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JOINT CONSISTENCY OF NONPARAMETRIC ITEM CHARACTERISTIC 
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The simultaneous and nonparametric estimation of latent abilities and item characteristic 
curves is considered. The asymptotic properties of ordinal ability estimation and kernel smoothed 
nonparametric item characteristic curve estimation are investigated under very general assump- 
tions on the underlying item response theory model as both the test length and the sample size 
increase. A large deviation probability inequality is stated for ordinal ability estimation. The mean 
squared error of kernel smoothed item characteristic curve estimates is studied and a strong 
consistency result is obtained showing that the worst case error in the item characteristic curve 
estimates over all items and ability levels converges to zero with probability equal to one. 
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Introduction 

Nonparametric regression has been a topic of much research in statistics over the past 
thirty years. This is due in part to the continuing increase in computing capability as well 
as the recognition that parametric modeling often lacks sufficient flexibility. More recently 
psychometricians have recognized that item characteristic curves (ICCs) cannot always be 
modeled well with parametric families such as the three-parameter logistic and the normal 
ogive models (Ramsay, 1991; Samejima, 1979, 1981, 1984, 1988, 1990). This paper con- 
cerns the asymptotic theory of a particular method of nonparametric ICC estimation based 
on a technique known in the statistical literature as kernel smoothing, together with the 
theory of obtaining the proper linear ordering of examinees with respect to their true 
latent abilities. 

Kernel smoothing is introduced as a technique for nonparametrically estimating a 
regression function, followed by its formulation in item response theory (IRT). Let (X1, 
I11) . . . . .  (Xj, I1/) be an independent and identically distributed sequence of bivariate 
observations. Nadaraya (1964) and Watson (1964) proposed to estimate the regression 
function E[YIX = x] = re(x) by 

ix-X, \  

rh(x) = (1) 

i=1 

Here K is a nonnegative symmetric function that is nonincreasing as its argument gets 
further from zero, and h is a parameter called the bandwidth that is selected by the user 
to control the amount of smoothing. Thus, rh(x) is just a smoothly weighted average, with 
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the weights determined by the kernel function K and the bandwidth h. The bandwidth is 
chosen to obtain a desirable trade-off between the bias and the variance of estimation. For 
instance, if a small bandwidth is chosen only observations I1/with X/very close to x will 
influence the estimate rh(x), resulting in a nearly unbiased but highly variable estimate. On 
the other hand, choosing a large bandwidth will allow Y/with X i far from x to contribute 
to the estimate of m(x), resulting in low variance but potentially high bias stemming from 
the difference in m(Xi) and m(x) for Xi far from x. Ordinarily this trade-off is stated in 
terms of mean squared error of estimation, and the bandwidth is chosen in a way that 
comes close to minimizing this quantity. 

In ICC estimation the dependent variable Y that we consider is a binary variable 
denoting success or failure to answer a given item correctly, and the independent variable 
is the latent ability variable ®. The regression function previously denoted m (x), can now 
be expressed as the item characteristic curve P(O). Suppose thatJ  examinees are randomly 
sampled. If each of the J latent ability variables could be measured without error, the 
Nadaraya-Watson estimator given in (1) could be written for P(O) by 

I o - e A  

P*(o) = (2)  

K=I 

However, the latent variables Oh cannot be directly observed. Kernel smoothing can still 
be used, but each Oh in (2) must be replaced with a reasonable estimator Oh, resulting in 
an estimate/6(0) shown below: 

/o-Oh\ 

P(o) = (3)  

k=l 

The asymptotic theory behind the Nadaraya-Watson estimator given in (1) has been 
thoroughly researched and some very strong and precise results on convergence and 
asymptotic normality have been obtained (see for example, Devroye, 1978; Schuster, 
1972). The central problem in applying these results to ICC estimation is that in IRT the 
values of the independent variable cannot be measured without error. If each Ok in (2) 
could be observed, the asymptotic theory for kernel smoothing with random arguments 
would apply. However, the situation considered in this paper, requiring an estimator of the 
form given by (3), more nearly resembles an errors-in-variables regression problem. Fan 
and Truong (1993), considered the asymptotic theory of kernel smoothing when the in- 
dependent variables X k cannot be observed, but rather we observe Z k = X k + ek, where 
ek is thought of as an error of measurement. Under this model the estimate rh(x) is 
obtained by replacing Xk in (1) with Zh. This is similar to replacing Oh in (2) with ~)k to 
obtain the estimator in (3). Although the model that Fan and Truong consider is similar 
in many ways to IRT models, the assumptions that they make regarding the distribution of 
the error term e, and the independence of e with (Xh, Yk), render their results inapplicable 
to the asymptotic theory of kernel smoothed ICC estimation. Thus, existing statistical 
theory will not suffice and the asymptotic theory of kernel smoothed ICC estimation 
requires its own special investigation. 
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FIGURE 1. 
The intended weights for ICC estimation at 0 = 0.5. The weights K(O - 0.5/h), are plotted against 0. This 

assignment of weights requires that the true value of the latent ability of each examinee is known. 

An example is given to further elucidate the difficulty involved when dealing with 
unobservable independent variables. Recall that/~(0) in (3) is just a weighted average of 
the dichotomous item scores I"1, . . - ,  YJ. Leaving the details of how to form the ability 
estimates ~)k in (3) to a later section, a 100 item exam with 1000 examinees was simulated 
to illustrate how the intended weights differ from the actual weights assigned to the Yk for 
estimation at a particular 0 value. In this example, the latent ability random variable 19 is 
assumed to have a uniform distribution on the open interval (0, 1), and a quadratic kernel 
function is used ( K ( x )  =- 1 - x 2, - 1  <. x <-- 1; K ( x )  = 0 otherwise), together with a 
bandwidth of h = 0.1. Both the intended and actual weights, K(0.5 - Ok/h ) and K(0.5 - 
~)k/h) respectively, were obtained to estimate P ( O )  at 0 = 0.5. 

In Figure 1 the intended weights for each Yk are plotted against 0. In practice, as 
revealed by Figure 2, the weight assignment becomes somewhat imprecise but still tends 
to give high weight to Yk for examinees with Ok near 0.5. 

The software TESTGRAF (Ramsay, 1994) has recently become popular, and the 
asymptotic theory developed in this paper can be viewed as asymptotic theory for ICC 
estimates produced by this software. It should be pointed out that the method of estima- 
tion considered here slightly differs in some details from the method employed by 
TESTGRAF. However, the general approach is the same and the results presented here 
are suggestive of the asymptotic proPerties of ICC estimates produced by TESTGRAF. 
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FIGURE 2. 
The actual weights for ICC estimation at 0 = 0.5. The weights K ( e  - 0 .5 /h) ,  are plotted against 0. This 

assignment of weights results from replacing the true values of 0 with their estimated values. 

