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It is often considered desirable to have the same ordering of the items by difficulty across 
different levels of the trait or ability. Such an ordering is an invariant item ordering (IIO). An IIO 
facilitates the interpretation of test results. For dichotomously scored items, earlier research,sur- 
veyed the theory and methods of an invariant ordering in a nonparametric IRT context. Here the 
focus is on polytomously scored items, and both nonparametric and parametric IRT models are 
considered. 

The absence of the IIO property in two nonparametric polytomous IRT models is discussed, 
and two nonparametric models are discussed that imply an IIO. A method is proposed that can be 
used to investigate whether empirical data imply an IIO. Furthermore, only two parametric poly- 
tomous IRT models are found to imply an IIO. These are the rating scale model (Andrich, 1978) 
and a restricted rating scale version of the graded response model (Muraki, 1990). Well-known 
models, such as the partial credit model (Masters, 1982) and the graded response model (Same- 
jima, 1969), do no imply an IIO. 

Keywords: invariant item ordering, item response theory, nonparametric polytomous IRT models, 
parametric polytomous IRT models. 

Many researchers use tests and quest ionnaires consisting of  polytomously scored 
items with ordered  answer categories to measure  personality traits, attitudes, opinions and, 
occasionally, knowledge and abilities. One  of  the topics researchers  are often interested in 
is the order ing of  the items according to difficulty level. Usually this item ordering is 
required to be the same in different subgroups that are relevant to the investigation. For  
example, it is of ten considered a sign of  differential i tem functioning or  item bias if such 
orderings are different for different gender,  ethnic or  social groups. Fur thermore ,  within 
one  homogeneous  group some respondents  may produce  unexpected patterns of  i tem 
scores given the results of  the vast majority or  given the statistical model  used to construct  
the test. The  person-fit  results of  such aberrant  individuals are bet ter  unders tood  if one 
s tandard i tem ordering has been  found to hold for the total group. In  general, an order ing 
of  items that  is the same, except for possible ties, in all possible subgroups f rom the 
popula t ion of  interest, to be deno ted  an invariant item ordering ( I IO;  Sijtsma & Junker,  
1996), facilitates the interpretat ion of  test results. 

This paper  has the following structure. First, the proper ty  of  I IO  is formally defined, 
followed by some prel iminary results. For  nonparametric polytomous  item response theory 
( IRT)  models  it is investigated which models  imply an I IO,  and a new nonparamet r ic  I R T  
model  is defined that  implies an I IO.  Next, the proper ty  of  I I O  is investigated for para- 
metric polytomous I R T  models,  and it is demons t ra ted  that two restrictive models  imply an 
I IO.  The  nonparamet r ic  model  that  was in t roduced here  is more  general than the two 
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existing parametric polytomous IRT models which imply an IIO. Finally, a nonparametric 
method is proposed to investigate the IIO property in empirical data, and this method is 
illustrated with an empirical data analysis. The large number of acronyms used in this 
paper is summarized in the Appendix. 

Definition of Invariant Item Ordering, and Preliminary Results 

Let each of the k polytomously scored items in the test or questionnaire have m + 1 
ordered answer categories. A fixed number of identically formatted answer categories 
across items is typical of attitude measurement where response categories usually are the 
same across the items; for example, "strongly disagree", "disagree", "neutral", "agree", 
and "strongly agree". For achievement measurement this number sometimes varies across 
items, for example, because different problems can require solution paths of varying com- 
plexity and for one item a finer grading of ordered responses may be more feasible than 
for another item. The important results for IIO discussed here are only valid for equal 
numbers of answer categories. 

IRT models for polytomous ordered item scores typically assume the existence of a 
unidimensional scalar latent trait 0 for person measurement (see Rosenbaum, 1987a, for 
treatment of multidimensional 0), and m latent parameters that characterize the thresh- 
olds between the answer categories. In different IRT models these threshold parameters 
can have different interpretations (Andrich, 1995; Masters, 1982; Mellenbergh, 1995). 
Andrich discusses two classes of polytomous IRT models, which he coines Thurstone 
models and Rasch models, and concludes that these classes are incompatible both alge- 
braically and with respect to the underlying process that leads to the item response. More 
specifically, he notes that in order to arrive at a response, Rasch models assume a process 
characterized by the simultaneous consideration of all thresholds whereas Thurstone mod- 
els assume that the choice of a particular answer category only depends on the thresholds 
bounding that category (Andrich, p. 115). The incompatibility of these classes of models, 
however, has no consequences for our investigation of IIO within these classes. 

We assume that for each item a score is recorded which is the count of the number 
of ordered thresholds passed by the respondent starting from the lowest category upwards 
and arriving at the category of his/her response. Let the random variable Xi denote the 
observable count on item i (i = 1 , . . . ,  k). We define the conditional expectation of the 
item score, % (Xil O) (i = 1 . . . .  , k), also known as the item response function (IRF; Chang 
& Mazzeo, 1994) within polytomous IRT models. %(Xi]O ) was used by Sijtsma and Junker 
(1996) to study the IIO property for IRT for binary item scores. Note that for x = 0, 1, 
%(XilO) = P(Xi = 110), which is the IRF for dichotomous items. Thus, for polytomous 
items %(XilO) seems to be an excellent choice to order items. 

Definition. A set of k items with rn + I ordered answer categories per item and thus 
m thresholds per item have an invariant item ordering (IIO) if the items can be ordered 
and numbered accordingly such that 

%(Xl10) <-- %(X2[0) -< " "  -< %(XklO); all 0. (1) 

Equation 1 allows for the possibility that for certain Os the ordering contains ties. 

Figure 1 shows IRFs for three items with five ordered answer categories each, scored 
x = 0 , . . . ,  4. The two items with the steepest curves have an IIO, but all three items taken 
together do not have an IIO. 
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FIOURE 1 
Item response functions for three items with five ordered answer categories each, scored x = 0 . . . . .  4. 

