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The problem of choosing the correct number of clusters is as old as cluster analysis itself. A num- 
ber of authors have suggested various indexes to facilitate this crucial decision. One of the most extensive 
comparative studies of indexes was conducted by Milligan and Cooper (1985). The present piece of work 
pursues the same goal under different conditions. In contrast to Milligan and Cooper's work, the emphasis 
here is on high-dimensional empirical binary data. Binary artificial data sets axe constructed to reflect fea- 
tures typically encountered in real-world data situations in the field of marketing research. The simulation 
includes 162 binary data sets that axe clustered by two different algorithms and lead to recommenda- 
tions on the number of clusters for each index under consideration. Index results are evaluated and their 
performance is compared and analyzed. 
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Introduction 

Clustering is the partitioning of a set of  objects into groups so that objects within a group 
are "similar" and objects in different groups are "dissimilar". Thus the purpose of clustering is 
to identify "natural" structures in a data set. In real-life clustering situations, the researcher is 
confronted with crucial decisions such as choosing the appropriate clustering method and se- 
lecting the number of clusters in the final solution. The latter is considered to be an unsolved 
problem of great significance: The success of  the research actually depends on this decision. Nu- 
merous strategies have been proposed for finding the right number of clusters and such measures 
(indexes) have a long history in the literature. They can be broadly divided into dependent mea- 
sures, which must be used in combination with a specific clustering algorithm (e.g., Hall, Duda, 
Huffman, & Wolf, 1973) and independent measures that can be applied to any algorithm. Inde- 
pendent measures can be divided into two major categories. For the first category, the external 
measures (see Milligan, 1981) an independently obtained partition must be specified a priori or 
obtained by clustering a separate data set. Its main disadvantage is that other a priori information 
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can not be obtained for the empirical data sets. For the second category, the internal measures 
(see Milligan & Cooper, 1985), the information from within the clustering process is used. The 
internal measures represent the "goodness" of the fit between the input data and the resulting 
cluster partition. 

Monte Carlo evaluations of these measures have been conducted by researchers in order to 
analyze and compare their performance (see Milligan, 1981, 1980; Milligan & Cooper, 1985). 

The focus of this paper is on binary data sets. Most of the literature on binary data has 
emerged from the field of psychometrics, biology (Baroni-Urbani & Buaser, 1976; Baulieu, 
1989; Cheetham & Hazel, 1969; Gower, 1985; Hubalek, 1982; Li & Dubes, 1989) and mar- 
keting (Arabie & Hubert, 1996; Cox, 1970; Dolnicar, Grabler, Mazanec, 2000; Formann, 1984; 
Green, Tull, & Albaum, 1988; Ramaswamy, Chatterjee, Cohen, 1996; Rost, 1996). The central 
motivation underlying this piece of work is the lack of recommendations for determining the 
correct number of clusters in binary data sets similar to those encountered in empirical research. 
More specifically, we evaluate the performance of 15 indexes on artificial binary data sets, de- 
signed to reflect real-world data situations, and we investigate which characteristics of empirical 
data sets cause systematic difficulties in determining the correct number of clusters. 

The paper is organized as follows: The following two sections give details on the study 
carried out. They contain a description of the artificial binary data scenarios and of the clustering 
algorithms used for the simulations. In the section "Criteria for the Comparison of Results", the 
criteria used to determine the quality of the indexes are presented. The results section starts with 
an evaluation of the performance of the indexes, after which the influence of the data sets" design 
factors on the results is investigated and an ANOVA is performed. The results are compared with 
latent class analysis. A summary section concludes the paper. 

Binary Data Scenarios 

The data generated are based on scenarios presuming typical features--and their variations-- 
encountered in real-life data: the size of the survey sample, the number of questions chosen for 
analysis, the number of clusters in the sample, the size of the clusters, the factor structure of the 
items (groups of variables, testing similar underlying constructs), the degree of interdependence 
among questions, and the average agreement level of every cluster with regard to each question. 

All these issues were included in an extensive scenario design. Translating the points listed 
above into technical terminology leads to the following scenario design variations: 162 12- 
dimensional binary data sets are used in the experiments. Each variable models a "1/0" (e.g., 
"yes/no") statement in a questionnaire. Structure is introduced in the data by creating 6 types of 
respondents with different answering behavior. Table 1 depicts the basic scenario. An "H" entry 
in the table means that the variable has a high probability of being 1, whereas "L" denotes a low 
probability of a 1. As can be seen in the table, the variables are separated into 4 groups (G1-G4, 
corresponding to 4 latent variables) of several indicator (manifest) variables (Ii-I3) each. Within 
these groups the probabilities are the same for each type. 

TABLE 1. 
The basic scenario P2DON6SII1 

G1 G2 G3 G4 

Type I1 I2 I3 I1 I2 I3 I1 I2 I3 I1 I2 I3 n 

1 H H H H H H L L L L L L 1000 
2 L L L L L L H H H H H H 1000 
3 L L L H H H H H H L L L 1000 
4 H H H L L L L L L H H H 1000 
5 L L L H H H L L L H H H 1000 
6 H H H L L L H H H L L L 1000 
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Five design factors are varied in the experiments: 

1. Probability distribution. In the first level, "high" variables have a 0.9 probability of being 1, 
whereas the probability is reduced to 0.8 in the second level and to 0.7 in the third. The "low" 
variables are modeled accordingly, with probabilities of 0.1, 0.2, and 0.3 respectively. 

2. Dependence of the variables within a group. One level has independent variables, the second 
has a correlation of 0.4 between the indicator variables in the group and the third has a strong 
dependency (0.8). 