In the next section a triangular sequence of nonparametrically specified IRT models 
is introduced, and a comprehensive list of notation is supplied for the convenience of the 
reader. The procedures for ICC and ability estimation are given in the third section. The 
fourth section includes statements of the main theoretical results as well as the assump- 
tions and regularity conditions needed to obtain them. In the fifth section the practical 
implications of the theoretical results are discussed. An appendix is provided to outline the 
proofs of the theorems stated in the fourth section. 

Triangular Sequence of IRT Models and Notation 

Ordinarily, asymptotic theory only concerns the behavior of statistics as the sample 
size approaches infinity. However, in order to obtain jointly consistent estimates of ability 
parameters and ICCs, it is required that the test length and examinee sample size increase 
together. This "double asymptotics" in both sample size and test length was utilized by 
Haberman (1977) to show the joint consistency of maximum likelihood estimates of Rasch 
model item and examinee parameters. This paper considers a problem similar to Haber- 
man's, but with less restrictive assumptions regarding the functional form of the ICCs. 

A triangular sequence of IRT models is needed to conduct an asymptotic analysis in 
which both sample size and test length increase simultaneously. First consider an n item 
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test administered to J~ randomly chosen examinees. Using the methods described in the 
next section, the ICCs corresponding to the n items and the abilities of the J~ examinees 
are estimated. Then a test of n + 1 items, possibly containing no items in common with 
the length n exam, is considered along with a corresponding larger sample of Jn+l exam- 
inees. The idea is to carry out the estimation procedures for each row in the triangular 
arrays given below, and the asymptotic theory will concern the accuracy of the ICC and 
ability estimates as we progress down the rows of the triangular arrays of items and 
examinees. 

Triangular Sequence of Tests: 

Pn,1, Pn,2, " " ,  Pn,n 
Pn+l,1, Pn+l,2, . . .  , Pn+l,n, Pn+l,n+l 
Pn+2,1, en+2,2, . . .  , Pn+2,n+l, Pn+2,n+2 

Triangular Sequence of Latent Ability Variables: 

On,l ,  On,2 . . . . .  On,J. 
On+l ,1 ,  On+l ,2 ,  . . . ,  On+l,J .+l  
On+2,1,  On+2,2,  • • • , On+2,/.+2 
, . ,  . , . , . .  , . .  

Here  a test is identified by the set of ICCs associated with its items. Each row in the array 
of tests given above denotes a separate test, with Pn,i denoting the ith item on the length 
n test. As has already been mentioned, the ICCs and their corresponding items in a given 
row may be entirely distinct from those in another row of this triangular array. In a test 
manufacturing process one might imagine that, due to test specifications among other 
considerations, the optimal choice of items for a length n + 1 test would very likely differ 
from merely combining the items chosen for a length n test with one additional item. For 
the test of length n a sample of Jn examinees, with latent abilities coming from a distri- 
bution F, is randomly selected from the test taking population. On, k denotes the ability of 
the kth examinee taking the length n test. For each Pn,i we need to construct an estimate 
Pn,i, and similarly we must construct estimates I~n, k of the latent abilities On,k. 

The procedures for obtaining these estimates are detailed in the next section, but first 
a list of some important notation that will be used throughout the remaining sections and 
the appendix is given. Much of the notation listed below has not yet been introduced, and 
the list is provided for readers who may need to refer back to remind themselves about the 
meaning of some notation that is encountered in later sections. 

Notation: 
1. n --- test length index. 
2. Jn = the number of examinees taking the length n exam. 
3. Pn,i = the ICC associated with i-th item on the length n test. 
4. Pn = the test characteristic curve. 

po - -  e n  ,i • 
n i=1 

5. Pn  1 = inverse function of Pn defined in the appendix. 
6. en,i = estimate of Pn,i obtained by kernel smoothing. 
7. 8n,a,b = index of worst case error in ICC estimation. 
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6,,a,b = sup max IP , , i (O) -  P,,i(0)l. 
O~(a,b) l<-i~n 

8. O n k = the latent ability parameter of the kth examinee taking the length n exam. 
9. On'k = the estimate of On k given in (6). 
10. (~n,-i,k = the leave-item-i-out estimate of On,k" defined in (4). 
t l .  A n = the maximum of  I~n , - On it, J = 1 , . . . ,  Jn" 
12. An,_i ~= the maximum of [~n,-i,j - Ondl, J = 1 . . . . .  Jn" 
13. ~ = the proportion correct score of examinee k taking the length n exam. 
14. g/n,-i,k = the proportion correct score of examinee k excluding item i. 
15. Pnk = e [ U n  = k]. 
16. F = the chosen distribution function of the random ability variable O. 
17. Fn = the population distribution function of  Un. 
18. FL = the empirical distribution function of gln,k, k = 1 . . . . .  J,,. 
19. F n _  i = the population distribution function of Un,-i. 
20. FL,_ i = the empirical distribution function gJn,-i,k, k = 1 . . . .  , Jn. 
21. Wn,_i, k = random variables used to break ties in the Dn,-i,k. 

- *  = + 
22. U n , _ i ,  k 

--- U n , _ i , k ,  k = 1, . . . ,  jn. 23. Gj. ,_ i the empirical distribution function of -*  
24. m = constant regarding the slope of Pn discussed in assumption A3. 
25. C = constant discussed in assumption A4. 
26. M L and M U = constants discussed in assumption A5. 
27. Ma,b = constant discussed in assumption A7. 
28. K = kernel function used for smoothing that follows conditions C1 through C3. 
29. M r  = upper bound for the function K discussed in condition C1. 
30. CK = constant regarding the support of K discussed in condition C2. 
31. L r = maximum slope of function K discussed in condition C3. 
32. hn = the bandwidth used for smoothing for the test of length n. 
33. L~ and Us = constants related to the size of h n discussed in condition C4. 
34. O: A sequence an is said to be less than or equal to O(bn) if there is some constant D 

such that a n < Db  n for all n. 

Kernel Smoothed ICC and Ordinal Ability Estimation 

First, a five step procedure is given for kernel smoothed ICC estimation. An estimate 
of Pn,i, the ith ICC of the length n exam, is obtained by applying Steps 1 through 5. 

Step t. Observe the proportion correct on the remaining items gJn,-i,1 . . . . .  Un,-i,L. 
The ability estimates playing the role of the independent variable in the Nadaraya-Watson 
estimator are based on these scores. It is desirable to exclude the item score of the item 
whose ICC is currently being estimated from the set of  data used to estimate abilities. 
Among other advantages, this avoids artificially anchoring the upper and lower asymptotes 
of the ICC estimate. Also, from a theoretical perspective, under an assumption of local 
independence the ability estimate will be independent of  the score on the ith item after 
conditioning on the examinee's true latent ability. This property is convenient when study- 
ing the statistical properties of the ICC estimates. 

