psychometrika—vol. 67, no. 3, 137–160 september 2002

AN EXAMINATION OF INDEXES FOR DETERMINING THE NUMBER OF CLUSTERS IN BINARY DATA SETS

EVGENIA DIMITRIADOU¹

INSTITUT FÜR STATISTIK UND WAHRSCHEINLICHKEITSTHEORIE TECHNISCHE UNIVERSITÄT WIEN

SARA DOLNIČAR

INSTITUT FÜR TOURISMUS UND FREIZEITWIRTSCHAFT WIRTSCHAFTSUNIVERSITÄT WIEN

ANDREAS WEINGESSEL

INSTITUT FÜR STATISTIK UND WAHRSCHEINLICHKEITSTHEORIE TECHNISCHE UNIVERSITÄT WIEN

The problem of choosing the correct number of clusters is as old as cluster analysis itself. A number of authors have suggested various indexes to facilitate this crucial decision. One of the most extensive comparative studies of indexes was conducted by Milligan and Cooper (1985). The present piece of work pursues the same goal under different conditions. In contrast to Milligan and Cooper's work, the emphasis here is on high-dimensional empirical binary data. Binary artificial data sets are constructed to reflect features typically encountered in real-world data situations in the field of marketing research. The simulation includes 162 binary data sets that are clustered by two different algorithms and lead to recommendations on the number of clusters for each index under consideration. Index results are evaluated and their performance is compared and analyzed.

Key words: number of clusters, clustering indexes, binary data, artificial data sets, market segmentation.

Introduction

Clustering is the partitioning of a set of objects into groups so that objects within a group are "similar" and objects in different groups are "dissimilar". Thus the purpose of clustering is to identify "natural" structures in a data set. In real-life clustering situations, the researcher is confronted with crucial decisions such as choosing the appropriate clustering method and selecting the number of clusters in the final solution. The latter is considered to be an unsolved problem of great significance: The success of the research actually depends on this decision. Numerous strategies have been proposed for finding the right number of clusters and such measures (indexes) have a long history in the literature. They can be broadly divided into dependent measures, which must be used in combination with a specific clustering algorithm (e.g., Hall, Duda, Huffman, & Wolf, 1973) and independent measures that can be applied to any algorithm. Independent measures (see Milligan, 1981) an independently obtained partition must be specified a priori or obtained by clustering a separate data set. Its main disadvantage is that other a priori information

¹Author names are listed in alphabetical order.

This piece of research was supported by the Austrian Science Foundation (FWF) under grant SFB#010 ("Adaptive Information Systems and Modeling in Economics and Management Science").

The authors would like to thank the anonymous reviewers and especially the associate editor for their helpful comments and suggestions.

Requests for reprints should be sent to A. Weingessel, Institut für Statistik, Technische Universität Wien, Wiedner Hauptstraße 8-10/1071, A-1040 Wien, AUSTRIA.

can not be obtained for the empirical data sets. For the second category, the internal measures (see Milligan & Cooper, 1985), the information from within the clustering process is used. The internal measures represent the "goodness" of the fit between the input data and the resulting cluster partition.

Monte Carlo evaluations of these measures have been conducted by researchers in order to analyze and compare their performance (see Milligan, 1981, 1980; Milligan & Cooper, 1985).

The focus of this paper is on binary data sets. Most of the literature on binary data has emerged from the field of psychometrics, biology (Baroni-Urbani & Buaser, 1976; Baulieu, 1989; Cheetham & Hazel, 1969; Gower, 1985; Hubalek, 1982; Li & Dubes, 1989) and marketing (Arabie & Hubert, 1996; Cox, 1970; Dolnicar, Grabler, Mazanec, 2000; Formann, 1984; Green, Tull, & Albaum, 1988; Ramaswamy, Chatterjee, Cohen, 1996; Rost, 1996). The central motivation underlying this piece of work is the lack of recommendations for determining the correct number of clusters in binary data sets similar to those encountered in empirical research. More specifically, we evaluate the performance of 15 indexes on artificial binary data sets, designed to reflect real-world data situations, and we investigate which characteristics of empirical data sets cause systematic difficulties in determining the correct number of clusters.

The paper is organized as follows: The following two sections give details on the study carried out. They contain a description of the artificial binary data scenarios and of the clustering algorithms used for the simulations. In the section "Criteria for the Comparison of Results", the criteria used to determine the quality of the indexes are presented. The results section starts with an evaluation of the performance of the indexes, after which the influence of the data sets" design factors on the results is investigated and an ANOVA is performed. The results are compared with latent class analysis. A summary section concludes the paper.

Binary Data Scenarios

The data generated are based on scenarios presuming typical features—and their variations encountered in real-life data: the size of the survey sample, the number of questions chosen for analysis, the number of clusters in the sample, the size of the clusters, the factor structure of the items (groups of variables, testing similar underlying constructs), the degree of interdependence among questions, and the average agreement level of every cluster with regard to each question.

All these issues were included in an extensive scenario design. Translating the points listed above into technical terminology leads to the following scenario design variations: 162 12dimensional binary data sets are used in the experiments. Each variable models a "1/0" (e.g., "yes/no") statement in a questionnaire. Structure is introduced in the data by creating 6 types of respondents with different answering behavior. Table 1 depicts the basic scenario. An "H" entry in the table means that the variable has a high probability of being 1, whereas "L" denotes a low probability of a 1. As can be seen in the table, the variables are separated into 4 groups (G1-G4, corresponding to 4 latent variables) of several indicator (manifest) variables (I1-I3) each. Within these groups the probabilities are the same for each type.

					The bas		rio P2D	ON6S1I1	l				
		G1 G2						G3			G4		
Туре	I1	12	13	I1	I2	13	I1	I2	I3	I1	I2	13	n
1	Н	Н	Η	Η	Η	Η	L	L	L	L	L	L	1000
2	L	L	L	L	L	L	Η	Η	Η	Η	Η	Η	1000
3	L	L	L	Η	Η	Η	Η	Η	Η	L	L	L	1000
4	Η	Н	Н	L	L	L	L	L	L	Н	Н	Н	1000
5	L	L	L	Η	Н	Н	L	L	L	Н	Н	Н	1000
6	Η	Η	Η	L	L	L	Η	Η	Η	L	L	L	1000

TABLE 1.

Five design factors are varied in the experiments:

- 1. *Probability distribution*. In the first level, "high" variables have a 0.9 probability of being 1, whereas the probability is reduced to 0.8 in the second level and to 0.7 in the third. The "low" variables are modeled accordingly, with probabilities of 0.1, 0.2, and 0.3 respectively.
- 2. Dependence of the variables within a group. One level has independent variables, the second has a correlation of 0.4 between the indicator variables in the group and the third has a strong dependency (0.8).
- 3. *Number of clusters.* There are experiments with 4, 5 and 6 clusters. The 4-cluster and 5-cluster scenarios correspond to the first 4 types and first 5 types from Table 1 respectively.
- 4. *Size of clusters.* There are experiments with equal cluster sizes (1000 for each type), with unequal cluster sizes (2000–500–1000–700–700–1100) and with highly varied cluster sizes (3000–300–1000–500–700–500 data points in types 1–6).
- 5. *Number of indicators (Manifest variables).* One level has 3 indicator variables for each group, the other has 5, 4, 2, and 1 indicator variables for the 4 groups.