3. Number of  clusters. There are experiments with 4, 5 and 6 clusters. The 4-cluster and 5-cluster 
scenarios correspond to the first 4 types and first 5 types from Table 1 respectively. 

4. Size of clusters. There are experiments with equal cluster sizes (1000 for each type), with 
unequal cluster sizes (2000-500-1000-700-700-1100) and with highly varied cluster sizes 
(3000-300-1000-500-700-500 data points in types 1-6). 

5. Number of  indicators (Manifest variables). One level has 3 indicator variables for each group, 
the other has 5, 4, 2, and 1 indicator variables for the 4 groups. 

All five design factors are crossed, yielding 162 different data sets. For the description of the 
results, the following naming convention is chosen for the data sets: Each scenario is described 
by RD.N.S.I., where P (probability) is "1" for the first level, "2" for the second and "3" for the 
third. D (dependence) equals "0" for independent variables, "4" for medium dependence and "8" 
for strong dependence. N indicates the number of clusters (4, 5 or 6). S (cluster size) is "1" for 
scenarios with equal cluster sizes, "2" for unequal cluster sizes and "3" for highly varied cluster 
sizes. I (number of indicators) is "1" for scenarios with an equal number of indicators and "2" 
for scenarios with an unequal number. The null hypothesis concerning the design factors is that 
changes in factor levels do not influence the ability of indexes to recommend the number of 
clusters modeled in the artificial data sets. 

Note that, as in real-world situations, the types are not clearly separated, but there is an 
overlapping cluster structure in the data sets. Scenario P2DON6S lI1, for example, has a Bayes' 
classification rate of 83%. 

Clustering Algorithms 

Two algorithms, namely k-means (also known as LBG algorithm, see Linde, Buzo, & Gray, 
1980) and hard competitive learning (see Fritzke, 1997), are used for the experiments in order to 
provide us with various clustering solutions, in this way preventing the dependency of the solu- 
tions on the clustering method. The decision in favor of these algorithms and against hierarchical 
algorithms was made because of the following consideration: Due to advances in information 
technology, huge data sets are often available. In the case of hierarchical methods, it is required 
to compute all pairwise distances. For n data points, the number of pairwise distances equals 
n(n - 1)/2. For n = 6000, this already yields approximately 18 million distances, which makes 
computation infeasible. 

k-means. The k-means algorithm is one of the classic statistical clustering methods. As 
opposed to the competitive learning variants, this is an off-line method, that is, the center updates 
are based on the entire training sample: 

1. Initialize the set C to contain k (k < < n) units ci: C = { C l ,  C2 . . . . .  Ck} with reference vectors 
w< E R d chosen randomly from the data set and compute the clusters corresponding to these 
centers. 

2. Compute the centers of all current clusters. 
3. Generate a new partition by assigning each pattern to the closest cluster center. 
4. If the partition changes compared to the last iteration, go to Step 2, else stop. 
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Hard  competi t ive learning (HCL).  HCL (see, e.g., Fritzke, 1997) is the simplest on-line 
clustering algorithm, where only one output unit (the cluster center) is the winner for each given 
data point and the weight vector of the winner moves toward the vector of the given point. 

1. Initialize the set C to contain k (k < <  n) units ci: C = {c1, c2 . . . . .  Ck}, with reference 
vectors w< E 1R d chosen randomly from the data set. Set the iteration counter to t = 0. 

2. Draw a pattern x j  from the data set. 
3. Determine the winner s (x j ) :  s ( x j )  = arg minc~ c I lxj - w c  II 
4. Move the reference vector of the winner along the gradient of I lxj - ws(xj) I I toward x j .  In the 

case of the Euclidean norm this is Aws(x j )  = et (x j  - Ws(xj)), where et is a suitable chosen 
learning rate. 

5. Set t := t + 1; if t  < tma=, return to Step 2. 

In Dolnicar, Leisch, Weingessel, Bachta, and Dimitriadou (1998), it is shown (for the 6 
cluster scenarios) that the k-means and hard competitive learning algorithms are able to find the 
correct cluster structure, but they sometimes get stuck in a local minimum due to the random 
initialization of the cluster centers. In order to overcome these instabilities, the following ex- 
perimental setup was chosen. Cluster solutions are computed starting with 2 cluster centers and 
increasing to 13 centers. The range was chosen so that it contains twice the number of clusters 
that are in the data sets, so that the solution where every true existing cluster might be split into 
two parts is still contained in the range of considered centers. For each of the different num- 
ber of clusters, the algorithms are repeated 10 times. The results with minimum sum-of-squares 
within the clusters are chosen and used to compute the index for this particular solution. From 
this vector, the number of clusters is found as described in the next section. In order to ensure the 
stability of the results, the above process is repeated 100 times for each scenario. 

Indexes 

This paper presents a comparison of 15 different indexes. These indexes represent 15 in- 
ternal measures that can be computed independently of the clustering algorithm. Indexes ap- 
plied only to hierarchical clustering methods (see Aldenderfer & Blashfield,1996; Milligan & 
Cooper,1985) are not used, because these methods are not suitable for large data sets (i.e., one 
is confronted with memory and time problems). Moreover, indexes similar to measures used for 
hierarchical methods, (i.e., measures using pairwise distances; e.g., the Gamma measure, Baker 
& Hubert, 1975; the Point Biserial measure, Milligan, 1981), are excluded from the study for 
the same reason. Other measures that are excluded are the following: measures for determining 
the number of fuzzy clusters (e.g., Yang & Yu, 1990), heuristic measures (depending on graph- 
ical methods) (e.g., Andrews, 1972; Arratia & Lander, 1990), and measures valid for data sets 
belonging to specific distributions (e.g., the likelihood ratio measure; Wolfe, 1970) or requiring 
prespecified conditions (e.g., the cubic clustering criterion; Sarle, 1983). All these measures are 
excluded for the sake of achieving an objective overall result in this research. 