U n , - i , l ,  • . , U n , - i , J . "  Step 2. Add Wn,-i,k to On,-i,k to obtain a sequence with no ties: - * . - * 
In practice this random breaking of ties or "jittering" has little influence on the ICC 
estimates but serves to simplify the problem both computationally and theoretically. 

Step 3. Find the empirical percentile of tie-broken proportion correct (leaving out the 
item i score) for each examinee. 
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~ J n  - - * " " " , , /(Un _i,1), ~ , o _  - *  , i ( U . , _ ~ , , ° )  

This step is equivalent to ranking the adjusted total scores. 

Step 4. Convert the empirical percentiles obtained in Step 3 to the appropriate quan- 
tile on ability scale determined by the distribution function F. 

0 . _ i l  ~ ) . - i J  = F - I ( G J  -* . . . . . . . . . . . . .  - i (U. , - i , , ) ) ,  . . . ,  F I((~j.,_/(U. _i,j.)). (4) 

In Step 4 a scale is chosen on which to represent the ICCs. The ordinal ability estimates 
of step 3 are assigned to the appropriate quantile on the chosen ability scale to arrive at 
the new ability estimates of Step 4. It should be pointed out that the choice of scale for t9 
is arbitrary and is not imposing any assumptions or parametric constraints on the model. 
That is, once one has an IRT model for the manifest distribution of the test data, one can 
always monotonically transform the scale of the latent ability distribution as long as the 
corresponding transformation is made to the ICCs to retain the same manifest distribution. 
Because no parametric assumptions are made concerning the form of the ICCs, the choice 
of scale becomes perfectly arbitrary as long as certain qualitative assumptions, such as 
those given in the next section, remain satisfied. 

Step 5. Calculate Pn,i( O ). 

(0 0nik) 
K ' Y,,i,k 

k = l  hn 
P.,,(o) = ( 5 )  

~ K J° ( O -- ~ '  - i'k ) 

k = t  

Certainly there are many other details that one must address such as choosing the 
kernel function K and the bandwidth h n. For these matters the reader is referred to H~irdle 
(1990) and Ramsay (1991). Also see Ramsay for real data examples and a simulation study, 

The next step is to estimate the latent ability of each examinee on the scale deter- 
mined by the distribution function F. In modern parametric IRT, full-information ability 
estimation methods are preferred over limited-information methods that only make use of 
sample moments such as proportion correct score. However, in most practical classroom 
testing situations total score is used to order examinees. In this paper we consider the 
asymptotic theory for ability estimation obtained by ordering the observed total test scores 
and transforming this ordinal information to the corresponding quantile on the chosen 
latent ability scale. Because the latent ability estimates are based on ranked total scores, 
they are referred to as ordinal ability estimates. 

The procedure for obtaining ordinal ability estimates is quite similar to Steps 3 and 4 
given above to obtain proxies for the independent variables in the kernel smoothing 
formula of (5). However, no ties are broken and all of the item responses are used to 
obtain the total test scores. That is, proportion correct scores fln,k are used rather than 
- - ,  

Un,-i,k. Thus, the ability estimates for the Jn examinees taking the length n test are given 
by 

(~.,1 . . . . .  On,j. = F-1(/6~. (Eln,1)) . . . . .  F-1(/~,° (O~,jo)). (6) 

Large Sample, Long Test Theory 

Next, assumptions are stated that are needed to carry out the asymptotic analysis of 
the ability and ICC estimates that were presented in the previous section. It is worthwhile 
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to discuss each assumption in some depth in order to see how each is psychometrically 
plausible and relatively unrestrictive. The basic purpose of doing nonparametric statistics 
is to be able to perform accurate estimation and inference within a very general and 
unrestrictive model, and the assumptions used for an analysis of a nonparametric proce- 
dure should be consistent with this philosophy. 

Assumptions: 

A1. The latent ability 0 is a scalar valued random variable and item responses are mu- 
tually independent conditional on O. The assumption that O is scalar valued is usually 
referred to as unidimensionality, while standard terminology for the latter condition is 
local independence. 

A2. O has a uniform distribution on the open interval (0, 1). Given the unidimensionality 
assumption above, this assumption merely amounts to a particular choice of scale. Of 
course, a choice of scale has a direct influence on the shape of the ICCs when 
represented on the chosen scale. Thus, the smoothness assumptions on the ICCs given 
in assumptions below need only make sense when the ICCs are represented on the 
uniform (0, 1) scale. 

A3. P;~ exists everywhere in (0, 1), and there is a number m such that for each 0 in (0, 1), 
0 < m < P~(0). Because ICCs are usually defined on the entire real line where each 
ICC is forced to asymptote, this assumption may seem restrictive. However, when the 
ability distribution is compressed into the finite length interval (0, 1), it is reasonable 
to assume that the slope of the test characteristic curve is uniformly bounded from 
below. The assumption is used to guarantee that the test is discriminating at each 
percentile of the ability distribution. To illustrate the validity of this assumption, the 
test characteristic curve for an ASVAB auto shop exam using fitted three-parameter 
logistic functions obtained by marginal maximum likelihood estimation (Bock & Ai- 
tkin, 1981) with a standard normal ability scale are shown in Figure 3, after a change- 
of-variables transformation to the uniform (0, 1) ability distribution. By insisting that 
the test characteristic curve has a positive derivative it is constrained to be strictly 
monotone increasing. However, this assumption still allows for the existence of some 
disfunctional items that are not monotone. It is only required that the number of such 
items is relatively small when compared to the test length. A benefit of nonparametric 
ICC estimation is that it can detect non-monotone ICCs if the test characteristic curve 
is increasing. 
A somewhat less restrictive assumption on the derivatives of the test characteristic 

curves is to assume that they are uniformly bounded from below within some compact 
subinterval [a, b] of (0, 1). This assumption would require only slight alterations to the 
statements of the theorems to follow, but makes the proofs much more tedious. 
A4. Uniform boundedness of observed proportion correct histograms: This assumption is 

simply that there is a constant C that does not depend upon test length n, such that 
the discrete theoretical density or histogram for the proportion correct score Un lies 
entirely below the line y = C. This is equivalent to the assumption that npn,g < C for 
all k. 
For many testing situations, one would encounter score distributions that may be 

skewed or nonnormal in some way, but one would not expect severely sharp spikes in the 
score distribution that would invalidate this assumption. See Figure 4. 
A5. Note that the sample size .In is indexed by the test length n. A random sample of Jn 

examinees is drawn for the length n exam, and an independent sample of J,,+l ex- 
aminees is randomly selected for the length n + 1 exam. Assume that there are 
positive constants ML, Mu, and r, such that for all n, 
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FIGURE 3. 
The estimated test characteristic curve P(0), is plotted against 0 on the Unif(0, 1) ability scale. The minimum 

value of the derivative P'(0) is equal to 0.43. In assumption A3, m may be set equal to 0,43. 