To investigate whether a particular polytomous IRT model implies an IIO, for items 
i andj  an expression is derived for the difference %(Xi]O ) - %(Xj[0): 

c~(XilO ) - c~(X/10 ) = Z x .P(Xi  = x[O) - Z x.P(X+ = x [ 0 )  

x x (2) 

= • [P(Xi >--xlO) - P(Xj  >-xl0) ]. 
x 

Note that P(X/-> 010) = 1 by definition. Further, we assume that P ( X  i >- m + 110 ) = 0. 
Items i and j have an IIO if the sign of the difference on the left does not change across 
0 from plus to minus, or vice versa. 

The conditional probabilities P(Xi  = xl 0) (Equation (2)) are of central interest in the 
class of adjacent-category models (Hemker, 1996, chap. 6, p. 6; Meltenbergh, 1995), which 
is closely related to the classes of divide-by-total models (Thissen & Steinberg, 1986) and 
Rasch models (Andrich, 1995). Andrich's (1978) rating scale model (RSM), Master's 
(1982) partial credit model (PCM), Verhelst & Glas' (1995) one parameter logistic model 
(OPLM), and Muraki's (1992) generalized PCM are adjacent-category models. The con- 
ditional probabilities P(Xi  >- xlO) (Equation (2)) are central in the class of cumulative 
probability models (Hemker, 1996, chap. 6, p. 5; Mellenbergh, 1995). This class is closely 
related to the class of difference models (Thissen & Steinberg, 1986) or Thurstone models 
(Andrich, 1995). Examples of cumulative probability models are Samejima's (1969) ho- 
mogeneous case of the graded response model (GRM) and Muraki's (1990) rating scale 
version of the GRM (RS-GRM). 

For adjacent-category models, P ( X  i >- xlO) can be obtained from the definition of 
P ( X  i = xlO ) by using 
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m 
P(Xi >-x[O) = ~ P(Xi = s[O). (3) 

$ = x  

For cumulative probability models, P(X i = xlO) can be obtained from the definition of 
P(Xi >- xlO) by using 

P(Xi =x[O) = P(X, >-xlO) - P(X, >-x + 110). (4) 

Note that converting one kind of probability into the other within the context of one 
particular IRT model can yield a result that is difficult to interpret in relation to the latent 
threshold parameters (e.g., Andrich, 1995; Mellenbergh, 1995). For our purposes, how- 
ever, it suffices to note that we can use P(Xi >- xlO) under any model to check Equation 
(2) for sign changes across 0. We call this probability the item step response function 
(ISRF; e.g., Hemker, Sijtsma, & Molenaar, 1995). 

The most general polytomous IRT model investigated here is the monotone homo- 
geneity model (MHM; Hemker, Sijtsma, & Molenaar, 1995; Molenaar, 1997). The MHM 
assumes (1) unidimensionality (UD) of measurement; (2) local independence (LI) of the 
item scores; and (3) ISRFs P ( X  i >-- xlO ) (all x, all i) that are nondecreasing in 0 without 
parametric restrictions (monotonicity assumption, denoted M). Because of the absense of 
parametric restrictions on the ISRFs, the MHM is a nonparametric IRT model. The MHM 
is related to models studied by Holland and Rosenbaum (1986) and Junker (1991). The 
next lemma concerning M will provide useful here: 

Lemma. The MHM assumes that the ISRFP(Xi >- x[O) is nondecreasing in 0 (M). By 
implication, polytomous IRT models that are special cases of the MHM have this property: 
the double monotonicity model (DMM; Molenaar, 1997), Scheiblechner's (1995) isotonic 
ordinal probabilistic (ISOP) model, the generalized PCM (Muraki, 1992), the OPLM 
(Verhelst & Glas, 1995), the PCM (Masters, 1982), the rating scale model (RSM; Andrich, 
1978), the GRM (Samejima, 1969), and the RS-GRM (Muraki, 1990). 

Proof. One of the assumptions of the DMM is M; the DMM further assumes UD and 
LI, and adds a fourth assumption that restricts the ordering of the ISRFs (Molenaar, 1997; 
also see (5), to be discussed later on). The ISOP model is based on UD, LI, and M, and 
adds a fourth assumption, different from the fourth assumption of the DMM, that restricts 
the ordering of the ISRFs (see (6); to be discussed later on). Hemker, Sijtsma, Molenaar, 
and Junker (1997) showed that the generalized PCM, and its special cases the PCM and 
the RSM, and the GRM are special cases of the MHM. This also holds for the OPLM, 
which may be characterized as a generalized PCM with imputed slopes. The RS-GRM is 
a special case of the GRM by definition (Muraki, 1990). Hence, for each of these models 
P ( X  i >-- xlO ) in nondecreasing in 0 (M). F3 

In the sequel we will not only investigate the IIO property for several polytomous IRT 
models, but also the property of an invariant ordering of the ISRFs. 

Nonparametric Polytomous IRT Models and IIO 

The Monotone Homogeneity Model for Polytomous Items 

From (3) it follows that the ISRFs of the same item can not intersect. ISRFs of 
different items are allowed to intersect. Thus the MHM does not imply an invariant or- 
dering of the ISRFs. From this result it follows that the sign of the difference between the 
x-th ISRF of item i and the x-th ISRF of item j can change across 0 (Equation (2), last 
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expression). Since this is true for allx = 1 . . . . .  k, the sign of (2) can change across 0. Thus 
the MHM does not imply an IIO. 