After computing a particular index for a range of cluster numbers, one has to decide which 
cluster number to choose. In the simplest case, one can select that number of clusters where the 
index reaches its maximum (or minimum) value as a solution. However, this simple rule does not 
work in most cases. Often the index values are plotted as a function of the number of clusters and 
the user chooses a particular number by visual inspection, often where the curve has an "elbow," 
i.e., a positive or negative "jump" of the index curve, or a local peak. In this paper, the use of such 
subjective measures is omitted, but objective ones are computed. Therefore, besides looking at 
the maximum (or minimum) value maxk ik (where k is the number of clusters and ik the index 
value for k clusters) of the index, the following statistics are considered, see Thorndike, 1953; 
Kaufmann and Pape, 1996. The decision on which statistic to use is made after computing all 
of them for all the data sets and taking the one that performed best on average. After a statistic 
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is chosen for an index, its values are computed for all the number of clusters. The value of 
k (number of clusters) that corresponds to the maximum or--depending on which statistic-- 
minimum value of the statistic determines the proposed number of clusters for the specific index. 
Here they are described for the case where maximum values are of interest: 

(i) The maximum difference to the cluster at the left side (maxk(ik -- ik-1)). This is the part 
where the curve has its maximum increase. 

(ii) The maximum difference to the cluster at the right side (maxk(ik -- ik+l)). This is the part 
where the curve has its maximum decrease. 

(iii) The maximum value of the second differences (maxk((ik+l -- ik) -- (ik -- ik-1))). This 
measures an "elbow". 

The description of the indexes is categorized into 3 groups, based on the statistics mainly 
used to compute them. 

The first group is based on the sum of squares within (SSW) and between (SSB) the clusters. 
These statistics measure the dispersion of the data points in a cluster and between the clusters, 
respectively. The indexes are: 

1. Ball and Hall (1965). ssw ~ - ,  where k is the number of clusters. The maximum value of the 
second differences determines the proposed number of clusters. 

SSB/(k-1) 2. Calinski and Harabasz (1974). SSW/(n-k)' where n is the number of data points and k is the 
number of clusters. The minimum value of the second differences determines the proposed 
number of clusters. 

3. Hartigan (1975). ssB l o g ( ~ ) .  The minimum value of the second differences determines the 
proposed number of clusters. 

v a r S S B  1/2 4. Ratkowsky and Lance (1978). m e a n ( ( ~ )  ), where varSSB stands for the SSB for each 
variable and varSST for the total sum of squares for each variable. The maximum difference 
to the cluster at the right side determines the proposed number of clusters. 

5. Xu (1997). d log(x/SSW/(dn2)) + log(k), where d is the dimension of the data points. The 
maximum value of the second differences determines the proposed number of clusters. 

The second group is based on the statistics T, that is, the scatter matrix of the data points, 
and W, which is the sum of the scatter matrices in each cluster. 

1. Marriot (1971). k21WI, where k is the number of clusters and [ • [ stands for the determinant 
of a matrix. The maximum value of the second differences determines the proposed number 
of clusters. 

2. Scott and Symons (1971). n log(ll~ll), where n is the number of data points. The maximum 
difference to the cluster at the left side determines the number of clusters. 

3. Trace CovW (see Milligan & Cooper, 1985). The minimum value of the second differences 
determines the proposed number of clusters. 

4. Trace W (see Edwards & Cavalli-Sforza, 1965; Friedman & Rubin, 1967; Fukunaga & 
Koontz, 1970; Orloci, 1967). The maximum value of the second differences determines the 
proposed number of clusters. 

5. TraceW(-1)B (see Friedman & Rubin, 1967). TraceW(-1)B, where B is the scatter matrix 
of the cluster centers. The maximum difference to the cluster at the left side determines the 
proposed number of clusters. 

6. I T I/I W I (see Friedman & Rubin, 1967). The minimum value of the second differences deter- 
mines the proposed number of clusters. 

The third group consists of four indexes not belonging to the ones mentioned above and 
having nothing in common. 
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n R 1. Davies andBouldin (1979). R = ( l /n)  ~ i = 1 ( i ) ,  where Ri stands for the maximum value 
of Rij for i • j ,  and Rij for Rij = (SSWi q- SSWj)/DCij,  where DCij is the distance 
between the centers of two clusters i, j .  The minimum value determines the proposed number 
of clusters. 

2. C Index (see Hubert & Levin, 1976). The C Index is a cluster similarity measure expressed as: 
[d~ - min(d~)]/[max(d~) - min(d~)], where d~ is the sum of all nd within cluster distances, 
min(d~) is the sum of the nd smallest pairwise distances in the data set, and max(d~) is 
the sum of the nd biggest pairwise distances. In order to compute the C Index, all pairwise 
distances in the data set have to be computed and stored. In this case of binary data, the 
storage of the distances creates no problems since there are only a few possible distances. 
However, the computation of all distances can make this index prohibitive for large data sets. 
The maximum value of the second differences determines the number of clusters. 

