diagnostic was computed for the several chains and p-values, 
given in Figure 1, showed there was no evidence that the chains had not converged. Further, using 
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TABLE 1. 
Parameter estimates of the multilevel model with measurement error in the covariates 

MLTS model 
Fixed Generated MLIRT model ~o 1 = .1, ~o 2 = .03 

Effects Coefficient Coefficient s.d. HPD Coefficient s.d. HPD 

Voo 0 - .002 0.006 [-.013, .009] - .246 .143 [-0.525, 0.036] 
VOl 5 4.999 0.007 [4.984,5.013] 4.594 .093 [4.409,4.774] 
VlO 5 5.005 0.004 [4.997, 5.012] 4.370 .038 [4.294, 4.444] 

Random Variance Variance Variance 
Effects Components Components s.d. HPD Components s.d. HPD 

o- .1 .090 .041 [.015, .156] 2.453 .032 [2.390, 2.516] 
r .1 .068 .049 [.002, .158] 2.824 .110 [2.614, 3.044] 

E [ L  2] s.d. E [ L  2] s.d. 

.052 .003 40.612 1.052 

Heidelberger and Welch's  procedure, it could be concluded that after discarding the initial 5,000 
iterations, the remaining iterates formed a stationary sequence. The last 40,000 iterations were 
used as estimates. The lag 1 auto-correlations within the chains of fixed effects of the MLIRT 
model were around .35, which is large. Therefore, a long run was needed to obtain stable esti- 
mates of the posterior means and standard deviations. Gilks and Roberts (1996) discussed several 
strategies to improve the mixing of the chain to reduce the run time of the markov chain. The 
MCMC iterates of the fit statistic of the MLIRT model did not converge very well to the station- 
ary distribution, Geweke 's  p-value equalled .06, and it was recomputed with the Gibbs sampler 
with estimated values of the latent variables 0 and ~. This resulted in a more stable estimate of 
the fit statistic. Additionally,  multiple chains were run from different starting points to verify that 
they resulted in similar answers. Altogether, it could be concluded that the estimates were quite 
stable. 

The following procedure was used to make the parameter estimates of the MLIRT and the 
MLTS model comparable.  The location of the unobserved predictors was fixed by transforming 
each sample produced in the Gibbs sampling process. That is, sampled values of 0 and ~ were 
transformed in each iteration in such a way that their posterior mean and variance equaled the 
posterior mean and variance of the generated latent variables 0 and ~. In general, grand mean or 
group-mean centering of an unobserved explanatory variable can be obtained by subtracting the 
grand mean or group-means from each sample drawn in each step of the Gibbs sampler. In the 
same way, the latent variables in the MLTS were scaled in each iteration to the true scale of the 
generated latent variables. Furthermore, this way both models were identified. The MLIRT model 
could also be identified by restricting the sum of the difficulty parameters and the product of the 
discrimination parameters. The MLTS was identified through the specification of the average 
population variances. The average population variances, related to X and W,  and denoted by ~ol 
and ~o2, w e r e .  1 and .03, respectively. The estimates of the average population variances were 
obtained by averaging the unbiased estimates for the error variances of individual examinees, 
with all examinees corresponding to the same population (Lord & Novick, 1968, pp. 155). 

In Figure 2, the estimates of the item parameters of the Level 1 test, are plotted against 
the true simulating values. The y-axis of the upper panel gives the difference between the true 
and estimated value of the discrimination parameters. It can be seen that these values were very 
close. In the lower panel of Figure 2, it can be seen that also here the true and estimated values 
were very close. Highest posterior density (HPD) intervals shown in Figure 2 were calculated as 
95%-confidence regions for the parameters. The true values and estimates of the item parameters 
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FIGURE 1. 
MCMC iterations of the model parameters and fit statistic corresponding to the MLIRT and the MLTS model. The 
p-values correspond to Geweke 's  MCMC convergence statistic. 

for the Level 2 test were also quite close but their HPD regions were larger due to the relatively 
small number of groups. 