MLn 3/z < J, < Mvn'. 

One would expect the sample size to considerably exceed the test length. The constant 
r in the upper bound can be taken arbitrarily large, and in that sense does not impose a 
serious constraint. The purpose of this assumption is to limit the number of examinees. 
The joint consistency of ICC and ability estimation cannot be obtained if too many ex- 
aminees are present. Haberman (1977) used a similar, though somewhat less restrictive, 
assumption to show the joint consistency of maximum likelihood estimation of Rasch 
model parameters. 
A6. For each pair (n, i) in the triangular array of items, P'n,i exists and is continuous in the 

open interval (0, 1). 
A7. For each compact subset [a, b] of (0, 1), there is a positive constant Ma,b such that for 

all 0 ~ [a, b] and all pairs (n, i), 

tP',,(0)I < M,,b. 

This assumption could be strengthened by insisting on a uniform and global bound for 
the derivatwes of the Pn,i. However, such a strengthening would be unrealistic and restric- 
tive when working with an ability distribution with a finite range as in our case in which the 
distribution of 19 is supported on (0, 1), because the derivatives can become very steep at 
the boundaries. 
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FIGURE 4. 

Theoretical distributions for proportion correct scores are plotted. Assumption A4 merely states that these 
histograms are uniformly bounded over all test lengths. 

Ordinal Ability Estimation 

First, the probability of a large deviation of ~n from ®n is studied. Consider the 
probability that [~n - ®hi is greater than a multiple of n -a,  where a is any positive 
number less than 1/2. It will be seen that the possibility of such a large deviation becomes 
exponentially small as the test length increases. Requiring only minor adjustments to the 
proofs, the results stated here are also true for the leave-one-out ability estimates of 
equation (4) that play a crucial role in the theory of the kernel smoothed ICC estimates. 
Later we will see a connection between a and the smoothing parameter hn. The idea is to 
let h n be of the order n -% and from Theorem 1 that is stated below we will know that the 
chance of smoothing over examinees whose estimated abilities are more than a bandwidth 
from their true abilities is exponentially small. Clearly the On,j, j = 1 . . . .  , Jn are identi- 
cally distributed, though stochastically dependent, and the following theorem is stated in 
terms of ~)nJ. 

Theorem 1. Le t  e n be a positive sequence and 0 < a < 1/2 such that for some positive 
constant Ca, en > C~n -~.  Given assumptions A1 through A7, there exist positive con- 
stants C 1 and C2 (depending on a) such that for all n 

P[i~,,,1 - O.,,i  > e . ]  ~ C, exp [-Czn 1-2~]. 
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The proof of Theorem t is outlined in the appendix. 

Recall from the list of notation that A n denotes the maximum of [~)n,j - ~)n,j] for j  = 
1 , . . . ,  "In" It is the maximum error of ability estimation over all Jn examinees taking the 
length n exam. Thus 

p[A____. > = / , [  U j :  1 { [0° ,  - O°,jt > 

By the subadditivity of probability measures 

J,, 

P[A. > e.] <- E P[[O..j - ®.,~[ > e.] .  (7) 
j=l 

Applying Theorem 1 and assumption A5 (Jn <- Mvnr), it is seen that the right side of (7) 
is less than or equal to 

MvnrC1 exp [ -Czn  1-2.]. 

Thus, 

P[A. > e.]  < MunrC, exp [ -Czn '  - z.]. (8) 

The right side of inequality (8) is summable over the natural numbers, and an appli- 
cation of the Borel-Cantelli lemma (Billingsley, 1986) can be applied to prove Theorem 2 
stated below: 

Theorem 2. Given assumptions A1 through A7, A n ---) 0 with probability equal to 1. 

Thus, the maximum error in the ability estimates obtained by transforming the ranked 
proportion correct scores as described by (6), converges to 0 as the test length increases. 

Convergence of Kernel Smoothed ICC Estimates 

Next the large sample, long test behavior of the ICC estimates is considered. An upper 
bound on the mean squared error of estimation as a function of the test length is given in 
Theorem 3. Then the simultaneous accuracy of ICC estimation over all items within an 
interval of ability levels is considered in Theorem 4. The proofs of these theorems make 
use of some quite general conditions C1 through C4 given below, concerning the kernel 
function K, and the sequence of shrinking bandwidths h n. 

Conditions on the kernel function and bandwidth: 

C1. The kernel function K is bounded by a constant M K. 
C2. K has bounded support. In particular, there is a constant CK such that K(x) > 0 when 

~c[ < CK and K(x) = 0 when Ix[ -> CK. 
C3. There is a constant LK such that for each pair (x, x ') ,  

IK(x) - K(x') I <- Lklx - x'[. 

Note that C2 and C3 imply C1. However, including this slight redundancy is harmless 
and the notation M K of C1 is used in proofs of the theorems for the kernel smoothed ICC 
estimates. 
C4. There is a number a ~ (0, 1/2), and positive numbers L~ and U s such that for all n, 

Lc, n -c~ < h n < Uc~n -a. This condition is used to keep h n from converging to 0 more 
quickly than the ability estimates in equation (4) converge to the true latent abilities. 
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By Theorem 1 we know that for a E (0, 1/2), the chance that that any of the ability 
estimates is more than n -a  from their true values is exponentially small. There is no 
advantage to smoothing over an interval of ability levels that shrinks more quickly 
than the errors of measurement in the independent variables, and a is chosen to 
balance the error related to bandwidth size together with errors related to mismea- 
surement of the ability parameters. 
A standard measure of the quality of estimation at a particular point 0 is given by the 

mean squared error of estimation: 

MSE(P,,,(O)) =- E[(P,,i(0) - P,,,(0))2]. 

Generally for parametric models (e.g., least squares regression) the mean squared 
error for estimating an unknown regression function m(x)  decreases at the rate of I/J, 
where J is the sample size. Of course this presumes that the parametric model is correct. 
If one opts for a more flexible approach using a linear smoother such as kernel smoothing, 
a good choice of bandwidth can at best ensure that the mean squared error of estimating 
m(x),  decreases at the rate of 1/J 4/5. However, both of these cases pertain to the more 
usual regression problem in which the independent variable can be observed. Here mean 
squared error as a function of the test length is considered. Recall that test length is loosely 
related to the sample size through assumption A7. 

Condition C4 states that hn is of the order n-'~, where 0 < c~ < 1/2. As was previously 
mentioned, this condition is used to regulate the size of the "window" for kernel smooth- 
ing, in relation to the accuracy of the stand-in values ~-)n,-i for the independent variable 
O n. Theorem 3 considers the highest mean squared error of estimation at a fixed point 
over all items on the exam, for any choice of ct less than 1/2. 