All five design factors are crossed, yielding 162 different data sets. For the description of the results, the following naming convention is chosen for the data sets: Each scenario is described by P.D.N.S.I., where P (probability) is "1" for the first level, "2" for the second and "3" for the third. D (dependence) equals "0" for independent variables, "4" for medium dependence and "8" for strong dependence. N indicates the number of clusters (4, 5 or 6). S (cluster size) is "1" for scenarios with equal cluster sizes, "2" for unequal cluster sizes and "3" for highly varied cluster sizes. I (number of indicators) is "1" for scenarios with an equal number of indicators and "2" for scenarios with an unequal number. The null hypothesis concerning the design factors is that changes in factor levels do not influence the ability of indexes to recommend the number of clusters modeled in the artificial data sets.

Note that, as in real-world situations, the types are not clearly separated, but there is an overlapping cluster structure in the data sets. Scenario P2D0N6S111, for example, has a Bayes' classification rate of 83%.

Clustering Algorithms

Two algorithms, namely *k*-means (also known as LBG algorithm, see Linde, Buzo, & Gray, 1980) and hard competitive learning (see Fritzke, 1997), are used for the experiments in order to provide us with various clustering solutions, in this way preventing the dependency of the solutions on the clustering method. The decision in favor of these algorithms and against hierarchical algorithms was made because of the following consideration: Due to advances in information technology, huge data sets are often available. In the case of hierarchical methods, it is required to compute all pairwise distances. For *n* data points, the number of pairwise distances equals n(n-1)/2. For n = 6000, this already yields approximately 18 million distances, which makes computation infeasible.

k-means. The *k*-means algorithm is one of the classic statistical clustering methods. As opposed to the competitive learning variants, this is an off-line method, that is, the center updates are based on the entire training sample:

- 1. Initialize the set *C* to contain k (k << n) units $c_i: C = \{c_1, c_2, \ldots, c_k\}$ with reference vectors $w_{c_i} \in \mathbb{R}^d$ chosen randomly from the data set and compute the clusters corresponding to these centers.
- 2. Compute the centers of all current clusters.
- 3. Generate a new partition by assigning each pattern to the closest cluster center.
- 4. If the partition changes compared to the last iteration, go to Step 2, else stop.

Hard competitive learning (HCL). HCL (see, e.g., Fritzke, 1997) is the simplest on-line clustering algorithm, where only one output unit (the cluster center) is the winner for each given data point and the weight vector of the winner moves toward the vector of the given point.

- 1. Initialize the set *C* to contain k (k << n) units $c_i: C = \{c_1, c_2, \ldots, c_k\}$, with reference vectors $w_{c_i} \in \mathbb{R}^d$ chosen randomly from the data set. Set the iteration counter to t = 0.
- 2. Draw a pattern x_j from the data set.
- 3. Determine the winner $s(x_j)$: $s(x_j) = \arg \min_{c \in C} ||x_j w_c||$
- 4. Move the reference vector of the winner along the gradient of $||x_j w_{s(x_j)}||$ toward x_j . In the case of the Euclidean norm this is $\Delta w_{s(x_j)} = \varepsilon_t (x_j w_{s(x_j)})$, where ε_t is a suitable chosen learning rate.
- 5. Set t := t + 1; if $t < t_{\text{max}}$, return to Step 2.

In Dolnicar, Leisch, Weingessel, Bachta, and Dimitriadou (1998), it is shown (for the 6 cluster scenarios) that the k-means and hard competitive learning algorithms are able to find the correct cluster structure, but they sometimes get stuck in a local minimum due to the random initialization of the cluster centers. In order to overcome these instabilities, the following experimental setup was chosen. Cluster solutions are computed starting with 2 cluster centers and increasing to 13 centers. The range was chosen so that it contains twice the number of clusters that are in the data sets, so that the solution where every true existing cluster might be split into two parts is still contained in the range of considered centers. For each of the different number of clusters within the clusters are chosen and used to compute the index for this particular solution. From this vector, the number of clusters is found as described in the next section. In order to ensure the stability of the results, the above process is repeated 100 times for each scenario.

Indexes

This paper presents a comparison of 15 different indexes. These indexes represent 15 internal measures that can be computed independently of the clustering algorithm. Indexes applied only to hierarchical clustering methods (see Aldenderfer & Blashfield,1996; Milligan & Cooper,1985) are not used, because these methods are not suitable for large data sets (i.e., one is confronted with memory and time problems). Moreover, indexes similar to measures used for hierarchical methods, (i.e., measures using pairwise distances; e.g., the Gamma measure, Baker & Hubert, 1975; the Point Biserial measure, Milligan, 1981), are excluded from the study for the same reason. Other measures that are excluded are the following: measures for determining the number of fuzzy clusters (e.g., Yang & Yu, 1990), heuristic measures (depending on graphical methods) (e.g., Andrews, 1972; Arratia & Lander, 1990), and measures valid for data sets belonging to specific distributions (e.g., the likelihood ratio measure; Wolfe, 1970) or requiring prespecified conditions (e.g., the cubic clustering criterion; Sarle, 1983). All these measures are excluded for the sake of achieving an objective overall result in this research.

After computing a particular index for a range of cluster numbers, one has to decide which cluster number to choose. In the simplest case, one can select that number of clusters where the index reaches its maximum (or minimum) value as a solution. However, this simple rule does not work in most cases. Often the index values are plotted as a function of the number of clusters and the user chooses a particular number by visual inspection, often where the curve has an "elbow," i.e., a positive or negative "jump" of the index curve, or a local peak. In this paper, the use of such subjective measures is omitted, but objective ones are computed. Therefore, besides looking at the maximum (or minimum) value $\max_k i_k$ (where k is the number of clusters and i_k the index value for k clusters) of the index, the following statistics are considered, see Thorndike, 1953; Kaufmann and Pape, 1996. The decision on which statistic to use is made after computing all of them for all the data sets and taking the one that performed best on average. After a statistic

is chosen for an index, its values are computed for all the number of clusters. The value of k (number of clusters) that corresponds to the maximum or—depending on which statistic minimum value of the statistic determines the proposed number of clusters for the specific index. Here they are described for the case where maximum values are of interest:

- (i) The maximum difference to the cluster at the left side $(\max_k (i_k i_{k-1}))$. This is the part where the curve has its maximum increase.
- (ii) The maximum difference to the cluster at the right side $(\max_k (i_k i_{k+1}))$. This is the part where the curve has its maximum decrease.
- (iii) The maximum value of the second differences $(\max_k(i_{k+1} i_k) (i_k i_{k-1})))$. This measures an "elbow".

The description of the indexes is categorized into 3 groups, based on the statistics mainly used to compute them.

The first group is based on the sum of squares within (SSW) and between (SSB) the clusters. These statistics measure the dispersion of the data points in a cluster and between the clusters, respectively. The indexes are:

- Ball and Hall (1965). SSW / k is the number of clusters. The maximum value of the second differences determines the proposed number of clusters.
 Calinski and Harabasz (1974). SSB/(k-1) / SSW/(n-k), where n is the number of data points and k is the number of clusters. The minimum value of the second differences determines the proposed number of clusters.
- 3. Hartigan (1975). $\log(\frac{SSB}{SSW})$. The minimum value of the second differences determines the proposed number of clusters.
- 4. *Ratkowsky and Lance (1978).* mean $((\frac{varSSB}{varSST})^{1/2})$, where *varSSB* stands for the *SSB* for each variable and *varSST* for the total sum of squares for each variable. The maximum difference to the cluster at the right side determines the proposed number of clusters.
- 5. Xu (1997). $d \log(\sqrt{SSW}/(dn^2)) + \log(k)$, where d is the dimension of the data points. The maximum value of the second differences determines the proposed number of clusters.