The Double Monotonicity Model for Polytomous Items 

The DMM (Molenaar, 1997) is based on the assumptions of UD, LI, and M, plus the 
fourth assumption that the ISRFs of different items have an invariant ordering across 0; that 
is, they do not intersect. This means that, for any pair of ISRFs of different items, say the 
s-th ISRF of item i and the r-th ISRF of item j, if for some 0 the first ISRF is smaller than 
the second, then for all 0 

P(Xi >- slO) <- P(X i >- riO). (5) 

Equation (5) implies that for fixedx (s = r) the difference of the ISRFs of items i and 
j can not show a sign change across 0. Different signs can occur, however, for different 
values of x: for example, it is possible to have P(X1 >- 1[0) < P(X 2 >- 110 ) for all 0, and 
P(X1 >- 210) > P(X2 >- 210) for all 0, and so on for higher x values. Thus, the sum of the 
differences of the ISRFs over x (last expression of Equation (2)) can show sign changes 
across 0. It follows that the DMM does not imply an IIO. 

A New Double Monotonicity Model that Implies an I I0  

The last expression of (2) suggests how to specialize the DMM into a new model that 
implies an invariant ordering of the ISRFs and an IIO. We consider two items, i and j; 
arbitrarily assume that i < j (see Definition); and require that 

P ( X  i ~x[O) <-P(X i >-xlO), all 0, allx. (6) 

Then from (2) we find that %(XilO ) <- %(Xj[0) for all 0. Thus an IIO is obtained for these 
two items. Equation (6) provides a restriction for pairs of corresponding ISRFs of different 
items. Equation (6) can be refuted by the data, in contrast with the structural restriction 
on the ordering of the ISRFs from the same item which holds by definition; see (4). The 
inequality relations between ISRFs defined in Equation (6) are a special case of a more 
general assumption discussed by Scheiblechner (1995, p. 285, Definition) which he called 
weak item independence, abbreviated W2. 

The new DMM version which implies an IIO is defined by UD, LI, and M; and further 
by an invariant ordering of the k x m ISRFs (Equation (5)); and for each x the same 
ordering, except for possible ties, of the x-th ISRFs of the k items (Equation (6)). This new 
model will be denoted the strong DMM in this paper. The original DMM, which is char- 
acterized by an invariant ordering of the ISRFs (Equation (5)), will be denoted the weak 
DMM. 

The strong DMM is sufficient for an IIO, but not necessary. This is apparent from the 
next counterexample, in which it is shown that if Equation (6) is not true for all x, then it 
is still possible to construct examples such that ~(Xi[O ) ~-~ ~(Sj-10), all 0. 

Example. Let m = 2; thus x = 0, 1, 2. Convenient choices for the ISRFs are: 

P(X i >~ 110 ) = exp (0)/I-2 + 2 exp (0)]; 

P(Xi >- 210) = exp (0)/[3 + 3 exp (0)]; 

P(Xj >- 110) = exp (0)/[1 + exp (0)]; and 

P(X i -> 210) = exp (0)/[6 + 6 exp (0)]. 
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Table 1 

Assumptions and Ordering Properties of ISRFs and Items of Four Nonparametric, 
Polytomous IRT Models; a ' + '  Means that an Assumption or Property is Present, 

a '-' that It is Absent. 

Assumption MHM Weak DMM Schei.DMM StrongDMM 

Un id imens iona l i t y  + + + + 

Local Independence + + + + 

Monoton ic i ty  in  0 + + + + 

Non in te rsec t ion  ISRFs + + 

Ordering ISRFs (Eq.6) + + 

Order ing Proper ty  

I n v a r i a n t  ISRF Ordering + + 

I n v a r i a n t  Item Ordering + + 

With these definitions it can easily be checked that P(Xi >- 1[0) < P(Xj >_ 110); however, 
P(Xi >- 210) > P(Xj > 2t 0). Together these inequalities contradict Equation (6); there- 
fore, the strong DMM does not hold. For this parameter setup, however, 

5 
%(xil0) = P(Xi  >- l l0)  + P(Xi >- 210) = g × 

7 
~g(XjtO) = P(X~ >- 11o) + P(X/>_ 210) = g x 

This result readily shows that %(Xi[O ) < %()t~[0), all 0. 

exp (0) 

1 + exp (0 ) '  

exp (0) 

1 + exp (0)" 

If the assumption of an invariant ordering of the ISRFs (Equation (5)) is dropped, the 
resulting model based on UD, LI, M, and (6) still implies an IIO. This is exactly Schei- 
blechner's (1995) ISOP model specialized to polytomous items, to be denoted here as 
Scheiblechner" s DMM. 

Table 1 summarizes the assumptions of the MHM, the weak DMM, Scheiblechner's 
DMM, and the strong DMM. In addition, the results with respect to the invariant ordering 
of the ISRFs and the items have been included. 

Parametric Polytomous IRT Models and IIO 

The Partial Credit Model and a Special Case 

The Partial Credit Model The PCM (Masters, 1982) is based on UD and LI and, 
further, parametrically defines the probability P ( X  i = x[O), also denoted the category 
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characteristic curve (CCC). Each item is characterized by m transition parameters (Mas- 
ters, 1982) or threshold parameters (Andrich, 1995) denoted 8/x (x = 1, . . . ,  m). In the 
PCM 

x 

exp [ ~  (0 - 8u)] 
s = l  

P(X~ = x I 0) = (7) 

exp [ ~  ( 0 -  8,,)] 
q=0 s=l 

There are no restrictions on the distances between the locations of the CCCs of one item. 
The next numerical example shows that the CCCs of different items can be chosen such that 
an IIO is not implied. Thus, the PCM does not imply an IIO. By implication it also follows 
that the OPLM (Verhelst & Glas, 1995), and the generalized PCM (Muraki, 1992) do not 
imply an IIO. 