3. Likelihood (NLL) (see Wedel & Kamakura, 1998). Under the assumption that the variables 
within a cluster are independent, a cluster solution can be regarded as a mixture model for the 
data where the cluster centers indicate the agreement probabilities. Therefore, the negative 
Log-likelihood can be computed and used as a quantity measure for a cluster solution. Note 
that the assumptions for applying special penalty terms, as in the case of AIC or BIC, are not 
fulfilled in this model, and also that they show no effect for these data sets. The maximum 
value of the second differences determines the proposed number of clusters. 

4. SSI (see Dolnicar, Grabler & Mazanec, 2000). This "Simple Structure Index" combines three 
elements which influence the interpretability of a solution, that is, the maximum difference 
between the clusters for each variable, the sizes of the most contrasting clusters and the devia- 
tion of a variable in the cluster centers compared to its overall mean. These three elements are 
combined by multiplication and normalized to yield a value between 0 and 1. The maximum 
value determines the number of clusters. 

Criteria for the Comparison of Results 

Four criteria are used to determine the quality of the indexes, each one of them emphasizing 
different aspects that might be of interest (see Table 2). 

Number of clusters found. The number of clusters recommended by each index is compared 
with the true number of clusters. This criterion counts how often each index makes the correct 
decision. The higher the number of correct recommendations, the more appropriate the index. 

However, the correct number of clusters does not guarantee the the correct structure is re- 
covered, which is why also other criteria will be considered. 

Furthermore, in order to summarize the results we use the "maximum choice criterion". This 
criterion is based on a voting idea, which means that we do not consider every single result of the 
100 repetitions for a particular scenario but we look for the majority decision of these repetitions. 
That is, for each scenario and each index, we evaluate which number of clusters is recommended 
most often within the 100 repetitions and take this number as the index's recommendation for the 
particular scenario. This corresponds to the real-life situation in which a researcher has to make 
one single decision based on multiple recommendations for the one data set under consideration. 
A sample chart can be seen in Figure 3. The best value that can be achieved is 54, as there are 54 
scenarios for a given number of clusters. 

Absolute profile identification. Each type in a data scenario is defined by an item profile. The 
clustering result recommended by the index is transformed into a binary profile by rounding the 
centers of the clusters. This profile is matched with the data scenario profiles. Then the number 
of correctly reconstructed profiles is divided by the number of clusters in the respective scenario. 
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A high value for this criterion indicates that the correct structure was identified, but indexes 
which tend to overestimate the number of  clusters may find correct profiles more often because 
of  the larger flexibility when more clusters are considered. This overestimation effect thus has to 
be penalized, which is the idea behind the "relative profile identification criterion". 

Relative profile identification. This criterion is obtained by dividing the correctly identified 
profiles by the recommended number of  clusters. 

Classification rate. This criterion computes how many points have been assigned to the right 
cluster by the clustering algorithm. Calculation of  this criterion requires a two-Step procedure: 
First  it is necessary to identify which profiles have been correctly identified, and then one must 
count the number of  data points correctly assigned to these clusters. 

Results 

Rankings of Indexes 

Table 22 includes the criteria values and the ranking for all indexes under investigation. In 
the last column the mean of  the ranks of  all criteria is computed. Ratkowsky-Lance shows the 
best  results with an overall rank of  2.25, followed by Xu, Scott-Symons, Calinski-Harabasz and 
the C Index. 

Studying the distribution of recommendations gives a descriptive but more in-depth under- 
standing of  the indexes'  behavior. Five groups of indexes can be formed by analyzing the his- 
tograms described in this section. For representative indexes, we have included graphs in which 
the frequency of  recommendations is plotted for each number of clusters, to check whether the 
result depends on that number. For example, consider two indexes. According to the first, the 
4-cluster solution is recommended correctly in 100% of  the cases by some index, while the other 
two scenarios (5 and 6 clusters) are not correctly untangled at all. Using the second, the correct 
number of clusters obtains the higher number of  recommendations in all three scenarios, but the 

TABLE 2. 
Evaluation criteria values and ranks 

Index No. Found Classification Abs. Profile Rel. Profile mean 

Ratkowsky-Lance 52.52/ 1 65.36/ 1 82.17/ 6 86.74/ 1 2.25 
Xu 35.29/ 3 61.67/ 2 79.57/ 8 80.76/ 7 5.00 
Scott-Symons 35.83/ 2 60.64/ 5 76.34/10 81.85/ 5 5.50 
Calinski-Harabasz 33.81/ 5 60.89/ 4 79.90/ 7 79.19/ 8 6.00 
C Index 30.09/ 8 60.99/ 3 69.42/11 84.70/ 2 6.00 
Davies-Bouldin 33.83/ 4 58.09/ 9 92.31/ 1 66.96/12 6.50 
TraceW-1B 32.64/ 7 59.46/ 6 83.09/ 5 75.86/11 7.25 
Marriot 32.79/ 6 59.10/ 7 78.79/ 9 79.12/ 9 7.75 
TraceW 18.24/ 9 59.01/ 8 61.78/13 84.49/ 3 8.25 
NLL 17.66/10 57.43/10 62.02/12 82.22/ 4 9.00 
SSI 9.77/12 54.42/13 90.85/ 2 57.39/14 10.25 
Hartigan 13.70/11 56.23/11 57.35/14 81.48/ 6 10.50 
TraceCovW 8.38/14 55.62/12 86.96/ 4 59.12/13 10.75 
T/W 9.38/13 53.66/14 90.58/ 3 54.65/15 11.25 
Ball-Hall 0.00/15 49.40/15 47.96/15 75.95/10 13.75 

2All simulations were performed in R, a free implementation of the S-language, see http://www.R-project.org/. 
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proportion of hits is only 20%. In this case the first index would be evaluated as superior when 
ranked over all scenarios, although its ability to cope with different conditions is inferior. 