The second group is based on the statistics T, that is, the scatter matrix of the data points, and W, which is the sum of the scatter matrices in each cluster.

- 1. Marriot (1971). $k^2|W|$, where k is the number of clusters and $|\cdot|$ stands for the determinant of a matrix. The maximum value of the second differences determines the proposed number of clusters.
- 2. Scott and Symons (1971). $n \log(\frac{|T|}{|W|})$, where *n* is the number of data points. The maximum difference to the cluster at the left side determines the number of clusters.
- 3. Trace CovW (see Milligan & Cooper, 1985). The minimum value of the second differences determines the proposed number of clusters.
- 4. Trace W (see Edwards & Cavalli-Sforza, 1965; Friedman & Rubin, 1967; Fukunaga & Koontz, 1970; Orloci, 1967). The maximum value of the second differences determines the proposed number of clusters.
- 5. Trace $W^{(-1)}B$ (see Friedman & Rubin, 1967). Trace $W^{(-1)}B$, where B is the scatter matrix of the cluster centers. The maximum difference to the cluster at the left side determines the proposed number of clusters.
- 6. |T|/|W| (see Friedman & Rubin, 1967). The minimum value of the second differences determines the proposed number of clusters.

The third group consists of four indexes not belonging to the ones mentioned above and having nothing in common.

- 1. Davies and Bouldin (1979). $R = (1/n) \sum_{i=1}^{n} (R_i)$, where R_i stands for the maximum value of R_{ij} for $i \neq j$, and R_{ij} for $R_{ij} = (SSW_i + SSW_j)/DC_{ij}$, where DC_{ij} is the distance between the centers of two clusters i, j. The minimum value determines the proposed number of clusters.
- 2. C Index (see Hubert & Levin, 1976). The C Index is a cluster similarity measure expressed as: $[d_w - \min(d_w)]/[\max(d_w) - \min(d_w)]$, where d_w is the sum of all n_d within cluster distances, $\min(d_w)$ is the sum of the n_d smallest pairwise distances in the data set, and $\max(d_w)$ is the sum of the n_d biggest pairwise distances. In order to compute the C Index, all pairwise distances in the data set have to be computed and stored. In this case of binary data, the storage of the distances creates no problems since there are only a few possible distances. However, the computation of all distances can make this index prohibitive for large data sets. The maximum value of the second differences determines the number of clusters.
- 3. *Likelihood (NLL) (see Wedel & Kamakura, 1998).* Under the assumption that the variables within a cluster are independent, a cluster solution can be regarded as a mixture model for the data where the cluster centers indicate the agreement probabilities. Therefore, the negative Log-likelihood can be computed and used as a quantity measure for a cluster solution. Note that the assumptions for applying special penalty terms, as in the case of AIC or BIC, are not fulfilled in this model, and also that they show no effect for these data sets. The maximum value of the second differences determines the proposed number of clusters.
- 4. *SSI (see Dolnicar, Grabler & Mazanec, 2000).* This "Simple Structure Index" combines three elements which influence the interpretability of a solution, that is, the maximum difference between the clusters for each variable, the sizes of the most contrasting clusters and the deviation of a variable in the cluster centers compared to its overall mean. These three elements are combined by multiplication and normalized to yield a value between 0 and 1. The maximum value determines the number of clusters.

Criteria for the Comparison of Results

Four criteria are used to determine the quality of the indexes, each one of them emphasizing different aspects that might be of interest (see Table 2).

Number of clusters found. The number of clusters recommended by each index is compared with the true number of clusters. This criterion counts how often each index makes the correct decision. The higher the number of correct recommendations, the more appropriate the index.

However, the correct number of clusters does not guarantee the the correct structure is recovered, which is why also other criteria will be considered.

Furthermore, in order to summarize the results we use the "maximum choice criterion". This criterion is based on a voting idea, which means that we do not consider every single result of the 100 repetitions for a particular scenario but we look for the majority decision of these repetitions. That is, for each scenario and each index, we evaluate which number of clusters is recommended most often within the 100 repetitions and take this number as the index's recommendation for the particular scenario. This corresponds to the real-life situation in which a researcher has to make one single decision based on multiple recommendations for the one data set under consideration. A sample chart can be seen in Figure 3. The best value that can be achieved is 54, as there are 54 scenarios for a given number of clusters.

Absolute profile identification. Each type in a data scenario is defined by an item profile. The clustering result recommended by the index is transformed into a binary profile by rounding the centers of the clusters. This profile is matched with the data scenario profiles. Then the number of correctly reconstructed profiles is divided by the number of clusters in the respective scenario.

A high value for this criterion indicates that the correct structure was identified, but indexes which tend to overestimate the number of clusters may find correct profiles more often because of the larger flexibility when more clusters are considered. This overestimation effect thus has to be penalized, which is the idea behind the "relative profile identification criterion".

Relative profile identification. This criterion is obtained by dividing the correctly identified profiles by the recommended number of clusters.

Classification rate. This criterion computes how many points have been assigned to the right cluster by the clustering algorithm. Calculation of this criterion requires a two-Step procedure: First it is necessary to identify which profiles have been correctly identified, and then one must count the number of data points correctly assigned to these clusters.

Results

Rankings of Indexes

Table 2^2 includes the criteria values and the ranking for all indexes under investigation. In the last column the mean of the ranks of all criteria is computed. Ratkowsky-Lance shows the best results with an overall rank of 2.25, followed by Xu, Scott-Symons, Calinski-Harabasz and the C Index.

Studying the distribution of recommendations gives a descriptive but more in-depth understanding of the indexes' behavior. Five groups of indexes can be formed by analyzing the histograms described in this section. For representative indexes, we have included graphs in which the frequency of recommendations is plotted for each number of clusters, to check whether the result depends on that number. For example, consider two indexes. According to the first, the 4-cluster solution is recommended correctly in 100% of the cases by some index, while the other two scenarios (5 and 6 clusters) are not correctly untangled at all. Using the second, the correct number of clusters obtains the higher number of recommendations in all three scenarios, but the

	Eva	luation criteria values	and ranks		
Index	No. Found	Classification	Abs. Profile	Rel. Profile	mean
Ratkowsky-Lance	52.52/ 1	65.36/ 1	82.17/ 6	86.74/ 1	2.25
Xu	35.29/ 3	61.67/ 2	79.57/ 8	80.76/ 7	5.00
Scott-Symons	35.83/ 2	60.64/ 5	76.34/10	81.85/ 5	5.50
Calinski-Harabasz	33.81/ 5	60.89/ 4	79.90/ 7	79.19/ 8	6.00
C Index	30.09/ 8	60.99/ 3	69.42/11	84.70/ 2	6.00
Davies-Bouldin	33.83/ 4	58.09/ 9	92.31/ 1	66.96/12	6.50
TraceW ^{−1} B	32.64/ 7	59.46/ 6	83.09/ 5	75.86/11	7.25
Marriot	32.79/ 6	59.10/ 7	78.79/9	79.12/ 9	7.75
TraceW	18.24/ 9	59.01/ 8	61.78/13	84.49/ 3	8.25
NLL	17.66/10	57.43/10	62.02/12	82.22/ 4	9.00
SSI	9.77/12	54.42/13	90.85/ 2	57.39/14	10.25
Hartigan	13.70/11	56.23/11	57.35/14	81.48/ 6	10.50
TraceCovW	8.38/14	55.62/12	86.96/4	59.12/13	10.75
T/W	9.38/13	53.66/14	90.58/ 3	54.65/15	11.25
Ball-Hall	0.00/15	49.40/15	47.96/15	75.95/10	13.75

TADLE 2

²All simulations were performed in **R**, a free implementation of the S-language, see http://www.R-project.org/.

proportion of hits is only 20%. In this case the first index would be evaluated as superior when ranked over all scenarios, although its ability to cope with different conditions is inferior.