Table 1 presents the results of estimating the parameters of the multilevel model. The es- 
timates of the fixed and random effects using the normal ogive model are given under the label 
MLIRT Model.  It can be seen that all parameters were very well re-estimated, that is, the es- 
timates were close to the true values and the corresponding posterior standard deviations were 
small. The estimates of the fixed and random effects using the classical true score model are 
given under the label MLTS Model.  The parameter estimates of the fixed effects and the vari- 
ance components differed much more from the true parameter values. The estimates of the fixed 
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FIGURE 2. 
The top figure presents the estimates of the discrimination parameters displayed against the differences between the true 
and estimated values and the bottom figure presents the estimates of the difficulty parameters displayed against the true 
simulated values regarding the measurement model at Level 1. 

effects were too low and the estimates of the variance components were too high. Obviously, 
the parameter estimates were attenuated due to measurement error in the observed sum scores. 
It must be noted that the parameter estimates deviated even more from the true values when sum 
scores were used as estimates of the latent variables. 

The models were compared using posterior predictive data, yrep, xrep, and g~cep (Carlin 
& Louis, 1996; Gelman et al., 1995; Gelman, Meng, & Stern, 1996). Let yrep denote repli- 
cate observations, given the underlying model parameters. Analogously,  let X rep and g~cep de- 
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note replicated observations, given X and W, respectively, and given the underlying model 
parameters. 

r e p  
Define L l j  as the distance from Yj to Yj given model M and data (X j, W j), so 

E[L2j i M, yj] f f f  i~lj (Yij rep~2 r e p  = yij j I o2) 
/) (0i j ,  O- 2 Xij, y)  rep 2 dYij dOijdo-. (16) 

Aggregating over Level 2 units results in 

E[L~ I M, y] = E [ ( y -  yrep)2 I M, y] 

= I-I f f E[L~j l M, yj]p([Ij l 4~j, yj)p(4~j l wj, yj)d[Ijd4~j, (17) 
J 

• ~ r e p  
wnere P~.Yij ] Oij, ~j, o -2) is the probability of replicated data given the parameters, p(Oij, o-2 ] 
Xij, y) and p (~j I w j, y j)  are the joint posterior densities of the unobserved explanatory variables 
and variance at Level 1 and the posterior density of the unobserved explanatory variables at 
Level 2, respectively. In the same way, define L2 as the distance from X rep to X given model M 
and data (Y j, W j). This results in 

E[L~ I M, x] = E[(x. - x.rep) 2 I M, x], (18) 

where x. and x. rep denote the observed sum scores and the replicated sum scores, respectively. 
Analogously, let L3 be the distance from W rep to W given model M and data (Y j ,  X j) ,  which 
leads to the statistic 

E[L~ I M, w] = E [ ( w . -  w.rep) 2 I M, w], (19) 

where w. denotes the observed sum scores and w. rep denotes the replicated sum scores. Each 
statistic summarizes information about the predictive data given the observed data. Further, 
each statistic is the sum of the variance of the replicated data plus the square of the bias of 
the replicated data with respect to the observed data. Together these three predictive criteria re- 
flect the quality of prediction of a replicate of the observed data. If  the model fits, E [L~ I M, y], 

E[L~ I M, x], and E[L~ I M, w] should be small. The sum of the three statistics summarizes the 
information concerning the general fit of the model. This sum will be denoted as 

E[ L2 I M, y, x, w]. (20) 

The MLTS and the MLIRT model will be compared to each other using this measure, that is 
(20), and one data set. In a more general analysis, this measure could be extended as a weighted 
sum of the three predictive criteria to take into account the variance of each posterior predictive 
measure. 

In Table 1, for both models the values of E[L 2 I M, y, x, w] per Level 1 unit and corre- 
sponding posterior standard deviations are given. The much smaller value for the MLIRT model 
indicated that this model predicted the observed data better than the MLTS. 

Figure 3 presents the true distribution of 0 and generated posterior distributions under the 
MLTS and the MLIRT model. Both figures show that the recovery under the MLIRT model was 
by far superior to the recovery under the MLTS model. Further, the estimates of the posterior 
distributions using the MLTS showed two modes in the posterior distributions. The two peaks 
resulted from the fact that a skewed distribution of the true latent variable 0 was combined 
with relatively difficult items which all had their difficulty parameter equal to one. The posterior 
distribution of ~ was also skewed and combined with a set of relatively easy items, that is, the 
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FIGURE 3. 
The estimated posterior densities of the latent variables at Level 1 and Level 2 using the classical true score model and 
the IRT model. 

difficulty parameters were set equal to - . 5 .  In contrast to the top figure, the MLTS estimate of 
showed a high mode at the high abilities and a lower mode at the lower abilities. The MLTS 

model is based on normality of the observed scores and cannot capture the effects of skewness of 
the score distribution. The item response model handled these effects well  and re-estimated the 
posterior distribution very good. Further, the MLTS estimates of the variance in the explanatory 
variables 0 and ~ was also suppressed by the "floor" and "ceiling" effect in the observed sum 
scores. As a result, the MLIRT model  predicted all observed data much better, and this resulted 
in a much better model fit. 