Example. Let us assume that the PCM holds, and that k = m = 2. For item i, 6 n = 
- 1  and ~i2 = 1, and for item j, 6jl = - 2  and 8j2 = 2. Substitution of these values in (7) 
yields 

P(X, 

P(X, 

P(Xj 

P(Xj 

= 110) = exp (0 + 1)/~i; 

= 210) = exp (20)/'tri; 

= 110) = exp (0 + 2)/~j;  and 

= 210) = exp (20) /%;  

with a-It i = 1 + exp (0 + 1) + exp (20), and ~ j  = 1 + exp (0 + 2) + exp (20). By means 
of these probabilities the cumulative probabilities needed in (2), P(Xi >- x[O) and 
P(Xj >- xlO), can be obtained: 

P(X,. --> 110) = [exp (0 + 1) + exp (20)]/qtl; 

P(Xi >-- 210) = exp (20)/~i;  

P(X i >-- 110) = [exp (0 + 2) + exp (20)] /%;  and 

P(X~ - 2t0) = exp (20) /%.  

Summation of the first two probabilities yields %(Xi10), and of the last two %(Xit0): 

%(XitO) = [exp (0 + 1) + 2 exp (20)]/~i ;  and 

%(XjI0) = [exp (0 + 2) + 2 exp (20)]/~j .  

After some algebra it follows that %(Xi[O ) -> %(Xjl0 ) if 

exp (0)[exp (20) - 1][exp (2) - exp (1)] >-- 0, 

thus, if exp(20) -> 1. Therefore, if 0 - 0, then %(XilO ) - %(Xjl0), otherwise %(XilO ) < 
%(xjl0). 

The Rating Scale Model. The RSM (Andrich, 1978) is a special case of the PCM in 
that it is assumed that 8/~ = 8 i + ~'x; 8i is a location parameter, and the thresholds are 
characterized by m parameters ~'x (x = 1 . . . . .  m). The total number of item parameters 
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thus is reduced from k x rn in the PCM to k + rn in the RSM. The item parameter ~i is 
defined as the mean of the 6/xS across x. The CCC is defined as 

x 

exp [ ~  ( 0 -  6 , -  %)] 
s = l  

e(x,  = x l 0 )  = (8) 

exp [ ~  ( 0 -  6 i -  ~7)] 
q = 0  s : l  

Patterns of corresponding Ys of different items i andj can be obtained through translations 
equal to ~i - By. We will show that the RSM implies an IIO. 

Theorem 1. The RSM implies an IIO. 

Proof. We will use the notational convention that i < j implies 8j - 6i. Let 
Aij = 8i - 8j >--- O, then in the RSM 

P(Xj =xl0)  = e(x, =xlo + A,j), altx. 

To show that %(Xi[O) - %(X/0) (see Equation (2)) has no sign changes across 0, we 
take the step from CCCs to ISRFs: 

m 

e(x+ >-xlo) = E e(xj  = slo) 
$ =Jr 

= ~ P(Xi = s[O + A#) (9) 

= P(Xi >-x[O + A0); allx. 

Under the RSM, P(Xi >- x[ O) is nondecreasing in 0 (Lemma). Combination of this knowl- 
edge and (9) yields 

P(Xi >>-x[O) <- P(Xi >-xtO + A o) = P(Xj >--x[O ). (10) 

Equation (10) is equivalent to Equation (6); therefore, the RSM implies an IIO. Together 
with UD, LI, and M, this result further demonstrates that the RSM is a special, parametric 
case of Scheiblechner's DMM. [] 

The Graded Response Model and a Special Case 

The Graded Response Model The GRM (Samejima, 1969) is based on UD and LI 
and, further, has a parametric definition of the ISRF, P(Xi >- x[O). Within the same item, 
the ISRFs have a fixed order, parameterized by rn threshold parameters with hi1 - Ai2 

. . . < A i m  , but the distances between adjacent ISRFs of the same item are free to vary. 
Furthermore, each item is characterized by a positive discrimination parameter, a i. The 
ISRF is defined as 

exp [ai(O - A~)] 
P(Xi >--xlO) = 1 + exp [ai(0 - An)]" (11) 

The relative position of the ISRFs of different items is not restricted. In addition, the 
ISRFs of different items can have different slopes which causes these ISRFs to cross. Both 
characteristics separately imply that patterns of ISRFs of different items can be con- 
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structed so as to create violations of an IIO. This is shown for the positioning of ISRFs, 
even if they have equal slopes, by means of the next numerical example. 

Example. Let us assume that ot i = ot] = 1, and that k = m = 2. For item i, Ail = 0 
and Ai2 = ln(20), and for item j, hjl = ln(2) and Aj2 = ln(10). Substitution of these values 
in (11) yields 

P(X~ >- 110) = exp (0)/[1 + exp (0)]; 

P(Xi >- 210) = exp [0 - In (20)]/{1 + exp [0 - In (20)]} = exp (0)/[20 + exp (0)]; 

P(Xj -> I[0) = exp [0 - In (2)]/{1 + exp [0 - In (2)]} = exp (0)/[2 + exp (0)]; and 

P(Xj >-- 210) = exp [0 - In (10)]/{1 + exp [0 - In (10)]} = exp (0)/[10 + exp (0)]. 

The first two probabilities determine %(Xi[O), and the last two %(Xj[0). Thus, 

%(Xi[O) = [21. exp (0) + 2. exp (20)]/{[1 + exp (0)][20 + exp (0)]}; and 

%(Xjt0 ) = [12. exp (0) + 2. exp (20)]/{[2 + exp (0)][10 + exp (0)]}. 

After some algebra, it follows that %(X/J0) -> %(Xj[0) if 

9 exp (0) x [20 - exp (20)] -> 0, 

thus, if exp(20) -< 20. Therefore, if 0 -< [ln(20)]/2, then %(XilO) >- %(A~]0), otherwise 
%(Xi[O ) < %(Xj]0). Thus, the GRM does not imply an IIO. 