Group I (highly reliable indexes). This group contains the Ratkowsky-Lance and the Davies-Bouldin Index, which are able to indicate the correct number of clusters very clearly, with a top recommendation frequency of over 60% for Ratkowsky-Lance (see Figure 1) when confronted with the 5-cluster scenarios. The percentage of correct hits is lower in the case of the Davies-Bouldin Index (see Figure 2) at approximately 35%. Although these values clearly indicate the correct decisions for each case, this index tends to favor higher numbers of clusters if the decision does not seem to be clear. The interpretation suggested above is also supported by the "maximum choice criterion" (an example of the 5-cluster scenario is given in Figure 3).

Group II (reliable indexes). This group contains the Calinski-Harabasz Index and the Xu Index. The Calinski-Harabasz recommendations on the 5 and 6-cluster scenarios are correct, but a 3-cluster solution was favored when this index was applied to the 4-cluster scenario (Figure 4). The same is true of the Xu Index, the distribution frequency of which is almost identical to the Calinski-Harabasz plot (Figure 5). Looking at the maximum recommendations, the same diagnosis applies for the 4 and 5-cluster data. In the 6 cluster scenarios, the Xu Index still renders the top maximum choice value at the correct number of clusters, whereas Calinski-Harabasz fails to do so, suggesting the choice of 4 clusters instead (Figure 6).

Group III (indexes with data-independent favorite recommendations). Some indexes seem to have clear favorites, therefore recommending a certain number of clusters most often rather independently of the actual data properties, but not—as is the case in group IV—without any relation to the data sets. Scott-Symons, Marriot and TraceW⁻¹B belong to this group. The C Index has to be included in this group as well, although higher recommendation frequencies occur for 5 and 6 clusters the respective scenarios.

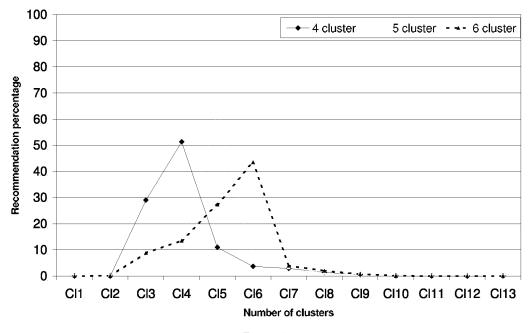


FIGURE 1. Ratkowsky-Lance Index: Number of clusters found.

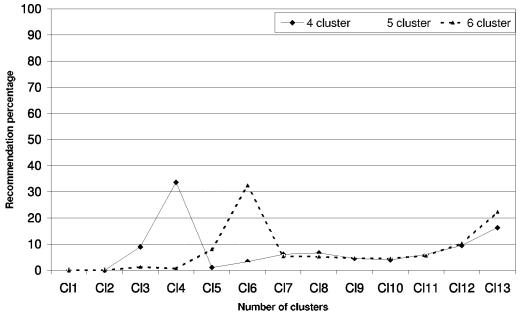


FIGURE 2. Davies-Bouldin Index: Number of clusters found.

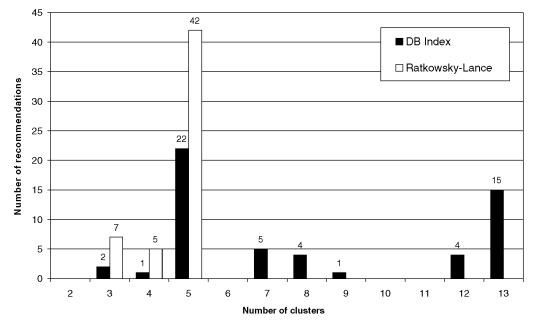


FIGURE 3. Index Group I, 5 clusters: Maximum choice criterion.

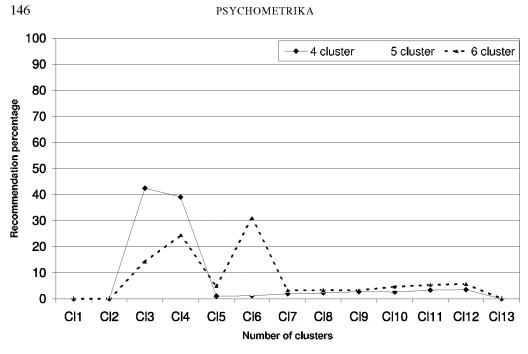


FIGURE 4. Calinski-Harabasz Index: Number of clusters found.

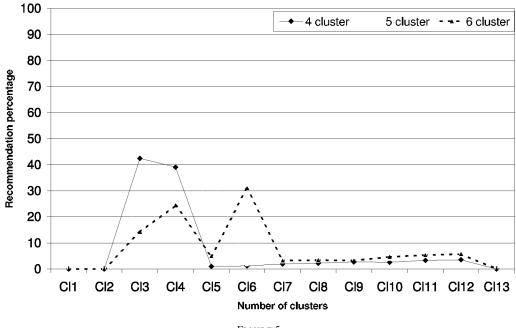


FIGURE 5. Xu Index: Number of clusters found.

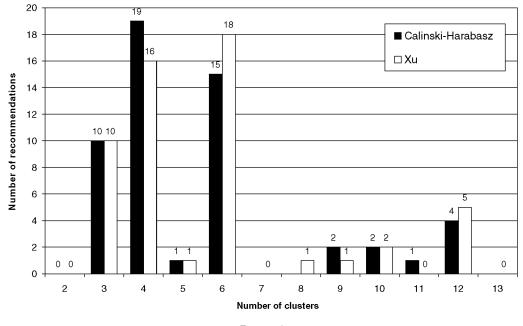


FIGURE 6. Index Group II, 6 clusters: Maximum choice criterion.

All indexes belonging to group III recommend a 4-cluster solution most often under all scenario conditions.

Group IV (three cluster favoring indexes). Ball-Hall, Hartigan, TraceW and NLL favor the 3-cluster solution without regard to the data presented. The most extreme case is the Ball-Hall Index with a 100% recommendation rate for this kind of solution.

Group V (special-interest indexes). For these indexes (TraceCovW, SSI, T/W), it is impossible to make any kind of decision, because the recommendations are almost evenly distributed over the different numbers of clusters. As can be seen, the recommendation for one single number of clusters never even comes near 20%. However, it turns out that these indexes have strengths in other respects as one can easily see in Table 2. They are among the top scorers in terms of absolute profile identification, which is caused by the systematic overestimation of the number of clusters and therefore it is not really a strength of these indexes. The problem of overestimating the number of clusters for profile identification optimization purposes was already addressed in the description of the "absolute profile criterion". The same problem is encountered when using the special interest indexes: The true profiles are identified very well, but the number of clusters is overestimated. For our purposes, these indexes thus appear to be of limited use. As far as the "maximum choice measure" is concerned, there is no single way of describing this group's behavior.