An Illustrative Example of Measurement Error in Hierarchical Models 

The MLIRT and the MLTS models were used in an analysis of a mathematics test, adminis- 
tered to 3713 pupils of grade 4 in 198 regular primary schools (Bosker, Blatchford, & Meijnen, 
1999). Among other things, interest was focused on the relation between achievement in math- 
ematics, educational provisions at the school level and adaptive instruction by teachers. A test 
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measuring the willingness and capabili ty to introduce adaptive instruction was taken by teachers. 
This test consisted of 23 dichotomously scored items and will be denoted as AI. 

By posing the following Level 1 model, the nested structure of the data was taken into 
account. For each school j ( j  = 1 . . . . .  J ) ,  

Yij = flOj q- f l l j l Q i j  q- eij,  (21)  

w h e r e  Yij was the score of the mathematics test and I Qij was an unobserved predictor repre- 
senting the intelligence of a student ij. IQ was measured by an intelligence test of 37 items. The 
response patterns of 3713 pupils were available. 

First, it was assumed that the intercept varied randomly from school to school. Furthermore, 
the adaptive instruction was entered as a manifest Level 2 variable that was supposed to have an 
influence on the diversity of mathematics scores. Therefore, the variability in/~oj was modeled 
as 

~oj = goo + golAIj + uoj (22) 

~lj = '/lo, 

where uoj were assumed normally distributed with variance r 2. 
Four models were used to analyze the data. These were a MLIRT model and a MLTS with 

observed scores for the latent variable AI, denoted as M1 and Mcl, respectively, and a MLIRT 
model and a MLTS modeling the latent variables IQ and AI, denoted as M2 and Mc2, respec- 
tively. Again, convergence of the Gibbs sampler was checked by examining the plots of sampled 
parameter values with the CODA program. For all four models, the MCMC iterates of the vari- 
ance parameter at Level 1 and the fit statistic are plotted in Figure 4. The MCMC iterates showed 
no convergence problems. Geweke 's  convergence diagnostic showed no evidence that the chains 
had not converged. In case of model  M1 and Mcl, Heidelberger and Welch's  and Raftery and 
Lewis '  convergence diagnostics used with default values showed that after 100 iterations the 
remaining iterates formed a stationary sequence, and 10,000 iterations were sufficient to obtain 
stable estimates of the model parameters. Both procedures showed that the iterates from model 
M2 and Mc2 converged after 500 iterations and 20,000 iterations were more than sufficient to 
estimate the parameters. The lag 1 auto-correlation within the different chains was around zero, 
which indicates high mixing and fast converge. 

Table 2 presents the parameter estimates for the models where a measurement error model  
was applied to the unobserved explanatory variable representing the IQ values of the exami- 
nees. The estimated average population variance q) was .39, and all examinees belonged to the 
same population. For the moment, the mean observed score from the AI  test neglecting its error 
component was used. The main result of the analysis was that, conditionally on IQ, adaptive 
instruction seemed to have a small positive effect on mathematics achievements of students, but 
this effect did not differ significantly from zero. Furthermore, individuals with high IQ values 
scored high on the mathematics test. The use of a multilevel model was justified, because a sub- 
stantial proportion of the variation in the outcome at the student level was between schools. This 
is the variance of the achievements of students in school j controlling for IQ, around the grand 
mean, '/oo, which did not differ significantly from zero. 

There were only small differences between the parameter estimates from the MLIRT and 
the MLTS with q) = .39. The parameter estimates in Table 2 are comparable because the IQ 
predictors in both models were scaled to the standard normal distribution, in the same way as in 
the simulation study presented above. The variance at Level 1 was slightly smaller for the MLTS. 
The differences in handling response error in the explanatory variable at Level 1 were evaluated 
using the posterior predictive data. On the bottom line of Table 2, the E[L 2] and corresponding 
standard deviations are given for both models. Model  M1 performed slightly better than model  
Mcl. Both models resulted in a better model fit in terms of minimization of E [L~] in comparison 
to the standard hierarchical model treating the AI  and IQ variables as observed. 
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FIGURE 4. 
MCMC iterations of a variance parameter and the fit statistic corresponding to four different models. The p-values 
correspond to Geweke's MCMC convergence statistic. 