Group I (highly reliable indexes). This group contains the Ratkowsky-Lance and the 
Davies-Bouldin Index, which are able to indicate the correct number of clusters very clearly, 
with a top recommendation frequency of over 60% for Ratkowsky-Lance (see Figure 1) when 
confronted with the 5-cluster scenarios. The percentage of correct hits is lower in the case of 
the Davies-Bouldin Index (see Figure 2) at approximately 35%. Although these values clearly 
indicate the correct decisions for each case, this index tends to favor higher numbers of clusters 
if the decision does not seem to be clear. The interpretation suggested above is also supported by 
the "maximum choice criterion" (an example of the 5-cluster scenario is given in Figure 3). 

Group H (reliable indexes). This group contains the Calinski-Harabasz Index and the Xu 
Index. The Calinski-Harabasz recommendations on the 5 and 6-cluster scenarios are correct, but 
a 3-cluster solution was favored when this index was applied to the 4-cluster scenario (Figure 4). 
The same is true of the Xu Index, the distribution frequency of which is almost identical to 
the Calinski-Harabasz plot (Figure 5). Looking at the maximum recommendations, the same 
diagnosis applies for the 4 and 5-cluster data. In the 6 cluster scenarios, the Xu Index still renders 
the top maximum choice value at the correct number of clusters, whereas Calinski-Harabasz fails 
to do so, suggesting the choice of 4 clusters instead (Figure 6). 

Group III (indexes with data-independent favorite recommendations). Some indexes seem 
to have clear favorites, therefore recommending a certain number of clusters most often rather 
independently of the actual data properties, but not--as is the case in group IV--without any 
relation to the data sets. Scott-Symons, Marriot and TraceW-]B belong to this group. The C 
Index has to be included in this group as well, although higher recommendation frequencies 
occur for 5 and 6 clusters the respective scenarios. 
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Davies-Bouldin Index: Number of clusters found. 
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Calinski-Harabasz Index: Number  of clusters found. 
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Index Group II, 6 clusters: Maximum choice criterion. 

All indexes belonging to group III recommend a 4-cluster solution most often under all 
scenario conditions. 

Group IV (three cluster favoring indexes). Ball-Hall, Hartigan, TraceW and NLL favor the 
3-cluster solution without regard to the data presented. The most extreme case is the Ball-Hall 
Index with a 100% recommendation rate for this kind of solution. 

Group V (special-interest indexes). For these indexes (TraceCovW, SSI, T/W), it is impos- 
sible to make any kind of decision, because the recommendations are almost evenly distributed 
over the different numbers of clusters. As can be seen, the recommendation for one single number 
of clusters never even comes near 20%. However, it turns out that these indexes have strengths 
in other respects as one can easily see in Table 2. They are among the top scorers in terms of ab- 
solute profile identification, which is caused by the systematic overestimation of the number of 
clusters and therefore it is not really a strength of these indexes. The problem of overestimating 
the number of clusters for profile identification optimization purposes was already addressed in 
the description of the "absolute profile criterion". The same problem is encountered when using 
the special interest indexes: The true profiles are identified very well, but the number of clus- 
ters is overestimated. For our purposes, these indexes thus appear to be of limited use. As far as 
the "maximum choice measure" is concerned, there is no single way of describing this group's 
behavior. 

Coping with Adverse Data Structures 

The percentage of the correct number of clusters decision is obviously interrelated with the 
data conditions. First, we have a look at the mean percentage of correctly identified numbers of 
clusters over all indexes under specific conditions, as shown in Figure 7. 

The vertical lines indicate the factor blocks, P1 to P3 stand for variations in probability, DO 
to D8 indicate the level of dependence modeled in the data, S1 to $3 give the size of clusters, 
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and I1 to I2 indicate the groups of manifest variables. In general it can be assumed that higher 
factor levels of the probability (less extreme probability values) make the scenario more difficult, 
as does higher contrast in cluster size. Also, dependence seems to influence the performance 
negatively, although this is not true in the 4-cluster case. The same is true of the number of 
manifest variables, where unequal numbers of manifest variables again ease the task to be solved 
in the 4-cluster case, but not for 5 and 6 clusters. 

In the following index-specific reactions to the design factors in the scenarios are described. 

Group I (highly reliable indexes). In an explorative analysis of index behavior, the differ- 
ences between the percentage of correctly identified number of clusters decisions among factors 
are examined. Index-specific behavior is the deviation from the mean. The Ratkowsky-Lance 
Index is given as an example in Figure 8. 

The black line gives the same information as seen in Figure 7, only in terms of difference. 
Looking at the first bar, the interpretation is as follows: The difference from probability level 
1 (P1) to probability level 2 (P2) in the case of the 4-cluster scenarios only (N4) is 13% for 
the Ratkowsky-Lance Index, meaning that the correct number of decisions decreases by 13 per- 
centage points due to the fact that the probability level changes. This value equals the average 
difference 13%. 

The most systematic deviation from the mean is the behavior towards varying cluster sizes. 
Ratkowsky-Lance seems to cope fairly well with maximum cluster sizes of 1000 and 2000, while 
the most extreme case--a maximum of 3000--causes serious problems. 