A Rating Scale Version of the GRM. The RS-GRM (Muraki, 1990) is a special case of 
the GRM in that it restricts the location parameter. Let A i denote the location parameter 
of item i, and/3 x the location parameter of the x-th ISRF. By assuming that A/x = h i + J~x, 

the ISRF of the RS-GRM is defined as 

exp [ O a i ( O  - Xi - ~x]  

P(Xi >--xlO) = 1 + exp [Dai(O - t~ i - -  [~x]' (12) 

where D is a scaling constant that puts the 0-scale in the same metric as the normal ogive 
model, and a i is a positive discrimination parameter that varies over items. 

Unlike the RSM, the RS-GRM does not allow an IIO. This follows immediately from 
the model property that ISRFs of different items can have different slopes. By introducing 
the restriction that the slope is equal for all ISRFs (a  i = a; all i), an IIO can, however, be 
obtained. We will call this model the Restricted RS-GRM. 

Theorem 2. The Restricted RS-GRM implies an IIO. 

Proof Assuming that Aj -< Ai; defining Aij = Ai - Aj ~ 0;  and maintaining the 
notational conventions used thus far, in the Restricted RS-GRM 

P(Xj >-x[O) = P(Xi >-xlO + A/j), allx; 

from (9). From the Lemma we have that P(Xi >- xl O) is nondecreasing in 0. Combination 
of this knowledge and Equation (9) for the RSM yields (10) (with hij replaced by Aij). 
Therefore, the Restricted RS-GRM implies an IIO. Because all ISRFs have the same 
slope, it also readily follows that ISRFs of different items cannot intersect. Therefore, all 
five assumptions listed in Table I hold for the Restricted RS-GRM, which thus is a special, 
parametric case of the strong DMM. [] 
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Four Models that Imply an IIO 

The strong DMM, the RSM, and the Restricted RS-GRM are special cases of Schei- 
blechner's DMM, and the Restricted RS-GRM is a special case of the strong DMM. The 
relation between the RSM and the strong DMM, and between the RSM and the Restricted 
RS-GRM is studied next. 

The RSM and the strong DMM. The RSM shares four assumptions with the strong 
DMM, but it is unknown for the RSM whether the ordering of the ISRFs is invariant 
across 0. To investigate this, the difference of the ISRFs, P(X i >- xlO ) and P(Xj - x + 110), 
of the RSM is rewritten using (4) and (10): 

P(Xi>-xtO) -P(Xj .>-x  + 110) =P(X~=xlo)+[P(X~>-x+ltO) 

- P ( X i > - x +  1[0 + Aii)]. 

The difference between brackets is always negative because in the RSM the ISRF is 
increasing in 0 (see Lemma). Thus the sign of the total sum on the right-hand side depends 
on P(Xi = x[ 0); equivalently, the sign of the difference on the left-hand side can vary across 
0. Let us consider an example for k = m = 2; 6i = 3; and "r 1 = - 1  and "t'2 = 1. We will 
assess P(X i >- 1t0) - P(Xy -> 210). For 0 = 0 and Aij = 3 (meaning that 3y = 0) the 
difference between the ISRFs equals -.091; for 0 = 5 (same Aq) the difference equals .005. 
Under the RSM the ISRFs thus are not invariantly ordered; therefore the RSM is not a 
special case of the strong DMM. Because the RSM has a parametric CCC (Equation (8)) 
and the strong DMM a nonparametric CCC (defined as in Equation (4)), the latter model 
neither is a special case of the former. 

The RSM and the Restricted RS-GRM. Thissen and Steinberg (1986) showed that the 
more general PCM and GRM do not have a hierarchical relation. A proof for the special 
cases RSM and Restricted RS-GRM follows the same line of reasoning, and is therefore 
omitted here. Table 2 shows the relations between the four models that imply an IIO. 

Methods to Investigate Invariant Ordering of ISRFs and an IIO 

Investigating Invariant Ordering of ISRFs Across 0 
In this section, methods are proposed for investigating in empirical data whether a set 

of ISRFs have an invariant ordering across 0 (Equation (5)), and whether an IIO holds 
(Equation (6)). The methods do not assume a particular parametric definition of the ISRF, 
for example, as is done in the RSM and the Restricted RS-GRM. A model-data fit 
investigation of, e.g., the RSM would also provide evidence of IIO, but is not pursued here. 

First, univariate and bivariate proportions are defined that are relevant for the inves- 
tigation whether ISRFs intersect, and whether items can be invariantly ordered. Let G(O) 
be a probability distribution function. Then the univariate proportions zr + are equal to 

+ = foP(Xi >-x]O) dG(O) q'rix 

(13) 

m 

= X/' xi = s ) .  
$ = x  
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Table 2 

Assumptions and Ordering Properties of Four Polytomous IRT Models that Imply 
an Invariant Item Ordering; a ' + '  Means that an Assumption or Property is 

Present, a '- '  that It is Absent. 

Assumption Schei .DMM Strong DMM RSM ResRS-GRM 

Unidimensional i ty  + + + + 

Local Independence + + + + 

Monotone ISRF in 8 + + + + 

Parametric ISRF/CCC + + 

Nonintersect ion ISRFs + + 

Ordering ISRFs (Eq.6) + + + + 

Ordering Property 

Invar ian t  ISRF Ordering 

Invar ian t  Item Ordering + 

+ + 

+ + q- 

The population proportion ~r + can be estimated by summation of the appropriate sample 
frequencies n/x in answer category x of item i and dividing by the sample size n (Sijtsma, 
Debets, & Molenaar, 1990). 