Next, a measurement error model was introduced for Level 2. The response variance of 
the AI test was modeled using (22). Table 3 presents the parameter estimates of the MLIRT 
and MLTS models with response error in IQ and AI. In the model labeled M2 both unobserved 
predictors are measured with a normal •give model. In the model labeled Mc2 the classical true 
score model is used as a measurement model for both predictors with q)l = .39 and 9)2 = .43 
as the estimated response variance for the IQ and AI test, respectively. The results showed that 
adaptive instruction still had no significant effect on the mathematics achievements of students. 
Further, students with high IQ scores still performed better than students with lower scores. The 
proportion of variance in mathematics scores accounted for by group-membership, controlling 
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TABLE 2. 
Parameter estimates of  the multi level model  with the normal ogive and the classical true score model  as measurement  
error models  

MLIRT model MLTS model 

Fixed M1 Mcl' ~ = .39 

Effects Coefficient s.d. HPD Coefficient s.d. HPD 

goo - .018  .075 [- .164, .126] - . 017  .074 [- .162, .126] 
go1 .059 .075 [- .089, .207] .052 .075 [- .095, .198] 
glO .397 .017 [.364,.430] .487 .017 [.453,.521] 

Random Variance Variance 
Effects Components s.d. HPD Components s.d. HPD 

.845 .028 [.825,.865] .801 .028 [.780,.824] 
v .349 .011 [.296,.403] .338 .011 [.287,.394] 

E[L 2] s.d. E[L 2] s.d. 

1.873 .035 1.998 .037 

for IQ scores, was .148 using model M2 and .146 using model Mc2. This emphasized the small 
differences between the parameter estimates of both models.  

Model M2 and Mc2 entailed response error in all predictors. In comparison to model  M1 
and Mcl, the E [L~] was reduced, but the E [L 2] increased due to the extra error term E [L~]. The 
variability in the predictors induced larger variances of the parameter estimates and decreased 
the distance between the replicated data and the observed data. Correcting for bias resulted in 
more variable estimates but also in a better prediction of the data. The lowest value of E[L 2] 
was obtained with model M2. This means that the predicted data corresponded to the observed 
data best with model M2. In case of model Mc2, the estimated variance at Level 1 was lower 
and the estimates of the fixed effects were somewhat inflated, which resulted in a slightly better 
prediction of the dependent variable. But the inferior predictions of the observed sum scores 
related to the IQ and AI test resulted in a higher value of the statistic E[L2].  In general, model  
M2 fitted the data best. 

TABLE 3. 
Parameter estimates of  the multi level model  with the normal ogive and the classical true score model  as measurement  
error models  on Level  1 and Level  2 

MLIRT model MLTS model 

Fixed M2 ~o 1 = .39, ~o 2 = .43, Mc2 

Effects Coefficient s.d. HPD Coefficient s.d. HPD 

Voo - .017  .087 [- .188,  .153] - . 018  .086 [- .191,  .147] 
go1 .055 .089 [- .120,  .231] .094 .097 [- .100,  .279] 
VlO .410 .019 [.373, .448] .447 .021 [.404, .485] 

Random Variance Variance 
Effects Components s.d. HPD Components s.d. HPD 

.854 .013 [.830,.879] .837 .013 [.811,.862] 
v .357 .034 [.292,.422] .345 .035 [.283,.418] 

E[L 2] s.d. E[L 2] s.d. 

2.453 .087 2.735 .098 
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FIGURE 5. 
The E l L  2] and E[L2]••rdi•erentva••es••t•eaveragep•p••ati•nvaxian•et•m••e•t•e•atentpre•i•t•rvariab•es 
on Level 1 and Level 2 with the classical true score model. 

Overall, it can be concluded that correcting for measurement error with the normal ogive 
model on both levels resulted in more variance of the parameter estimates but less bias and better 
model fit. In general, the use of a measurement error model led to a reduction in bias and variance 
of the replicated data in relation to the observed data in all cases. 