Theorem 3. Given assumptions A1 through A7 and conditions C1 through C4, for a 
fixed 00 ~ (0, 1) 

max {MSE(Pn.i(Oo)) : 1 <- i <- n} <- O(n - 2,,) 

where a is the constant in condition C4. 

The proof of Theorem 3 is outlined in the appendix. 

Of course a is arbitrary as long as 0 - a -- 1/2. By choosing a close to 1/2, it is easy 
to see that the MSE can be made close to O(1/n). If in replace of assumption A5 it is 
assumed that the sample size Jn is some multiple of n 3/2 it is clear that the MSE can be 

-2/3, made close to O(Ji, ). 
While MSE(['n,i(O)) describes the accuracy of estimation at a single value of 0, it is 

perhaps more important to know that all of the items are accurately estimated at each 
point in a wide interval. In other words, one would like to know something about the 
simultaneous estimation of all the ICCs in some subinterval (a, b) of (0, 1). An index of 
the worst case departure from the true ICCs within a fixed interval is given by 

6. ,a ,b  = sup max IP..i(O)-P.,i(O)[. 
O~(a,b) l<--i<--n 

It would be encouraging to know that for all ability levels in (a, b), the ICCs are all 
estimated within some small number e of the true ICCs (6,,,a,b <-- e). Theorem 4 asserts 
that 8,,,a,b converges to 0 with probability equal to 1 as the test length n --~ ~, ensuring that 
all of the estimates eventually become good at all points in (a, b). Note that a and b can 
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be taken arbitrarily close to 0 and 1, but for technical reasons cannot be set equal to these 
boundary points of the ability scale. 

Theorem 4. Given assumptions A1 through A7 and conditions C1 through C4, 
8n,a, b ~ 0 with probability equal to 1 as test length n ~ oo. 

The proof of Theorem 4 is outlined in the appendix. 

The strong consistency results of Theorems 2 and 4 imply that triangular arrays of 
latent abilities and ICCs satisfying assumptions A1 through A7 can be jointly estimated to 
any degree of accuracy. A formal statement of this joint consistency is given below: 

Theorem 5. max {An, ~n,a,b} ~ 0 with probability equal to 1 as test length n ~ oo. 

Theorem 5 follows directly from Theorems 2 and 4 by noting that the probability 
measure of the union of two sets, each of probability measure 0, also must have probability 
equal to 0. The two sets of probability 0 alluded to here are just those sets where the ICC 
and ability estimates fail to converge. 

It is worth mentioning that although the ICC estimates considered here are on the 
uniform ability scale, they perform equally well on any other scale. One only needs an 
initial scale on which to construct the estimates, but neither the theory nor the perfor- 
mance of the ICC estimates are diminished by a change of scale. The only requirement is 
that assumptions A1 through A7 are satisfied when the ICCs are represented on the 
uniform (0, 1) scale. If one wishes to represent the ICCs on the ability scale determined by 
the distribution function F, and 0 is on the uniform (0, 1) scale, ~ = F-I (O)  has F as its 
distribution function. Thus, if estimation is accurate on some interval (a, b) on the uniform 
(0, 1) scale, the accuracy is unchanged by simply viewing the ICCs as a function of ~/on the 
interval (F-X(a), F- l (b) ) .  

Discussion 

An appealing feature of nonparametric curve estimation is that under very mild 
assumptions, the true curve can be consistently estimated. The large sample, long test 
theory presented in this paper shows that this desirable property holds in IRT for kernel 
smoothed ICC estimation. In addition, Theorem 5 states that all of the ICC estimates and 
ordinal ability estimates simultaneously converge to their true values. This joint consis- 
tency gives hope that to the degree to which some smooth unidimensional IRT model 
explains psychological reality, that model will be asymptotically recovered by kernel 
smoothing and ordinal ability estimation. 

In contrast, this property is not necessarily shared by joint maximum likelihood esti- 
mation of parametric models, even when the correct family of models is chosen. Neyman 
and Scott (1948) showed that when the number of structural parameters (item parame- 
ters), increase with the number of incidental parameters (ability parameters), consistency 
is not always satisfied. However, Haberman (1977) was able to prove the joint consistency 
of maximum likelihood estimation of item and examinee parameters in the special case of 
the Rasch model. He obtained strong consistency results similar to Theorem 5, showing 
that the maximum error over all item and examinee parameters converges almost surely to 
0 as both the test length and sample size go to infinity. Much like assumption A5 was used 
here to bound the number of examinees, Haberman had the somewhat less stringent 
requirements that Jn > n, and log (Jn)/n converges to 0. 

Although kernel smoothed ICC estimation can be performed with little worry about 
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the functional form of the underlying ICCs, users must still consider the dimensionality of 
the latent ability space. Recall that assumption A1 requires the existence of a unidimen- 
sional latent trait under which local independence holds. The theorems presented in this 
paper all hinge upon this assumption being satisfied. Although nonparametric ICC esti- 
mation relieves the user of the need to correctly guess a parametric family of curves to fit 
the data, great care must be taken to ensure that the exam is measuring a well defined 
unidimensional trait. 

A user of the nonparametric methods described in this paper may ask how long the 
test needs to be and how many examinees are required before the techniques described 
here can be effective. Ramsay (1991) reported on a simulation study in which a three- 
parameter logistic model and a standard normal ability distribution were used to randomly 
generate data. The parameter values are given in Ramsay and Winsberg (1991). By re- 
peated simulation the root-integrated-mean-square-error (RIMSE) of kernel smoothed 
ICC estimation was compared to the RIMSE of ICCs obtained from marginal maximum 
likelihood estimation of three-parameter logistic item parameters. 

RIMSE=[f ('(O)-P(O))2~(O)dO] 112 
The function ~b denotes the probability density function of a standard normal random 
variable. With 35 items and 500 examinees, the kernel smoothed ICC estimates were as 
efficient as estimates using marginal maximum likelihood. Each method resulted in 
RIMSE = 0.037, even though the data was generated from the very model assumed by the 
marginal maximum likelihood procedure. Although maximum likelihood estimation is 
asymptotically efficient, kernel smoothing was equally effective for the pre-asymptotic sam- 
ple size and test length used in Ramsay's study. Thus, it appears that kernel smoothing can 
be as effective as standard parametric methods for realistic sample sizes and test lengths. 
Furthermore, the convergence of kernel smoothed ICC estimation is unaffected if the 
underlying ICCs do not belong to any particular well known parameterized family of 
c u r v e s .  

TESTGRAF (Ramsay, 1993) produces kernel smoothed ICC estimates as well as 
option characteristic curve estimates for multiple choice items. The asymptotic results 
given here provide theoretical support for TESTGRAF produced ICCs estimates and can 
easily be extended to the more general option characteristic curves. 

In conclusion, the flexibility of kernel smoothed ICC estimation, supported by the 
theoretical results of this paper, provide further evidence that TESTGRAF type ICC 
estimates can be relied upon in many testing situations when the validity of common 
parametric modeling techniques and their estimation procedures may be questionable. 