Besides x and s, item score indices g, h, r and t are used. The bivariate population 
proportion that has at least score s on item i and at least score r on item j is 

7r"Jr( + +) = fo P(X~ >-slO)e(s / >-riO) dG(O) 
(14) 

g=s h=r 

Let nis,jr(+ +)  denote the joint sample frequency with a score of at least s on item i and 
a score of at least r on item j,  then 7ris,jr(+ +)  can be estimated by summation of appro- 
priate sample frequencies and dividing by n (Sijtsma et al., 1990). 

Finally, we need the joint proportions that have at most a score s - 1 on item i, and 
at most a score r - 1 on item j: 

~,,~,(--) = foP(X~ < slO)e(sj < riO) dG(O) 
(15) 

$-1  r - 1  

= ~ ~P(X i=g ,X /=h) .  
g=0 h=0 
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Assume that the joint sample frequency with a score lower than s on item i and a score 
lower than r on item j is denoted by nis,jr(-- -- ). Then "ffis,jr(---) can be estimated by 
summation of appropriate sample frequencies and dividing by n (Sijtsma et al., 1990). 

Next, a method is discussed for investigating whether the ISRFs have an invariant 
ordering across 0. An adaptation of the method can be used to investigate whether an IIO 
holds. Assume that the r-th ISRF of i temjl and the t-th ISRF of item j2 are ordered such 
that 

P(Xjl >--riO) <-P(Xj2 >-tlo),  all 0. (16) 

Given LI and the invariant ordering of the ISRFs, it can be shown (Molenaar, 1997) that 

~lTis,jlr(-~" "~ ) "~ "Ti'is,j2t('~ ~- ). (17) 

The symmetric P (+  +)  matrix of order k m ×  km with elements ~ris,jr( + +) (i, j = 1, . . . ,  
k, i :~ j ,  s, r = 1, . . . ,  m) is defined. Rows and columns are ordered corresponding to the 
increasing ordering along the marginals of the proportions 7r + (Equation (13)). Given this 
ordering, the rows and columns must be monotonely nondecreasing if the ISRFs are 
invariantly ordered across 0; see (17). Proportions referring to the same item, ql'is,ir(+ +) 
(s, r = 1 . . . . .  m) ,  can not be observed through sample fractions because this would 
require independent replications of the same item with the same subjects. 

Analogously to the P (+  +)  matrix, the symmetric km × km P( - - ) matrix is defined. 
This matrix contains the joint proportions "iYis,jr(-- --). We assume the ordering of the r-th 
ISRF of item j l  and the t-th ISRF of item j2 to be the same as in Equation (16). Then it 
can be shown along similar lines as with (17) that 

qTis,jlr ( -  --) ~ qT/s,j2t(-- - -  ) .  (18) 

The P ( - - )  matrix can thus be arranged such that the orderings of rows and columns 
correspond with the decreasing ordering along the marginals of the proportions 1 - "n "+. 
Given this arrangement, rows and columns must be monotonely nonincreasing if the ISRFs 
have an invariant ordering across 0; see (18). 

Rewriting (17) and (18) in the form of conditional probabilities yields the following 
results, respectively (see Sijtsma & Junker, 1996, for dichotomous items): 

P(Xjl >- rlXi >-- s) <- P(X~. 2 >- tlXi >- s); (19a) 

P(Xj, >- rlSi < s) <- P(X~2 >- tlXi < s). (19b) 

From these equations it can be concluded that the P (+  +)  and P ( -  - )  matrices provide 
independent sources of information about the invariant ordering of ISRFs. The sample 
fractions corresponding to the probabilities in (19a) and (19b) can be used to investigate 
the invariant ordering of the ISRFs in groups that are located at relatively low and high 
regions of the scale. This is done for all pairs of ISRFs that belong to different items, and 
per pair the conditioning is on a large number of different splits of the sample. 

Investigating I I 0  

First, an example is discussed using data from three items which contain many vio- 
lations of the assumption of invariantly ordered ISRFs and which do not support an IIO. 
Next, results for four other items are discussed which support invariant ordering of ISRFs, 
and also an IIO. 

Example 1. This example pertains to a subscale (k = 3; x = 0, 1, 2, 3) of a ques- 
tionnaire (Cavalini, 1992) on annoyance due to industrial malodour (n = 828). In addition 
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to invariance of the ordering of ISRFs, nondecreasingness of ISRFs in 0 is also inspected 
because violations of M can be an important source of information about invariant order- 
ing of ISRFs. 

Table 3 shows the sample P(+  +)  and P ( -  - )  matrices under the weak DMM. These 
matrices contain several violations of the expected orderings in rows and columns (Equa- 
tions (17) and (18)). A detailed analysis with the computer program MSP (Molenaar, 
Debets, Sijtsma, & Hemker, 1994), not displayed here for reasons of space, showed that 
the two matrices together contained 27 violations, of which 14 were significant (5% level; 
test by Molenaar, 1970, chap. 3, Formula 5.5). The significant violations each involved 
intersections of the ISRFs of Item #1 with the ISRFs of Item #2 and Item #4. 

The nondecreasingness of the ISRFs of item #1 was investigated by means of the 
empirical regression of the proportion of respondents with at least a score x on item i on 
the total score, denoted R, on the other two items (R = 0, 1 , . . . ,  6). Hemker, Sijtsma, 
Molenaar, and Junker, (1996) argued that in testing, the highly frequent use of the un- 
weighted total score as a proxy for 0 has a long history. Further motivation for interest in 
the unweighted total score comes from its usually high correlation with many statistics that 
may be more appropriate to estimate 0, or an ordering on 0 (Hemker et al., 1997), and 
from the ordinal consistency results of e.g. Junker (1991). We thus recognize potential 
weaknesses of the unweighted total score, and use the regressions, denoted ~r/xlR (Tr de- 
notes a sample fraction), only as proxies of the ISRFs. 