A weak point of the classical true score model is that the measurement error variance has 
to be imputed. The Gibbs sampler was used to estimate the MLTS and the corresponding E[L  2] 
for various values of ~ol and ~o2. Varying ~o will lead to different predictions with respect to 
the observed data. Figure 5 displays the E [L 2] and E [L 2] for various values of the a priori 

established error variance on Level 1 and Level 2. It can be seen that E [L 2] decreased when 
the variance in the predictor variable IQ increased. This follows directly from formula (11). The 
posterior mean of 0 is based on the values of the observed data y if the variance in the observed 
data x is high. As a result, the predictions yrep resemble the observed data y more. It follows that 
the discrepancy between the observed data y and the predicted data yrep grows if  the response 
variance decreases. Then the posterior mean of 0 is based largely on the observed sum scores 
relating to the intelligence test, instead of on y. The E[L  2] increased when one or both of the 
response variances increased because the distance between predicted IQ-scores and AI-scores 
deviated more from the observed sum scores, partly due to the inflated response variances. High 
response variance IQ led to better results of the statistics E [L 2] and E [L2]. Generally, the prior 
information about the average population variance highly influenced the results. 

Discussion 

In this article, a normal ogive model is imposed on the unobserved explanatory variables in 
a multilevel model. In the social sciences, it is rarely possible to measure all relevant covariates 
directly and accurately. Correcting for measurement error is dependent on knowledge of the mea- 
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surement error process. The normal ogive model  is used to describe the link between the observed 
data and the unobserved variables. This is compared with the classical true score model  as mea- 
surement error model. Appropriate  methods for correcting for the effects of measurement error 
depend on the measurement error distribution (Carroll et al., 1995). It is shown that both mea- 
surement error models reduce the bias in the estimates with an increase of the variance. This bias 
versus variance trade-off works well in both cases. Better results are obtained with the MLIRT 
model in terms of the expected square distance between all observed and predicted data. The 
MLTS requires information about the average population variance and depends highly on this 
prior information. This leads to a certain degree of arbitrariness. Moreover, the variance struc- 
ture of the errors in the predictor variables is difficult to estimate. The MLIRT model amounts to a 
more realistic way of modeling measurement error in the predictor variables, because it does not 
depend on any arbitrary assumption on the error variance structure. The use of an item response 
theory model as measurement model becomes most effective when the distribution of a latent 
explanatory variable is skewed. Then the observed scores cannot discriminate well between stu- 
dents '  outcomes and parameter estimates are highly attenuated, as shown in the simulation study. 
In summary, the main advantage of MLIRT over the traditional linear approach is the possibil i ty 
of handling incomplete designs and missing data (see, e.g., Bock & Zimowski,  1997) and optimal 
test assembly (van der Linden, 1998). Another advantage of MLIRT is the greater flexibility for 
handling skewed distributions and heteroscedastic measurement error. With respect to the latter 
advantage, general conditions under which MLIRT will produce significantly better results than 
the traditional linear approach are hard to given. 

It is possible to use other IRT models as a measurement error model. Examples are the 
three-parameter item response model and models for polytomously scored items. These models 
can be estimated within the Bayesian framework using the Gibbs sampler, such that it can be 
incorporated in the estimation of a structural multilevel model (Bdguin & Glas, 2001; Johnson 
& Albert, 1999). If  the conditional distribution of some parameters is difficult to sample from, a 
Metropolis-Hastings step within Gibbs sampler can be used to obtain samples from the posterior 
distribution of the specific parameters (Chib & Greenberg, 1995). 

The test statistic discussed above only focuses on the extent to which the observed data are 
reproduced by the model. Other posterior predictive checks can be developed to judge the fit and 
assumptions of the model, such as the assumptions of local independence and homoscedasticity, 
but this is beyond the scope of this article. 

The response variable is treated as observed without measurement error. It is possible to 
extend the procedure and to model this variable with an IRT model also. This more complex 
problem, where both the response and some of the predictors are measured with error, deserves 
further research. The basic structure of this more complex model  is related to the MLIRT model 
(Fox & Glas, 2001), or the generic hierarchical IRT model  (Patz & Junker, 1999) with back- 
ground variables measured with an error. This whole framework is also strongly related to the 
framework of structural equation modeling, where there is a measurement part and a structural 
part. The measurement part of the model consists of the response variable and observed predictor 
surrogates and latent variables, and the structural part is defined in terms of the latent variables 
regressed on each other and some observed background variables. In MIMIC modeling (see, 
e.g., Bollen, 1989; Muthdn, 1989), one or more latent variables intervene between the observed 
background variables predicting a set of observed response variables and surrogates. The main 
difference between these approaches and the one presented here is the use of an IRT model as a 
measurement error model, and integration of these various approaches remains a point of further 
study. 
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