Coping with Adverse Data Structures

The percentage of the correct number of clusters decision is obviously interrelated with the data conditions. First, we have a look at the mean percentage of correctly identified numbers of clusters over all indexes under specific conditions, as shown in Figure 7.

The vertical lines indicate the factor blocks, P1 to P3 stand for variations in probability, D0 to D8 indicate the level of dependence modeled in the data, S1 to S3 give the size of clusters,

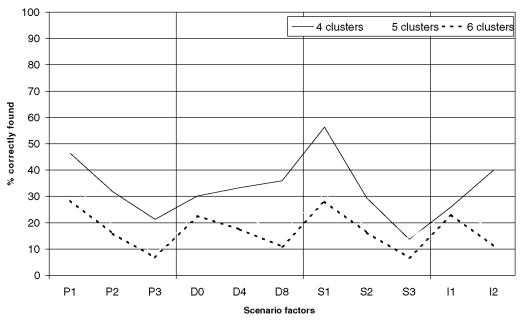


FIGURE 7. Overall mean percentage of correctly identified clusters.

and I1 to I2 indicate the groups of manifest variables. In general it can be assumed that higher factor levels of the probability (less extreme probability values) make the scenario more difficult, as does higher contrast in cluster size. Also, dependence seems to influence the performance negatively, although this is not true in the 4-cluster case. The same is true of the number of manifest variables, where unequal numbers of manifest variables again ease the task to be solved in the 4-cluster case, but not for 5 and 6 clusters.

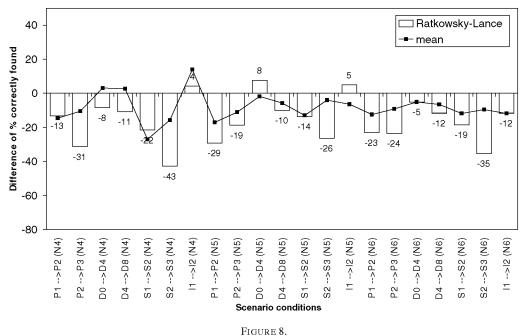
In the following index-specific reactions to the design factors in the scenarios are described.

Group I (highly reliable indexes). In an explorative analysis of index behavior, the differences between the percentage of correctly identified number of clusters decisions among factors are examined. Index-specific behavior is the deviation from the mean. The Ratkowsky-Lance Index is given as an example in Figure 8.

The black line gives the same information as seen in Figure 7, only in terms of difference. Looking at the first bar, the interpretation is as follows: The difference from probability level 1 (P1) to probability level 2 (P2) in the case of the 4-cluster scenarios only (N4) is 13% for the Ratkowsky-Lance Index, meaning that the correct number of decisions decreases by 13 percentage points due to the fact that the probability level changes. This value equals the average difference 13%.

The most systematic deviation from the mean is the behavior towards varying cluster sizes. Ratkowsky-Lance seems to cope fairly well with maximum cluster sizes of 1000 and 2000, while the most extreme case—a maximum of 3000—causes serious problems.

Two characteristics are very interesting when investigating the behavior of the Davies-Bouldin Index: First, the initial Step of making the probability less extreme (from P1 to P2) leads to a considerate loss in quality. Second, the inequality of manifest variables in all cases seems to help the index to make correct decisions.



Deviation from mean "number of clusters found' values (Ratkowsky-Lance Index).

Group II (reliable indexes). The Calinski-Harabasz Index generally reacts in a more extreme way than the average (see Figure 9). The direction of change is the same except for the changes in the manifest variable design for 5-cluster scenarios. In particular, going from probability level 1 (the easiest) to level 2, the quality of results decreases dramatically. The same is true of the Xu Index.

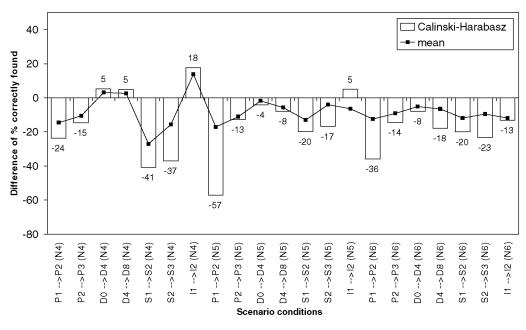


FIGURE 9. Deviation from mean "number of clusters found" values (Calinski-Harabasz Index).

Effect	Est., Sign. (Class)	Est., Sign. (Abs. Prof.)	Est., Sign. (Rel. Prof.)	Est., Sign. (No. Found)
	(01455)	(1105.1101.)	(101.1101.)	(110. Found)
(Intercept)	65	82	87	53
Probability P1	22, ***	11, ***	12, ***	23, ***
Probability P2	2, ***	2, n.s.	5, ***	1, n.s.
Probability P3	-24, ***	-13, ***	-17, ***	-24, ***
Dependence D0	11, ***	2, n.s.	5, ***	5, n.s.
Dependence D4	-1, *	2, n.s.	2, *	3, n.s.
Dependence D8	-10, ***	-4, *	-7, ***	-8, **
Number N4	5, ***	4, **	1, n.s.	-1, n.s.
Number N5	0, n.s.	3, **	1, n.s.	10, ***
Number N6	-5, ***	-7, ***	-2, *	-9, ***
Cluster size S1	3, ***	12, ***	7, ***	24, ***
Cluster size S2	1, n.s.	4, ***	3, **	6, *
Cluster size S3	-4, ***	-16, ***	-10, ***	-30, ***
Indicators I1	1, *	0, n.s.	-1, n.s.	0, n.s.
Indicators I2	-11, *	0, n.s.	1, n.s.	0, n.s.

TABLE 3.ANOVA (Ratkowsky-Lance index)

p-value: ***: < 0.0001, **: < 0.001, *: < 0.05, n.s.: not significant

ANOVA Results

The null hypothesis that variations in factor levels do not have an effect was tested by an analysis of variance (ANOVA) for the two highly reliable indexes without taking two-way interactions into account. The ANOVA results are given in Tables 3 and 4 where "(Intercept)" denotes the mean result over all levels of the design factors. The significance of the influence of the levels is tested against this mean value.