Appendix 

The proofs of Theorems 1, 3, and 4 are outlined in this appendix. Due to limited 
space, most propositions and lemmas needed to prove these theorems are stated without 
proof. A supplement to this appendix that provides complete proofs of these lemmas may 
be obtained from the author by request. Please refer to the list of notation provided in a 
previous section when unfamiliar notation is encountered. 

Sums of item scores form the basis for obtaining the ordinal ability estimates of 
equation (6). By local independence, after conditioning on an examinees ability, such a 
sum is just a sum of independent Bernoulli variables. Also, in the context of kernel 
smoothing, weighted sums of scores on a single item over the set of examinees are of 
primary interest as seen in equation (5). Both of these sums can be thought of as sums of 
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independent and bounded random variables. Thus, to prove theorems for both ability esti- 
mates and kernel smoothed ICC estimates, it is useful to be able to obtain probability ine- 
qualities for such sums of random variables. A particular theorem concerning sums of inde- 
pendent and bounded random variables was used extensively to prove lemmas leading to the 
proofs of Theorems 1, 3, and 4. A statement of the theorem is given below. A good reference 
containing this theorem and other results that were useful to this study is Serfling (1980). 

Theorem 6. (Hoeffding, 1986) Let X1 . . . . .  X n be independent random variables sat- 
isfying P(a <- Xi -< b) = 1 for each i, where a < b. Then, for t > 0 

( " ~ ) ~' "J J --2nt2 ] 
P Z g i  - E[gi] >- nt <-- exp ( ~ - = ~ 2 / "  

i=1 i=1 

Next some lemmas that are used in the proof of Theorem 1 are stated. The first 
concerns a probabilistic exponential bound for large discrepancies between observed and 
true proportion correct, as a function of test length n. 

Prior to stating Lemma 1, an inverse function of the test characteristic curve Pn(O) 
must be defined. Denote the upper and lower limits of the monotone (A3) functions Pn as 
follows: 

a. = lim en(O) /3 n = lim P,(O) 
0-4) 0-.~1 

Define: 

Pnl(/x) = 0 if/~ -< a n 
Pnl(tx) the unique 0 E (0, 1) for which Pn(O) = t~ if an < /-~ < /3n. The existence of 

such a unique 0 is guaranteed by assumption A3. 
e n l ( b ¢ )  --~ 1 if tx -> /3n. 

Lemma 1. Let e > 0, then 

P[IP~- 1(0,) - Ol > e] -< 2 exp [-2neZmZ]. 

Next a lemma is stated regarding the difference between the observed and true 
percentiles based on Fn, the distribution function of the proportion correct score On. This 
lemma exploits assumption (A4) regarding the regularity of the score distributions. 

Lemma 2. Given e > 0, 

P[IF~(Sr~) - F , (P,(O))I  > e] ~ 2 exp - 2 n  . .  m 2 

Lemma 3. Let a be a positive number less than 1/2 and r n be a positive sequence such 
that as n --~ 

r, ~ 0 and r, >- C a n - "  for some positive constant C,.  

Then there is an integer no such that for n >- no, IFn(Pn(O)) - O[ < r n for all 0 E (0, 1). 

Next, the proof of Theorem 1 is outlined. 

Proof of  Theorem 1. The proof consists of expanding P[ltb, , ,1 - O, ,a l  > e,,] ,  and 
bounding each term in the expansion. 
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From (6) 

P[IO,,,~ - 0,,,,I > e.] =P[IP,.(O.,,) - On,,l > e,]. 

Thus, by expanding the right side 

<- e[  IL° (Dn,I) - F.(O°,OI 
1_ 

+ P[ }F.(P.(O.,~)) - 0.,1t > 4 ] .  (9) 

The first term of (9) can be bounded by a well known theorem regarding the Kolmogorov- 
Smirnov distance (Serfling, 1980). 

P rPso (U,,,1) - & (0.,1)1 > <--Ba exp [ j ,  (10) 

where BA is a universal constant that does not depend on n or the distribution function F n. 
Lemma 2 can be applied to bound the second term of (7). 

P IFn(O.,1) - F.(P.(O.a))I  > s 2 exp - 2 n  ~ - n mE (11) 

Finally, an application of Lemma 3 shows that for large enough n 

P[IF, (_P, (O))-  O, > 4 ]  = 0 .  (12) 

Thus, the third term of (7) eventually becomes equal to 0 and drops out. 
After combining (8), (9), and (10), we see that for large enough n, 

P[ lOn,l-O. ,~ I > e . ] - < B ~ e x p  + 2 e x p  - 2 n  ~ - ~ - n  mE " (13) 

By noting that e .  ~ C~n - ~  and./. ~ M L n  3/2 (A5), it is seen that there is a positive C2 such 
that both the exponents on the right side of (11) are less than - C 2 n  1-2'~, and to account 
for n small enough that equation (10) does not yet hold, a constant C1 can be chosen large 
enough so that for all n the right side of (13) is less than 

C1 exp [ -C2 nl - 2,~]. 

This completes the outline of the proof of Theorem 1. []  

Next some lemmas are stated that are needed for the proofs of Theorems 3 and 4 
regarding the kernel smoothed ICC estimates. Recall that the leave-one-out ability esti- 
mates, (~n,-i,j of (4), used in the estimation of the ith item's ICC requires adding a 
uniformly distributed random variable to each observed proportion gJn.-i,j (observed pro- 
portion for examineej excluding item i) to obtain 0,],-id, which are then ranked overj = 
1 . . . . .  Jn. It is important to consider how much randomly breaking ties influences ability 
estimation. A lemma is stated below (Lemma 4) to show that randomly breaking ties has 
a very small influence on ability estimation as the test length increases. This amounts to 
showing that with high probability the empirical distribution function of O,~,-i, PL , - i ,  when 
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evaluated at On -i j will be very close to the empirical distribution function of ~J*,-i, aJ, , - i ,  
when evaluated' ai' U*,_i,j. The result is that the exact same statement of Theorem 1 holds 
when the ability estimates t~n, j are replaced with the leave-one-out ability estimates 
~)n,-i,j. This is because the ~-]n,-i,j are almost identical to the gJn,j, and breaking ties is not 
sufficiently consequential to perturb the asymptotic theory. 

Lemma 4. Let e n be a positive sequence such that as n --* % en/n ~ O. Then for some 
constant D that is independent of the test length n and the item index i 

P[l~j.._i(O*,_i) - _Pj.,_i(O.,_i), > e.] <- D exp [ -~9ea ' ] .  

Next a particularly vital lemma regarding the probability that Pn.i(O) is more than a 
multiple of the bandwidth away from Pn,i(O) is stated and proved. 