Two characteristics are very interesting when investigating the behavior of the Davies- 
Bouldin Index: First, the initial Step of making the probability less extreme (from P1 to P2) 
leads to a considerate loss in quality. Second, the inequality of manifest variables in all cases 
seems to help the index to make correct decisions. 
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Group H (reliable indexes). The Calinski-Harabasz Index generally reacts in a more extreme 
way than the average (see Figure 9). The direction of  change is the same except for the changes 
in the manifest variable design for 5-cluster scenarios. In particular, going from probability level 
1 (the easiest) to level 2, the quality of  results decreases dramatically. The same is true of  the Xu 
Index. 
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TABLE 3. 
ANOVA (Ratkowsky-Lance index) 

Est., Sign. Est., Sign. Est., Sign. Est., Sign. 
Effect  (Class) (Abs. Prof.) (Rel. Prof.) (No. Found) 

(Intercept) 65 82 87 53 
Probability P1 22, *** 11, *** 12, *** 23, *** 
Probability P2 2, *** 2, n.s. 5, *** 1, n.s. 
Probability P3 - 2 4 ,  *** - 1 3 ,  *** - 1 7 ,  *** - 2 4 ,  *** 
Dependence  DO 11, *** 2, n.s. 5, *** 5, n.s. 
Dependence  D4 - 1 ,  * 2, n.s. 2, * 3, n.s. 
Dependence  D8 - 1 0 ,  *** - 4 ,  * - 7 ,  *** - 8 ,  ** 
Number  N4 5, *** 4, ** 1, n.s. - 1 ,  n.s. 
Number  N5 0, n.s. 3, ** 1, n.s. 10, *** 
Number  N6 - 5 ,  *** - 7 ,  *** - 2 ,  * - 9 ,  *** 
Cluster size S1 3, *** 12, *** 7, *** 24, *** 
Cluster size $2 1, n.s. 4, *** 3, ** 6, * 
Cluster size $3 - 4 ,  *** - 1 6 ,  *** - 1 0 ,  *** - 3 0 ,  *** 
Indicators I1 1, * 0, n.s. - 1 ,  n.s. 0, n.s. 
Indicators I2 - 1 1 ,  * 0, n.s. 1, n.s. 0, n.s. 

p-value: ***: < 0.0001, **: < 0.001, *: < 0.05, n.s.: not significant 

ANOVA Results 

T h e  n u l l  h y p o t h e s i s  tha t  va r i a t i ons  in f ac to r  l eve l s  d o  n o t  h a v e  an  e f f e c t  w a s  t e s t e d  b y  

an  a n a l y s i s  o f  v a r i a n c e  ( A N O V A )  fo r  t he  t w o  h i g h l y  r e l i a b l e  i n d e x e s  w i t h o u t  t ak ing  t w o - w a y  

i n t e r a c t i o n s  in to  a c c o u n t .  T h e  A N O V A  resu l t s  a re  g i v e n  in  Tab les  3 a n d  4 w h e r e  " ( I n t e r c e p t ) "  

d e n o t e s  t he  m e a n  r e su l t  o v e r  all  l eve l s  o f  t h e  d e s i g n  fac to r s .  T h e  s i g n i f i c a n c e  o f  t he  i n f l u e n c e  o f  

t he  l eve l s  is t e s t e d  a g a i n s t  th is  m e a n  va lue .  

I t  is  o b v i o u s  tha t  t he  p robab i l i t y ,  t he  d e p e n d e n c e  a n d  t h e  c l u s t e r  s i ze  c h a n g e s  a re  t h e  d e s i g n  

f ac to r s  w i t h  t he  s t r o n g e s t  n e g a t i v e  i m p a c t  o n  the  t w o  i n d e x e s  p e r f o r m a n c e  c o n c e r n i n g  all  t h e  

TABLE 4. 
ANOVA (Davies-Bouldin index) 

Est., Sign. Est., Sign. Est., Sign. Est., Sign. 
Effect  (Class) (Abs. Prof.) (Rel. Prof.) (No. Found) 

(Intercept) 58 92 66 34 
Probability P1 27, *** 7, *** 21, *** 36, *** 
Probabili ty P2 0, n.s. 1, n.s. 0, n.s. - 7 ,  * 
Probability P3 - 2 7 ,  *** - 8 ,  *** - 2 1 ,  *** - 2 9 ,  *** 
Dependence  DO 7, *** 2, * 3, n.s. 11, *** 
Dependence  D4 1, n.s. - 1 ,  n.s. 7, *** 7, * 
Dependence  D8 - 8 ,  *** - 1 ,  n.s. - 1 0 ,  *** - 1 8 ,  *** 
Number  N4 1, n.s. 1, n.s. - 3 ,  n.s. 0, n.s. 
Number  N5 0, n.s. 1, n.s. 0, n.s. 2, n.s. 
Number  N6 - 1 ,  n.s. - 2 ,  * 3, n.s. - 2 ,  n.s. 
Cluster size S1 4, *** 6, *** 7, *** 15, *** 
Cluster size $2 1, n.s. 1, n.s. 3, n.s. 2, n.s. 
Cluster size $3 - 5 ,  *** - 7 ,  *** - 1 0 ,  *** - 1 7 ,  *** 
Indicators I1 - 2 ,  ** 4, *** - 8 ,  *** - 9 ,  *** 
Indicators I2 2, ** - 4 ,  *** 8, *** 9, *** 

p-value: ***: < 0.0001, **: < 0.001, *: < 0.05, n.s.: not significant 
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cri teria.  The  n u m b e r  o f  c lus ters  in  the  da ta  sets does  no t  s eem to p lay  such  an  i m p o r t a n t  ro le  

spec ia l ly  for  the  D a v i e s - B o u l d i n  Index,  w h e r e  the  inequa l i ty  of  the  m a n i f e s t  va r iab les  does  no t  

in f luence  s igni f icant ly  the  R a t k o w s k y - L a n c e  Index  (except  o f  the  c lass i f icat ion) .  Table  5 inc ludes  

all  resu l t s  ob t a ined  b y  A N O V A  for  m a i n  fac tors  only. T h e  fo l lowing  genera l  conc lus ions  can  thus  

b e  drawn:  

Table  5 suppor t s  the  a s s u m p t i o n  tha t  c h a n g e s  in the  p robab i l i t y  level  f r o m  P1 to P3 s t rong ly  

dec rease  r e c o m m e n d a t i o n  qua l i ty  for  all  cr i teria.  