It is obvious that the probability, the dependence and the cluster size changes are the design factors with the strongest negative impact on the two indexes performance concerning all the

	ANO	TABLE 4. VA (Davies-Bouldin ind	ex)	
Effect	Est., Sign. (Class)	Est., Sign. (Abs. Prof.)	Est., Sign. (Rel. Prof.)	Est., Sign. (No. Found)
(Intercept)	58	92	66	34
Probability P1	27, ***	7, ***	21, ***	36, ***
Probability P2	0, n.s.	1, n.s.	0, n.s.	-7, *
Probability P3	-27, ***	-8, ***	-21, ***	-29, ***
Dependence D0	7, ***	2, *	3, n.s.	11, ***
Dependence D4	1, n.s.	-1, n.s.	7, ***	7, *
Dependence D8	-8, ***	-1, n.s.	-10, ***	-18, ***
Number N4	1, n.s.	1, n.s.	-3, n.s.	0, n.s.
Number N5	0, n.s.	1, n.s.	0, n.s.	2, n.s.
Number N6	-1, n.s.	-2, *	3, n.s.	-2, n.s.
Cluster size S1	4, ***	6, ***	7, ***	15, ***
Cluster size S2	1, n.s.	1, n.s.	3, n.s.	2, n.s.
Cluster size S3	-5, ***	-7, ***	-10, ***	-17, ***
Indicators I1	-2, **	4, ***	-8, ***	-9, ***
Indicators I2	2, **	-4, ***	8, ***	9, ***

criteria. The number of clusters in the data sets does not seem to play such an important role specially for the Davies-Bouldin Index, where the inequality of the manifest variables does not influence significantly the Ratkowsky-Lance Index (except of the classification). Table 5 includes all results obtained by ANOVA for main factors only. The following general conclusions can thus be drawn:

- Table 5 supports the assumption that changes in the probability level from P1 to P3 strongly decrease recommendation quality for all criteria.
- Another design factor that worsens all results significantly, regardless of which criterion is used for the ANOVA, is the size of the clusters. The results indicate that increasing differences in cluster sizes strongly decrease recommendation quality. The most dramatic results are observed for the "number of clusters found" criterion (The reduction amounts to 16% at the second factor level and 26% at the third level). These results lead to the interpretation that certain indexes tend more to overestimate the number of clusters and correctly identify part of the profiles than make the correct guess, a central and crucial insight for niche market segmentation. Consequently, the chance of identifying a niche segment correctly is higher when

		an main ene		
	Est., Sign.	Est., Sign.	Est., Sign.	Est., Sign.
Effect	(Class)	(Abs. Prof.)	(Rel. Prof.)	(No. Found)
(Intercept)	58	76	75	24
Ball-Hall	— 9, ***	-28, ***	1, n.s.	-24, ***
Calinski-Harabasz	3, ***	4, ***	4, ***	10, ***
C Index	3, ***	—7, ***	9, ***	6, **
Davies-Bouldin	0, n.s.	16, ***	-9, ***	10, ***
Hartigan	-2, **	-19, ***	6, ***	-11, ***
Marriot	1, n.s.	3, **	4, ***	9, ***
NLL	-1, n.s.	-14, ***	7, ***	-7, **
Ratkowsky-Lance	7, ***	6, ***	11, ***	28, ***
SSI	-4, ***	15, ***	-18, ***	-15, ***
Scott-Symons	3, ***	0, n.s.	7, ***	12, ***
T/W	-5, ***	15, ***	-21, ***	-15, ***
TraceCovW	-3, **	11, ***	-16, ***	-16, ***
TraceW	1, n.s.	-14, ***	9, ***	-6, **
$TraceW^{-1}B$	1, n.s.	7, ***	1, n.s.	8, ***
Xu	4, ***	4, ***	5, ***	11, ***
Probability P1	21. ***	8, ***	12, ***	14, ***
Probability P2	1, *	1, n.s.	2, ***	-2, n.s.
Probability P3	-22, ***	-9, ***	-14, ***	-12, ***
Dependence D0	7, ***	2, ***	-1, n.s.	2, *
Dependence D4	0, n.s.	0, n.s.	3, ***	1, n.s.
Dependence D8	-7, ***	-2, ***	-2, ***	-3, ***
Number N4	7, ***	9, ***	2, ***	10, ***
Number N5	-1, **	0, n.s.	0, n.s.	-3, ***
Number N6	-6, ***	-9, ***	-2, ***	-7, ***
Cluster size S1	0, n.s.	7, ***	4, ***	14, ***
Cluster size S2	1, ***	3, ***	4, ***	-2, *
Cluster size S3	-1, ***	-10, ***	-8, ***	-12, ***
Indicators I1	1, **	2, ***	-3, ***	1, n.s.
Indicators I2	-1, **	-2, ***	3, ***	-1, n.s.

TABLE 5. ANOVA Including all main effects

the number of clusters is overestimated. The open question is which of the segments identified by such a solution actually exist in the data and which do not, a crucial question for making strategic decisions.

- The number of clusters actually present in the data also strongly influences the results, with higher numbers of clusters generating worse results.
- The influence of dependency is strongest for the classification rate results. The results decrease by 7 and 14% from the first to the third level.
- Changing the number of indicators generally does not influence the cluster number recommendations dramatically. Only the classification rate and the profile identification suffer (in a slight but significant manner) from unequal groups of variables loading heavily on an underlying latent trait.

Comparison with Latent Class Analysis

Latent class analysis (McCutcheon, 1987; Formann, 1984) is a technique for analyzing relationships in general categorical data. In the field of psychology, LCA is one of the most common tools to identify subgroups of individuals on the basis of binary data sets. LCA fits a simple parametric model. It is assumed that the data are generated by a finite mixture of latent classes. Each latent class is defined by its conditional response probabilities and its relative size. One important assumption of LCA is "local independence" in each class, meaning that each variable is statistically independent of all other variables within each latent class.

The likelihood ratio statistic and Pearson chi square value are used to evaluate the goodnessof-fit of LCA results. Note that these values are only asymptotically chi-square distributed, and reliable results can thus only be obtained if the number of data points is significantly larger than the number of possible binary patterns. This requirement is not fulfilled in our scenarios, where we have 6000 data points and $2^{12} (= 4096)$ possible binary patterns. Confidence intervals for the two statistics can be obtained by parametric bootstrap techniques, but these methods are computationally expensive.

Number of cluster recommendations were deduced from the development of the BIC measure (Rost, 1996; Schwarz, 1978) over the same range of cluster numbers (2-13) as for the clustering algorithms.

Table 6 shows a comparison between LCA and a clustering algorithm, meaning that LCA is treated as a clustering algorithm and its performance is evaluated in this respect. This comparison is made for the scenarios P2D0N6S3I1 (independent) and P2D8N6S3I1 (dependent). These two scenarios were chosen to give a representative example of how LCA can handle clustering problems with independent and dependent variables. Since it is usually not known in real-world situations whether the local independence condition is fulfilled, we were interested in the performance of LCA for dependent scenarios as well.

For these specific scenarios, it is obvious that the performance of LCA is worse than that of the clustering algorithm. However, it managed to react well to the dependent scenarios, which

		Compara	TABL: tive evalu	E 6. ation with LCA			
		Clu	stering A	lgorithm		LCA	
		mean	sd	range	mean	sd	range
Profiles found	indep.	5.9	0.3	5–6	5	0	5
	dep.	3.3	0.7	2–5	3.5	0.7	2–4
Classification rate	indep. dep.	76.2 42.1	2.2 4.2	69–77.5 32.6–53.9	60.4 40.5	2.06 6.7	58.2–65.6 25.3–46.6

152

shows that LCA can be considered a clustering algorithm, even in situations where the validity of the local independence condition is unknown. For the rest of the scenarios the results are similar, whereas both algorithms perform equally in the case of the scenarios which are easy to cluster successfully.

When applying LCA, the BIC is the appropriate measure for finding the number of clusters. However, it turns out that the BIC is only able to find the right number of clusters in the case of simple, independent scenarios. For scenarios where the local independence assumption is not fulfilled, the BIC criterion does not find the right number of clusters. However, it also fails for the more difficult independent scenarios. Generally, LCA using BIC yields the same performance quality as average indexes in the case of independent scenarios.