Lemma 5. Let 0 < c < a < b < d < 1. There is an integer n o such that for n > n 0, 
the following inequality holds for all i and 0 E (a, b): 

P[l&,i(Oo) - e,,i(Oo)l > 3Mc,dCrhn] -< 2 exp [ - D ~ n  3/2-3~] + MunrCl exp [-C2 nl-2a] 

where Mu, Mc,d and CK are defined in A5, A7, and C4 respectively. C1 and C2 are positive 
constants that depend only on a while D~ depends on c and d as well as a. 

Lemma 5 plays a key role in the proofs of both Theorems 3 and 4, and it is worthwhile 
to provide an outline of its proof. First some observations are made that are helpful in the 
proof of Lemma 5. 

Recall that 

,. (0-< 
j=~ 1 0 

= = - -  K . en'i(O) Jn (0 -- ~)n,_i,j. I Dn(O) j= l  hn ] .... j 
EK h.  ] 
j=l  

It is helpful to see that the denominator Dn(O ) is not random and does not depend 
on i, the index of the item whose ICC is currently being estimated. After sorting (~n,1 . . . . .  
(~n,Jo) as defined in equation (4) we get (1/Jn, 2/J n . . . . .  1). Thus, Dn(O ) can be simplified 
to 

o-L I ], - j .  
D.(O) = ~, K 

j=l \ h . ] "  
(14) 

By using conditions C1 through C3 it can be shown that there are positive constants m I and 
m u such that for sufficiently large n and all 0 E (0, 1) 

mtJ, hn < D,(O) < muJ, h, .  (15) 

In fact, as n ~ oo 

D.(O) f J~h. ~ K(x) dx. 
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Next we consider the number of examinees contributing to the estimate of Pn,i a t  a 
particular value of 0. By condition C.1, K(O - ~n,_i,j/hn) > 0 if and only if 

0 -- (~n,-i,j 
--CK < < C K. h~ 

LetAn,i, o = {j: [0 - ~)n,_i,j/hn[ < CK}. Then we can rewrite en,i(O) by 

1 ~_~ K h. ]Y.,ij. (16) P,,,i( O ) - D,,( O ) .i~,,.,.o 

The number of terms in this sum is just the cardinality of An,i, O, denoted by #An,i, O. 
Because the ~)n,-i,j partition (0, 1) into intervals of width 1/Jn, as n ~ 

#An,i,o 
- - - - - - > 1 .  
2 C r h j .  

In any open subinterval (a, b) of (0, 1) there is no such that for 0 E (a, b) and n > no, 

C r h j ~  < #A~,i,0 < 3Crh~J..  (17) 

Proof of Lemma 5. Let Oo E (a, b) and An,_ i denote the maximum of ]On,_i,j - On,jl 
f o r j  = 1 . . . . .  Jn. Then 

P[lPo,,(Oo) - P.,i(00)[ > 3gc,dCkh.] = P[IP.,i(Oo) - P.,i(00)[ > 3gc,dCkh. lA.,-i 

< Ckho]P[a._i < Ckh.] + P[IP.,i(Oo) - P n , i ( O 0 ) [  

> 3Mc,.Ckh.IA.,_~ > Ckh,,]P[A.,_i > C~h.]. (18) 
Thus, 

e[lP.,i( Oo) - P.a(00)[ > 3M~,dCkh.] <- e[lP.a( Oo) - P.,i( Oo)l 

> 3Mc,dCkh.[A._i < Ckh.] + e[mn,-i > Ckhn]. 
(19) 

By applying (8) to the second term to the right of the inequality in (19) we see that 

P[lP.,i( Oo) - P.,i(00)[ > 3Mc,dCkh.] <-- P[lt'n.i( Oo) - P.,i(00)l > 3M~,aCkh.lA.,-i 

< Ckh.] + MunrCl  exp [ - C 2 n l - 2 a ] .  (20) 

Let O n and ~n,-i  denote the vectors (®n.1 . . . . .  On,L), and  (~n,- i , l ,  ' ' ' ,  ~)n,-i,J.) 
respectively, and let O n and 0n,-i denote realizations of these vectors. Also let FA denote 
the joint distribution of these vectors of estimated and true abilities conditional o n  An,_ i 
< Ckhn, and let a correspond to the a in condition C4. Then the right side of (20) can be 
expressed as 

f P[lP~,i(Oo) - > 3M~,dCkh~lA.,-i < Ckh., 0n,-i, On] dFa(On,-i, On) P..A00)l 

+ MvnrC1 exp [-C2n1-2~]. (21) 

The strategy is to bound the integrand in the first term of (21) uniformly over all vectors 
0n,-i and On satisfying An._ i < Ckhn. Assume that An,-i < Ckhn, and condition on 0n:i, 
and 0 n. Then by both local independence (A.1) and the representation given in (16) 
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1 (00 - b,-i,~\ 

is just a weighted sum of independent and bounded random variables. Thus, in order to 
show that fin,i(Oo) is not likely to be too far from Pn,i(Oo), we need to exploit the fact that 
An,_ i < Ckh n tO show that E[fin,i(Oo) ] is close to Pn,i(Oo), and use Theorem 6 to show that 
with high probability, E[fin,i(O0) ] and #n,i(O0) are very near one another. Applying the 
triangle inequality in the event, it is seen that 

P[lP..i(Oo) - P.,i(Oo)[ > 3Mc,dCkh.la. ,- ,  < Ckh. ,  On,-i, On] "< P[lP.,,(Oo) - E(Pn,,(Oo)) 

t + [E(P,,,,(Oo)) - P..e(0o)t > 3Mc,dCkh,,lA,, .- ,  < Ckh . ,  b.,-i, 0.]. (22) 

Consider I E ( P n , i ( O o ) )  - PM00)I, where the expectation is conditional on ~n,-i, and 0n. 

D , ( Oo ( O0 --'_ On,-i,j. n ] E([',,,,(Oo)) - j ~ K E[Y.,,uIo.,j] 

E(Pn,i(O0) ) is just a weighted average of the P,,i(On,j) for i such that (gn,_i, ] satisfies [0 0 - 
On,_i,j[ <- Ckh n. By using the triangle inequality we see that f o r j  E An,i,oo 

IOo - O,,,jl <-100 - fg,,,-i.il + IO,,,-id - O.,jl <- Ckh,, + A . - i  <- 2Ckh,,. 

Choose n large enough so that 

c < a - 2C,~hn < b + 2C~h,, < d. 

Then I0o - On,jl <- 2Ckhn implies that f o r j  E An,i,o., On, j is in [c, d]. Consequently, by 
assumption A7, 

[e,,,i( Oo) -P. . i (O. , i )I  <-Mc,alOo - o.ul <- 2Mc,dCkh,,. 