A n o t h e r  des ign  fac tor  tha t  w or s ens  all  resul t s  s ignif icant ly,  regard less  o f  w h i c h  cr i te r ion  is 

used  for  the  A N O V A ,  is the  size of  the  clusters .  The  resul t s  ind ica te  tha t  inc reas ing  differ-  

ences  in c lus te r  sizes s t rongly  dec rease  r e c o m m e n d a t i o n  quali ty.  The  m o s t  d r ama t i c  resul t s  

are o b s e r v e d  for  the  " n u m b e r  o f  c lus ters  f o u n d "  cr i te r ion  (The  r educ t ion  a m o u n t s  to 16% at  

the  s econd  fac tor  level  and  2 6 %  at the  th i rd  level).  T h e s e  resu l t s  l ead  to the  in te rp re ta t ion  tha t  

cer ta in  indexes  t end  m o r e  to ove re s t ima te  the  n u m b e r  o f  c lus ters  and  cor rec t ly  iden t i fy  par t  

o f  the  prof i les  than  m a k e  the  cor rec t  guess,  a cen t ra l  a n d  c ruc ia l  in s igh t  for  n i che  m a r k e t  seg- 

men ta t ion .  Consequen t ly ,  the  c h a n c e  o f  iden t i fy ing  a n i che  s e g m e n t  cor rec t ly  is h i g h e r  w h e n  

TABLE 5. 
ANOVA Including all main effects 

Est., Sign. Est., Sign. Est., Sign. Est., Sign. 
Effect (Class) (Abs. Prof.) (Rel. Prof.) (No. Found) 

(Intercept) 58 76 75 24 
Ball-Hall - 9 ,  *** - 2 8 ,  *** 1, n.s. - 2 4 ,  *** 
Calinski-Haxabasz 3, *** 4, *** 4, *** 10, *** 
C Index 3, *** - 7 ,  *** 9, *** 6, ** 
Davies-Bouldin 0, n.s. 16, *** - 9 ,  *** 10, *** 
Hartigan - 2 ,  ** - 1 9 ,  *** 6, *** - 1 1 ,  *** 
Marriot 1, n.s. 3, ** 4, *** 9, *** 
NLL - 1 ,  n.s. - 1 4 ,  *** 7, *** - 7 ,  ** 
Ratkowsky-Lance 7, *** 6, *** 11, *** 28, *** 
SSI - 4 ,  *** 15, *** - 1 8 ,  *** - 1 5 ,  *** 
Scott-Symons 3, *** 0, n.s. 7, *** 12, *** 
T/W - 5 ,  *** 15, *** - 2 1 ,  *** - 1 5 ,  *** 
TraceCovW - 3 ,  ** 11, *** - 1 6 ,  *** - 1 6 ,  *** 
TraceW 1, n.s. - 1 4 ,  *** 9, *** - 6 ,  ** 

TraceW-1B 1, n.s. 7, *** 1, n.s. 8, *** 
Xu 4, *** 4, *** 5, *** 11, *** 
Probability P1 21, *** 8, *** 12, *** 14, *** 
Probability P2 1, * 1, n.s. 2, *** - 2 ,  n.s. 
Probability P3 - 2 2 ,  *** - 9 ,  *** - 1 4 ,  *** - 1 2 ,  *** 
Dependence DO 7, *** 2, *** - 1 ,  n.s. 2, * 
Dependence D4 0, n.s. 0, n.s. 3, *** 1, n.s. 
Dependence D8 - 7 ,  *** - 2 ,  *** - 2 ,  *** - 3 ,  *** 
Number N4 7, *** 9, *** 2, *** 10, *** 
Number N5 - 1 ,  ** 0, n.s. 0, n.s. - 3 ,  *** 
Number N6 - 6 ,  *** - 9 ,  *** - 2 ,  *** - 7 ,  *** 
Cluster size S1 0, n.s. 7, *** 4, *** 14, *** 
Cluster size $2 1, *** 3, *** 4, *** - 2 ,  * 
Cluster size $3 - 1 ,  *** - 1 0 ,  *** - 8 ,  *** - 1 2 ,  *** 
Indicators I1 1, ** 2, *** - 3 ,  *** 1, n.s. 
Indicators I2 - 1 ,  ** - 2 ,  *** 3, *** - 1 ,  n.s. 

p-value: ***: < 0.0001, **: < 0.001, *: < 0.05, n.s.: not significant 
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the number of clusters is overestimated. The open question is which of the segments identified 
by such a solution actually exist in the data and which do not, a crucial question for making 
strategic decisions. 
The number of clusters actually present in the data also strongly influences the results, with 
higher numbers of clusters generating worse results. 
The influence of dependency is strongest for the classification rate results. The results decrease 
by 7 and 14% from the first to the third level. 
Changing the number of indicators generally does not influence the cluster number recom- 
mendations dramatically. Only the classification rate and the profile identification suffer (in a 
slight but significant manner) from unequal groups of variables loading heavily on an under- 
lying latent trait. 