Summary

In this paper, the performance of 15 indexes for determining the number of clusters in a binary data set is analyzed. In order to ensure that the right number of clusters is known, only artificial scenarios designed to simulate the difficulties of real-world data were used. Five design factors—namely the probability of a variable being 1, the level of dependency, the number of clusters, the size of clusters, and the number of indicators in a group—are crossed, yielding 162 different artificial data sets. In the evaluation of the indexes' performance, *k*-means and hard competitive learning methods were applied 100 times for each scenario so as to overcome the instabilities imposed by the clustering algorithms. The selection of the number of clusters, based on the indexes' values, was done automatically. Since the artificial data sets were generated to resemble real-world data, the analysis of the indexes' performance helps a researcher to choose the appropriate index for each individual problem.

A comparison with the results reported by Milligan and Cooper (1985) is not possible due to completely different simulation assumptions in both the data used and, as a consequence, the applicable algorithms and indexes.

Central findings include the major negative influence of non-extreme answer probability levels and of unequal cluster sizes on the correct identification of data-inherent cluster structures. Compared to these two factors, the influence of the number of clusters actually modeled in the data, the number of manifest variables and the dependence level of individual items is rather weak.

Depending on the evaluation criterion chosen, various rankings of the indexes emerge, with the Ratkowsky-Lance Index scoring highest in all but one criterion ("absolute profile"). Based on their ability to recommend the correct number of clusters through a majority vote over replications, the Ratkowsky-Lance and Davies-Bouldin Index render the best results over all data scenarios investigated, followed by the indexes proposed by Calinski-Harabasz and Xu.

Tables 7 through 10 give the ranking information for the four criteria split up into the various factor levels. This nicely demonstrates that the superiority of the Ratkowsky-Lance Index is not an artificial phenomenon arising from calculating the mean over a multitude of levels; thus Ratkowsky-Lance really is the best recommendation for working with binary data. Out of 112 ranks (2 algorithms, 4 criteria and 14 factor levels) Ratkowsky-Lance misses first place only 42 times, the majority of which is due to its weakness in identifying the correct absolute cluster profiles. So, as far as the number-of-clusters decision is concerned, Ratkowsky-Lance is the absolute high scorer, but for profile identification it seems recommendable to use indexes specialized in this field, such as the Davies-Bouldin, the SSI or the T/W Index.

NO 21 22 23 11 12 mean Su	
N4	NIA
D8	00
D4	Ž
D0	
P3	Ě
P2	¢.
P1	

	I2 mean std				10 11.2 4.1			9 8.6 1.6	16 14.1 3.7		8 7.9 3.6	7 7.3 1.8	14 12.7 2.5		11 10.6 2.5	2 3.3 2.2
	I1	S	7	10	13	1	4	L	16	11	8	9	14	12	6	3
	S3	11	2	12	ю	1	9	10	4	13	5	7	14	15	8	6
	S2	4	ю	8	10	1	5	7	13	12	6	9	15	14	11	2
	S1	3	9	4	15	1	7	6	16	12	8	11	10	13	14	5
	N6	4	6	7	15	1	11	12	16	5	13	7	8	9	14	3
	N5	4	5	7	14	1	ю	9	16	10	6	×	13	11	12	2
	N4	8	ю	12	4	1	S	10	11	14	7	6	15	16	L	9
	D8	ю	4	11	15	1	5	6	16	7	14	9	10	8	13	5
	D4	4	5	7	13	1	ю	9	16	12	8	6	15	11	10	2
	D0	æ	4	8	11	1	9	6	15	12	L	5	14	16	10	2
	P3	11	Э	14	5	1	4	6	8	12	2	10	13	15	9	7
	P2	4	2	6	13	1	9	8	16	12	5	7	15	14	10	3
	P1	4	11	1	15	2	9	10	16	٢	13	5	8	6	14	3
		Calinski-Harabasz	C Index	Davies-Bouldin	Hartigan	Ratkowsky-Lance	Scott-Symons	Marriot	Ball-Hall	TraceCovW	TraceW	TraceW ⁻¹ B	T/W	ISS	NLL	Xu

						AUS	Ausoinic promes									
	P1	P2	P3	D0	D4	D8	N4	N5	N6	S1	S2	S3	II	12	mean	std
Calinski-Harabasz	∞	10	6	6	6	10	10	8	6	8	8	6	10	7	8.6	1.2
C Index	11	11	12	12	12	12	12	12	12	12	12	12	12	12	11.9	0.4
Davies-Bouldin	1	1	1	7	Ţ	1	0	1	1	1	1	1	1	0	1.2	0.4
Hartigan	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15.0	0.0
Ratkowsky-Lance	4	7	10	7	9	5	6	S	9	9	9	8	9	9	6.5	1.6
Scott-Symons	6	6	11	11	10	8	7	11	11	11	11	10	11	11	10.1	1.3
Marriot	10	×	6	8	8	11	9	6	10	10	7	9	7	10	8.5	1.6
Ball-Hall	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16.0	0.0
TraceCovW	ŝ	5	5	4	4	4	S	4	4	S	4	S	S	4	4.3	0.6
TraceW	13	13	14	14	13	14	14	13	14	13	14	14	14	13	13.6	0.5
TraceW ⁻¹ B	9	9	7	9	5	9	4	9	7	6	5	4	З	8	5.8	1.6
T/W	S	ŝ	3	б	ŝ	ŝ	б	ŝ	ŝ	ব	ŝ	б	4	ŝ	3.3	0.6
ISS	7	7	7	1	7	7	1	2	7	ŝ	5	7	7	1	1.9	0.5
NLL	14	14	13	13	14	13	13	14	13	14	13	13	13	14	13.4	0.5
Xu	٢	12	8	10	11	6	11	10	8	L	6	11	6	6	9.4	1.5

TABLE 9. Absolute profiles found

	std	2.1	1.3	1.7	3.1	2.0	1.5	2.0	3.6	0.9	2.4	1.6	1.0	0.8	2.5	1.7
	mean	6.9	3.4	12.0	6.3	2.0	6.7	8.7	6.6	13.9	3.3	9.5	14.6	15.5	5.9	4.3
	12	8	4	12	S	1	٢	10	11	15	2	6	14	16	9	3
	11	9	0	14	×	1	٢	6	10	13	Э	11	16	15	S	4
	S3	6	9	12	7		×	11	3	13	4	10	15	16	5	7
	S2	6	-	12	5	7	7	10	4	14	æ	11	15	16	8	9
	$\mathbf{S1}$	æ	4	11	10	Ļ	9	8	15	14	5	6	13	16	٢	2
	N6	7	ŝ	10	11	-	4	5	16	13	8	9	14	15	6	2
	N5	6	2	12	9	1	4	8	11	14	æ	10	15	16	7	5
I	N4	∞	4	12	0	9	6	10	L	15	1	11	14	16	3	5
	D8	S	4	16	ŝ	L	6	8	11	14	7	10	13	15	-	9
	D4	∞	4	12	7		9	6	10	15	2	11	16	13	æ	5
	D0	9	7	12	8	Ļ	5	11	10	14	3	7	15	16	6	4
	P3	6	æ	13	7	4	8	10	9	12	1	11	14	16	5	7
	P2	S	4	12	8	1	7	6	11	14	2	10	16	15	9	3
	P1	æ	S	×	11	1	9	4	13	15	6	7	14	16	10	2
		Calinski-Harabasz	C Index	Davies-Bouldin	Hartigan	Ratkowsky-Lance	Scott-Symons	Marriot	Ball-Hall	TraceCovW	TraceW	$TraceW^{-1}B$	T/W	SSI	NLL	Xu