This implies that [E(f'n,i(Oo) ) - en,i(Oo))[ <- 2Mc,dCkh n. Thus, from (22) it is seen that for 
big enough n 

P[lP~,i(00) - P.,~(Oo)l > 3M~.aCkh,, tA.,_~ < C~,h., 0,,,_ ~, 0,,] <-P[IP,,,~(Oo) - E(P.,,(Oo))l 

> M~C~h . IA . - ,  < Ckh,,, ~_i ,  O~]. (23) 

The problem has been reduced to obtaining a probability inequality for the difference 
between a sum of  independent bounded random variables and its expected value, suggest- 
ing an application of Theorem 6. An alternative expression for Pn,i(Oo) is given by 

1 
P,,i(Oo) - # A ,  ioo ~ wJYn'i'J 

, , j~--An,i,~ 

where wj = #An,i,oK(Oo - On,_i,j/hn)/Dn(O0). By (15), (17), and condition C1 we see that 
for large enough n, wj <- 3MKCK/ml, which is an upper bound for the random variables 
w]Y.~j .  

Thus, by applying Theorem 6 for sums of bounded independent random variables, and 
(17) to bound the number of summands #An,i,Oo , it is seen that 

[-m~M:,aJ, h3] 
P[IP.,,(Oo) - E(P..,(Oo))l > M~,dCkh. lA . - i  < Ckh. ,  0,,._~, 0,,] <- 2 exp 9M~ J '  

which is less than or equal to 
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~tAr ~2~hr2 13 /2~3 /2-  
--ZVaLit~l~'~c,dL~c~ i~ 3u] 

• ( 2 4 )  -----2 exp [ ~ ] 

2 2 3/2 2 • By absorbing MLmIMc,dL~, /9M~ Into a constant D,~ that depends only on o~, conditions C1 
through C4, and the endpoints c and d, (24) can be expressed as 

2 exp [ - D ~ n  3/2- 3a]. (25) 

Thus, combining (25) with (21) we see that for large enough n and all 00 E (a, b) 

P [ I P . A O o )  - e.A00)] > 3M~,dCkh.] <- 2 exp [ - D ~ n  3/2-3~] + MvnrC~ exp [-C2nl-2~]. 

This completes the proof of Lemma 5. [ ]  

Proof o f  Theorem 3. Choose (a, b) and (c, d) so that 0 < c < a < 00 < b < d < 1. 

f0 
1 

MSE(P.,i(Oo)) = E[(P.,~(Oo) - Pn,i(O0)) 2] = P[(P.,~(Oo) - P.,~(00)) 2 > t] dt 

<. (3M~,dCKh.) 2 + e[(en,i(Oo) - e.,i(Oo)) 2 > (3Mc,dCrh.)2]. 

Thus, 

MSE(Pn,i(Oo)) <- (3Mc~Cl(hn) 2 + e[IP. , , (Oo)  - P.. ,(Oo)l > 3Mc,aCrh,,]. (26) 

By applying Lemma 5 to the second term in the right side of (26), it is seen that for large 
enough n and all item indices i, 

MSE(P.,AOo)) <- (3M~,aCxh.) 2 + 2 exp [ - D ~ n  3/2-3~] + MunrCl exp [ - C 2 n  1-2"] 

<-- O(h 2) + O(exp [ - D a n 3 / 2 - 3 a ] )  + O(n r exp [ - C 2 n l - 2 a ] ) .  (27) 

By C4 and the fact that 0 < a < 1/2, the right side of (27) is equal to O(n-2~), which 
completes the outline of the proof. [ ]  

Proof o f  Theorem 4. Let e > 0. If it can be shown that 

zo 

X P[8°,a,b > < oo, (28) 
n=l 

it will follow from the Borel-Cantelli lemma that ~n,a,b converges to 0 with probability 
equal to 1. 

Choose a sequence of sets of distinct points { ~  < ~ < --- < 0~j~, so that a = ~ < 
< • - • < 0~j~o = b, and the distance between any two neighbors, ~ and ~+1, is less 

than or equal to 1/J 2. Let 0 be an arbitrarily chosen point in (a, b). Then out of the 
sequence above, for each n there is a k such that ~ is no further than 1/J2n from 0. 

Condition C3 and C4 ensure that for 0 E (a, b), and ~ within 1/J2n of 0, there is a 
constant Ca,b such that 

Ca,b (29) IP . , , (0 )  - P. , , (0Z)I  <- j .  

This means that regardless of the data, the smoothness of the kernel function and the size 
of the bandwidth impose some degree of smoothness on the ICC estimates. Using as- 



JEFF DOUGLAS 27 

sumption A3, it is clear that if numbers c and d are chosen so that 0 < c < a < b < d < 
1, then inequality (30) given below holds: 

I e . , , ( 0 )  - P. , , (07,)[  -< Mc,d[ O - 0",1 <-- Mc,d/JZ,. (30) 

Next suppose that for all k E {1, 2 . . . . .  2J 2} and i ~ {1, 2, . . . ,  n} 

13 
[P,,,(oz) - e.,i(07,)l ~ 3" (31) 

For all 0 ~ (a, b) 

[P . ,~ (o )  - P . , , ( O ) l  < IP,,.~(o) - P..~(O"k)I + tP,,,,(O~,) - P..,(O~){ + tP,,,~(oT,) - P,,,~(O) I, 

(32) 

and by inequalities (29) and (30) for large enough n the first two terms of (32) are less than 
e/3, and if (31) holds as well [Pn,i(O) - f)n,i(O)l <- e. This would imply that 8n,a,b <-- e. 

Thus in order to show that (28) holds, it suffices to show that 

~ P Pn,i(O~) - en,i(Onk)[ > < oo, 
n = l  i = 1  k = l  

(33) 

because the inner double sum in (33) is greater than the summand in (28) for n large 
enough that the right side of (29) and (30) are less than e/3. 

Choose n o large enough so that for n > n 0, the right sides of (29) and (30) are less 
than e/3, the hypothesis of Lemma 5 is satisfied, and 3Mc,dCKh n < e/3. Then the triple sum 
given in (33) is less than 

= . z l .  2 

2 2 2n~/,0 + ~ ~ ~] P[IP,,,(O~) - P n , i ( O ~ ) l  > 3Mc,dCKh,]. (34) 
n>no i = 1  k = l  

Lemma 5 can be applied to show that (34) is less than 

2 2 2noJ, o + ~ 2nJ,Z(2 exp [ - D , n  3/2-3"] + MunrCI exp [-C2nl-2"]) .  
tl>no 

By replacing Jn with its upper bound, Mun r (A5), (35) can be bounded above by 

(35) 

2 2 2n0J,~o + ~ 2Mun2r+l(2 exp [ - D ~ n  3/2-3~] + MunrC1 exp [-C2na-2~]). (36) 
n~'no 

Because 0 < a < 1/2 the sum in (36) is finite, completing the outline of the 
proof. [ ]  
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