Figure 2 shows that 7r121R and 7r131R are decreasing at the lower end of the scale, and 
relatively flat in the middle and at the higher end. Statistical testing (Molenaar, 1970, chap. 
4, Formula 2.37) revealed that ~121R and ~131R had two and three significant decreases, 
respectively. For Item #2, ~r211R, and for Item #4, ~'41lR, both had one significant decrease. 
These results provide an explanation for the results on intersection spotted by the P(+  +) 
- P ( - - )  methodology. 

An appropriate permutation of the rows and columns of the P(+  +) and P ( - - )  
matrices renders them suitable for the investigator of (6). The item means are 1.33 (#4), 
1.38 (#2), and 1.86 (#1). The item ordering by mean score suggests the same ordering of 
thex-th (x = 1, 2, 3) ISRF across the items (Equation (6)). In Table 3 it can be seen that 
the third 1SRF of Items #4 and #2 has an ordering reverse to the ordering based on item 
means. This implies that the first two rows and columns of the P(+  +) and P ( -  - )  matrices 
must be interchanged so as to create matrices denoted P(+  +)s and P ( -  -)s.  Theoreti- 
cally, in P (+  +)s rows and columns must be monotonely nondecreasing and in P ( -  - ) s  
monotonety nonincreasing. 

A visual inspection of Table 3 reveals that the permutation would create two addi- 
tional violations in the P( + + ) matrix, and one in the P ( -  - ) matrix. These results suggest 
that the permutation of only the ISRFs "23" and "43" is insufficient to satisfy Equation (6) 
and that these data do not support an IIO. The researcher could be adviced to look for 
meaningful subgroups for which different IIOs hold, or to inspect item contents. Indeed, 
Items #2 ("no laundry outside") and #4 ("no blankets outside") seem more strongly 
related with each other than with Item #1 ("keep windows closed"), which seems to be a 
more general reaction to industrial malodour in the vicinity of one's home. 

Example 2. Detailed results, not reported here, for another subscale (k = 4) from the 
same questionnaire showed that the P(+  +)  and P ( -  - )  matrices had the correct order- 
ings under the strong DMM (based on the sample item means: 0.54 (#6), 0.65 (#13), 0.78 
(#15), and 0.98 (#14): These matrices thus were equivalent with the P(+  +)s and P ( -  _)s 
matrices. The matrices did not contain significant violations from the expected orderings. 
Figure 3 shows the four triples of regressions, ~r~l R- 

None of the local decreases was significant. Apart from small fluctuations, the order- 
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Table 3 

P(+ +) and P(--) Matrices for 3 Items with 4 Ordered Answer Categories Each. 
Original Item Numbering is Maintained. Rows and Columns to be Interchanged 

for Strong DMM in Italics. 

P(++) matrix 

Item 2 4 1 4 2 1 

3 3 3 2 2 2 

~+ .28 .30 .38 .43 .43 .60 

Item ~ ~is ÷ 

4 2 1 

1 1 1 

• 60 . 6 6  . 8 9  

2 

4 

1 

4 

2 

1 

4 

2 

1 

3 

3 

3 

2 

2 

2 60 

1 60 

1 66 

1 89 

28 .24 .20 

30 .24 .20 

38 .20 .20 

43 .25 .23 

43 .28 .24 

.24 .26 

.26 .25 

.29 .27 .41 

.29 .41 

P(--) matrix 

Item 
> 

I -zzis + 
Item -> l-#is * 

.27 

.25 

.23 

.37 

.35 

.28 

.24 

.37 

.36 

.40 

.42 

.24 

.26 

.35 

.36 

.41  

.43 

.26 .27 

• 2 9  . 2 9  

• 25 .27  

.41 .41 

• 40  • 42 

.41 .43 

.55 

.55 

• 57 . 6 2  

.57 

.62 

2 4 1 4 2 1 4 2 1 

3 3 3 2 2 2 1 1 1 

.72 .70 .62 .57 .57 .40 .40 .34 .11 

2 3 .72 

4 3 .70 

1 3 .62 

4 2 .57 

2 2 .57 

1 2 ,40 

4 1 .40 

2 1 .34 

1 1 .11 

• 66 

.54 

.54 

.36 

.38 

.10 

.66 

.52 

.54 

.36 

.33 

.I0 

.54 

.52 

.42 

.42 

.27 

.23 

.54 

.42 

.51 

.32 

.32 

.i0 

.54 

.42 

.51 

.32 

.36 

.10 

.36 

.36 

.32 

.32 

. 2 0  

.17 

.38 

.27 

.36 

.20 

.29 

.08 

.33 

.23 

.32 

.17 

.29 

.08 

.10 

.10 

. i0 

. i0 

.08 

.08 
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ing of the regressions for fixedx is invariant to a considerable degree across the four items. 
Most intersections appear at the higher end of the scale where the fractions were based on 
small restscore groups (R = 7, 8, 9; group size varied from 6 to 24). A detailed analysis 
revealed 18 reversals within pairs from the expected ordering, of which only one reached 
significance (test discussed by Molenaar, 1970, chap. 3, Formula 5.5). The second item set 
thus supports an IIO. 

Discussion 

An IIO can prevent cumbersome problems of interpretation that might arise if item 
orderings are different in different relevant subgroups. Different item orderings for dif- 
ferent measurement levels would call at least for additional research to reveal the cause of 
these differences. This is not to say that psychometric models that do not imply an IIO are 
not useful. Indeed, many of such IRT models have proven themselves to be very useful in 
test construction. 