References

- Aldenderfer, M.S., & Blashfield, R.K. (1996). Cluster analysis. London, U.K.: Sage Publications.
- Andrews, D.F. (1972). Plots of high-dimensional data. Biometrics, 28, 125–136.
- Arabie, P., & Hubert, L.J. (1996). Clustering and classification (pp. 5-63). River Edge, NJ: World Scientific.
- Arratia, R., & Lander, E.S. (1990). The distribution of clusters in random graphs. Advances in Applied Mathematics, 11, 36–48.
- Baker, F.B., & Hubert, L.J. (1975). Measuring the power of hierarchical cluster analysis. Journal of the American Statistical Association, 70, 31–38.
- Ball, G.H., & Hall, D.J. (1965). ISODATA, A novel method of data analysis and pattern classification (Tech. Rep. NTIS No. AD 699616). Menlo Park, CA: Stanford Research Institute.
- Baroni-Urbani, C., & Buser, M.W. (1976). Similarity of binary data. Systematic Zoology, 25, 251-259.
- Baulieu, F. (1989). A classification of presence/absence based dissimilarity coefficients. *Journal of Classification*, 6, 233–246.
- Calinski, R.B., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3, 1–27.
- Cheetham, H., & Hazel, J. (1969). Binary (presence-absence) similarity coefficients. *Journal of Paleontology*, 43, 1130–1136.
- Cox, D. (1970). The analysis of binary data. London, U.K.: Chapman and Hall.
- Davies, D.L., & Bouldin, D.W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 224–227.
- Dolnicar, S., Grabler, K., & Mazanec, J. (2000). A tale of three cities: Perceptual charting for analysing destination images. In A. Woodside (Ed.), *Consumer psychology of tourism, hospitality and leisure* (pp. 39–62). London, U.K.: CAB International.
- Dolnicar, S., Leisch, F., Weingessel, A., Buchta, C., & Dimitriadou, E. (1998). A comparison of several cluster algorithms on artificial binary data scenarios from tourism marketing (Working Paper 7, SFB). Wien, Austria: Adaptive Information Systems. (http://www.wu-wien.ac.at/am)
- Edwards, A.W.F., & Cavalli-Sforza, L. (1965). A method for cluster analysis. Biometrics, 21, 362-375.
- Formann, A.K. (1984). Die Latent-Class-Analyse: Einführung in die Theorie und Anwendung [Latent class analysis: Introduction into theory and application]. Weinheim, Germany: Beltz.
- Friedman, H.P., & Rubin, J. (1967). On some invariant criteria for grouping data. Journal of the American Statistical Association, 62, 1159–1178.
- Fritzke, B. (1997). Some competitive learning methods. Unpublished manuscript [On-line draft document available at http://www.ki.inf.tu-dresden.de/ fritzke/JavaPaper/t.html or http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VDM/research/gsn/].
- Fukunaga, K., & Koontz, W.L.G. (1970). A criterion and an algorithm for grouping data. *IEEE Transactions on Computers*, C–19, 917–923.
- Gower, J.C. (1985). Measures of similarity, dissimiliarity, and distance. In S. Kotz & N.L. Johnson (Eds.), *Encyclopedia of Statistical Sciences, Vol. 5* (pp. 397–405). New York, NY: Wiley.
- Green, P.E., Tull, D.S., & Albaum, G. (1988). Research for Marketing Decisions (5th ed., The Prentice Hall Series in Marketing). Englewood Cliffs, NJ: Prentice-Hall.
- Hall, D.J., Duda, R.O., Huffman, D.A., & Wolf, E.E. (1973). Development of new pattern recognotion methods (Tech. Rep. NTIS No. AD 7726141). Los Angeles, CA: Aerospace Research Laboratories.

Hartigan, J.A. (1975). Clustering algorithms. New York, NY: Wiley.

- Hubalek, L. (1982). Coefficients of association and similarity, based on binary (presence-absence) data: An evaluation. *Biological Review*, 57, 669–689.
- Hubert, L.J., & Levin, J.R. (1976). A general statistical framework for assessing categorical clustering in free recall. *Phycological Bulletin*, 83, 1072–1080.
- Kaufmann, H., & Pape, H. (1996). Multivariate statistische Verfahren (2nd ed.) [Multivariate statistical methods]. Berlin: Walter de Gruyter.
- Li, X. & Dubes, R.C. (1989). A probabilistic measure of similarity for binary data in pattern recognition. Pattern Recognition, 22(4), 397–409.
- Linde, Y., Buzo, A., & Gray, R.M. (1980). An algorithm for vector quantizer design. *IEEE Transactions on Communica*tions, COM-28(1), 84–95.
- Marriot, F.H.C. (1971). Practical problems in a method of cluster analysis. Biometrics, 27, 501-514.
- McCutcheon, A.L. (1987). Latent class analysis (Sage University Paper series on Quantitative Applications in the Social Sciences, Series No. 07-064). Beverly Hills, CA: Sage Publications.
- Milligan, G.W. (1980). An examination of the effect of six types of error perturbation on fifteen clutering algorithms. Psychometrika, 45, 325–342.
- Milligan, G.W. (1981). A Monte Carlo study of thirty internal criterion measures for cluster analysis. *Psychometrika*, 46, 187–199.
- Milligan, G.W., & Cooper, M.C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159–179.
- Orloci, L. (1967). An agglomerative method of classification of plant communities. Journal of Ecology, 55, 193-206.
- Ramaswamy, W., Chatterjee, R., & Cohen, S.H. (1996). Joint segmentation on distinct interdependent bases with categorical data. *Journal of Marketing Research*, 33, 337–350.
- Ratkowsky, D.A., & Lance, G.N. (1978). A criterion for determining the number of groups in a classification. Australian Computer Journal, 10, 115–117.
- Rost, J. (1996). Testtheorie, Testkonstruktion [Theory and construction of tests]. Bern: Verlag Hans Huber.

Sarle, W.S. (1983). Cubic clustering criterion (Tech. Rep. A-108). Research Triangle Park, NC: SAS Institute.

Schwarz, G. (1978). Estimating the dimension of a model. Annuals of Statistics, 6, 461–464.

Scott, A.J. & Symons, M.J. (1971). Clustering methods based on likelihood ratio criteria. *Biometrics*, 27, 387–397. Thorndike, R.L. (1953). Who belongs in the famility? *Psychometrika*, 18, 267–276.

Wedel, M., & Kamakura, W.A. (1998). Marketing segmentation. Conceptual and methodological foundations (pp. 89– 92). Boston/Dordrecht/London: Kluwer Academic.

Wolfe, J.H. (1970). Pattern clustering by multivariate mixture analysis. Multivariate Behavioral Research, 5, 329-350.

Xu, L. (1997). Bayesian Ying-Yang machine, clustering and number of clusters. Pattern Recognition Letters, 18, 1167– 1178.

Yang, M.-S. & Yu, K.F. (1990). On stochastic convergence theorems for the fuzzy c-means clustering procedure. International Journal of General Systems, 16, 397–411.

Manuscript received 5 FEB 1999 Final version received 15 MAY 2001