Comparison with Latent Class Analysis 

Latent class analysis (McCutcheon, 1987; Formann, 1984) is a technique for analyzing rela- 
tionships in general categorical data. In the field of psychology, LCA is one of the most common 
tools to identify subgroups of individuals on the basis of binary data sets. LCA fits a simple 
parametric model. It is assumed that the data are generated by a finite mixture of latent classes. 
Each latent class is defined by its conditional response probabilities and its relative size. One 
important assumption of LCA is "local independence" in each class, meaning that each variable 
is statistically independent of all other variables within each latent class. 

The likelihood ratio statistic and Pearson chi square value are used to evaluate the goodness- 
of-fit of LCA results. Note that these values are only asymptotically chi-square distributed, and 
reliable results can thus only be obtained if the number of data points is significantly larger 
than the number of possible binary patterns. This requirement is not fulfilled in our scenarios, 
where we have 6000 data points and 21s(= 4096) possible binary patterns. Confidence intervals 
for the two statistics can be obtained by parametric bootstrap techniques, but these methods are 
computationally expensive. 

Number of cluster recommendations were deduced from the development of the BIC mea- 
sure (Rost, 1996; Schwarz, 1978) over the same range of cluster numbers (2-13) as for the clus- 
tering algorithms. 

Table 6 shows a comparison between LCA and a clustering algorithm, meaning that LCA 
is treated as a clustering algorithm and its performance is evaluated in this respect. This compar- 
ison is made for the scenarios P2DON6S311 (independent) and P2D8N6S311 (dependent). These 
two scenarios were chosen to give a representative example of how LCA can handle clustering 
problems with independent and dependent variables. Since it is usually not known in real-world 
situations whether the local independence condition is fulfilled, we were interested in the perfor- 
mance of LCA for dependent scenarios as well. 

For these specific scenarios, it is obvious that the performance of LCA is worse than that 
of the clustering algorithm. However, it managed to react well to the dependent scenarios, which 

TABLE 6. 
Comparative evaluation with LCA 

Clustering Algorithm LCA 
mean sd range mean sd range 

Profiles found indep. 5.9 0.3 5-6 5 0 5 
dep. 3.3 0.7 2-5 3.5 0.7 2-4 

indep. 76.2 2.2 69-77.5 60.4 2.06 58.2-65.6 
dep. 42.1 4.2 32.6-53.9 40.5 6.7 25.3-46.6 

Classification rate 
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shows that LCA can be considered a clustering algorithm, even in situations where the validity of 
the local independence condition is unknown. For the rest of the scenarios the results are similar, 
whereas both algorithms perform equally in the case of the scenarios which are easy to cluster 
successfully. 

When applying LCA, the BIC is the appropriate measure for finding the number of clusters. 
However, it turns out that the BIC is only able to find the right number of clusters in the case 
of simple, independent scenarios. For scenarios where the local independence assumption is not 
fulfilled, the BIC criterion does not find the right number of clusters. However, it also fails for 
the more difficult independent scenarios. Generally, LCA using BIC yields the same performance 
quality as average indexes in the case of independent scenarios. 

Summary 

In this paper, the performance of 15 indexes for determining the number of clusters in a 
binary data set is analyzed. In order to ensure that the right number of clusters is known, only 
artificial scenarios designed to simulate the difficulties of real-world data were used. Five design 
factors--namely the probability of a variable being 1, the level of dependency, the number of 
clusters, the size of clusters, and the number of indicators in a group--are crossed, yielding 162 
different artificial data sets. In the evaluation of the indexes' performance, k-means and hard 
competitive learning methods were applied 100 times for each scenario so as to overcome the 
instabilities imposed by the clustering algorithms. The selection of the number of clusters, based 
on the indexes' values, was done automatically. Since the artificial data sets were generated to 
resemble real-world data, the analysis of the indexes' performance helps a researcher to choose 
the appropriate index for each individual problem. 

A comparison with the results reported by Milligan and Cooper (1985) is not possible due 
to completely different simulation assumptions in both the data used and, as a consequence, the 
applicable algorithms and indexes. 

Central findings include the major negative influence of non-extreme answer probability 
levels and of unequal cluster sizes on the correct identification of data-inherent cluster structures. 
Compared to these two factors, the influence of the number of clusters actually modeled in the 
data, the number of manifest variables and the dependence level of individual items is rather 
weak. 

Depending on the evaluation criterion chosen, various rankings of the indexes emerge, with 
the Ratkowsky-Lance Index scoring highest in all but one criterion ("absolute profile"). Based 
on their ability to recommend the correct number of clusters through a majority vote over repli- 
cations, the Ratkowsky-Lance and Davies-Bouldin Index render the best results over all data 
scenarios investigated, followed by the indexes proposed by Calinski-Harabasz and Xu. 

Tables 7 through 10 give the ranking information for the four criteria split up into the vari- 
ous factor levels. This nicely demonstrates that the superiority of the Ratkowsky-Lance Index is 
not an artificial phenomenon arising from calculating the mean over a multitude of levels; thus 
Ratkowsky-Lance really is the best recommendation for working with binary data. Out of 112 
ranks (2 algorithms, 4 criteria and 14 factor levels) Ratkowsky-Lance misses first place only 42 
times, the majority of which is due to its weakness in identifying the correct absolute cluster pro- 
files. So, as far as the number-of-clusters decision is concerned, Ratkowsky-Lance is the absolute 
high scorer, but for profile identification it seems recommendable to use indexes specialized in 
this field, such as the Davies-Bouldin, the SSI or the T/W Index. 
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