The weak DMM (Molenaar, 1997), the PCM (Masters, 1982), and the GRM (Same- 
jima, 1969) do not imply an IIO. By implication, this is also true for generalizations of these 
models, such as Muraki's (1992) generalized PCM, the OPLM (Verhelst & Glas, 1995), and 
the MHM. The RSM (Andrich, 1978), the Restricted RS-GRM (a special case of a model 
proposed by Muraki, 1990), the strong DMM, and Scheiblechner's (1995) DMM do imply 
an IIO. 

The usefulness of the P (+  +) - P ( -  - )  methodology was investigated for checking 
the fifth assumption (see also (6)) of the strong DMM with respect to the ordering of the 
ISRFs, which is also an assumption of Scheiblechner's DMM, and which secures an IIO. 
This methodology may be seen as a first attempt to check this crucial assumption. Much 
is unknown so far, and future research might address issues of power, Type I error, and 
chance capitalization. Other methods to investigate the IIO property may be derived from 
methods for dichotomous items proposed and surveyed by Sijtsma and Junker (1996). Such 
methods include the use of ordering properties based on joint proportions of item score 
patterns on n items (2 -< n < k) as a generalization of the P (+  +) - P ( -  - )  methodology, 
and the pairwise comparison of the IRFs, mainly based on work of Rosenbaum (1987a, 
1987b). 

Appendix 

List of acronyms 
Technical terms: 

CCC : 
IIO : 
IRF : 
IRT : 

ISRF : 
LI : 
M : 

UD : 

Item response 

DMM : 
GRM : 
ISOP : 

category characteristic curve 
invariant item ordering 
item response function 
item response theory 
item step response function 
local independence 
monotonicity 
unidimensionality 

models: 

double monotonicity model 
graded response model 
isotonic ordinal probabilistic model 
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MHM 
OPLM 

PCM 
RS-GRM 

RSM 

: monotone homogeneity model 
: one parameter logistic model 
: partial credit model 
: rating scale version of the graded response model 
: rating scale model 

References 

Andrich, D. (1978). A rating scale formulation for ordered response categories. Psychometrika, 43, 561-573. 
Andrich, D. (1995). Distinctive and incompatible properties of two common classes of IRT models for graded 

responses. Applied Ps),~chotogical Measurement, 19, 101-119. 
Cavalini, P. M. (1992). It's an ill wind that brings no good. Studies on odour annoyance and the dispersion of odorant 

concentrations from industries. Unpublished doctoral dissertation, University of Groningen, The Netherlands. 
Chang, H,  & Mazzeo, J. (1994). The unique correspondence of tile item response function and item category 

response functions in polytomously scored item response models. Psychometrika, 59, 391-404. 
Hemker, B. T. (1996). Unidimensional IRT models for polytomous items, with results for Mokken scale analysis. 

Unpublished doctoral dissertation, Utrecht University, The Netherlands. 
Hemker, B. T., Sijtsma, K., & Molenaar, I. W. (1995). Selection of unidimensional scales from a multidimensional 

item bank in the polytomous Mokken IRT model. Applied Psychological Measurement, 19, 337-352. 
Hemker, B. T., Sijtsma, K., Molenaar, I. W., & Junker, B. W. (1996). Polytomous IRT models and monotone 

likelihood ratio of the total score. Psychometrika, 61, 679-693. 
Hemker, B. T., Sijtsma, K., Molenaar, I. W., & Junker, B. W. (1997). Stochastic ordering using the latent trait 

and the sum score in polytomous IRT models. Psychometrika, 62, 331-347. 
Holland, P. W., & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in monotone latent 

variable models. The Annals of Statistics, 14, 1523-1543. 
Junker, B. W. (1991). Essential independence and likelihood-based ability estimation for polytomous items. 

Psychometrika, 56, 255-278. 
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174. 
Mellenbergh, G. J. (1995). Conceptual notes on models for discrete polytomous item responses. Applied Psy- 

chological Measurement, 19, 91-100. 
Molenaar, W. (1970).Approximations to the Poisson, binomial, and hypergeometric distribution functions. Amster- 

dam: Mathematical Centre Tracts 31. 
Molenaar, I. W. (1997). Nonparametric models for polytomous responses. In W. J. van der Linden & R. K. 

Hambleton (Eds.), Handbook of modem item response theory (pp. 369-380). New York: Springer. 
Molenaar, I. W., Debets, P., Sijtsma, K., & Hemker, B. T. (1994). User's manual MSP. Groningen, The Neth- 

erlands: iecProGAMMA. 
Muraki, E. (1990). Fitting a polytomous item response model to Likert-type data. Applied Psychological Mea- 

surement, 14, 59-71. 
Muraki, E. (1992). A generalized partial credit model: application of an EM algorithm. Applied Psychological 

Measurement, 16, 159-176. 
Rosenbaum, P. R. (1987a). Probability inequalities for latent scales. British Journal of Mathematical and Statistical 

Psychology, 40, 157-t68. 
Rosenbaum, P. R. (1987b). Comparing item characteristic curves. Psychometrika, 52, 217-233. 
Samejima, F. (1969). Estimation of latent trait ability using a response pattern of graded scores. Psychometrika 

Monograph, No. 17. 
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60, 281-304. 
Sijtsma, K., Debets, P., & Molenaar, I. W. (1990). Mokken scale analysis for polychotomous items: theory, a 

computer program and an empirical application. Quality & Quantity, 24, 173-188. 
sijtsma, K., & Junker, B. W. (1996). A survey of theory and methods of invariant item ordering. British Journal 

of  Mathematical and Statistical Psychology, 49, 79-105. 
Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51, 567-577. 
Verhetst, N. D., & Glas, C. A. W. (1995). The one parameter logistic model. In G. H. Fischer & I. W. Molenaar 

(Eds.), Rasch models. Foundations, recent developments, and applications (pp. 215-237). New York: Springer. 

Manuscript received 1/30/96 
Final version received 6/11/97 


