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SENSITIVITY OF A LINEAR COMPOSITE OF PREDICTOR ITEMS 
TO D I F F E R E N T I A L  ITEM WEIGHTING 
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Many authors have demonstrated for idealized item configurations that equal item weights are 
often virtually as good for a particular predictive purpose as the item weights that are theoretically 
optimal. What has not been heretofore clear, however, is what happens to the similarity between 
weighted and unweighted composites of the same items when the item configuration's variance 
structure is complex. 
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E q u a l - W e i g h t  C o m p o s i t e s  

The enthusiasm with which Wainer [1976], expanding upon the sentiments of Dawes 
& Corrigan [1974], has advocated the use of equal item weights for applied multivariate 
prediction is not entirely unjustified. However, his "Equal Weights Theorem" [corrected 
by Laughlin, 1978], which professes to show the robustness of equal item weights for the 
practical efficiency of composite predictors, in fact argues for this only under arbitrarily 
special assumptions whose relevance for practical prediction is demonstrably almost nil. 
Equal-weight predictor composites are indeed nearly optimal under seemingly wide condi- 
tions. But those conditions are more subtle than the extant literature has properly noted. 
In particular, before enthusing over the t r e n d  of item composites' general insensitivity to 
differential item weighting, we need also to reflect upon that trend's reliability. 

That variation in the weights Iw~} assigned to the items in a linear composite~ = w0 + 
w~xl  + • • • + w m x m  of predictor variables often makes little difference for J? has been 
noted more than once in the psychometric literature [see especially Gulliksen, 1950, 
Chapter 20]. And while most published expressions of this effect have been difficult to 
interpret save through unrealistically idealized simplifying assumptions, it is possible to 
characterize the responsiveness of  composite ~ to differential item weighting in a fashion 
that is surprisingly insightful considering its generality. I shall review that characterization 
once the problem's nature has been clarified. 

It is well-known that the linear composite of variables X = (xl, • --, xm), having 
minimal standard error for predicting a criterion variable y in population P, is the 
projection ~ = bo + ~'~.~ =1 b~x~ of y into the space spanned in P by X, i.e. b~, • . . ,  bm are 
the coefficients in the linear regression o f y  upon X in P. (I write 'b~' rather than ' ~ '  for the 
regression coefficients because I do n o t  want to presuppose that y and the x~ are standard- 
ized to unit variance.) To assess the relative efficiency of some other composite 

= wo + ~ m ~ = ~ w t x ~  for predicting y from these same items, we can proceed in either of 
two ways. The one exploited by Wainer is to standardize y to unit variance, to note that 
var(y - ~) = var(y - A) + var(A - ~), and to take var(A - ;7) as our measure of 2's 
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inefficiency compared to ~. However, this has technical disadvantages due to the numeri- 
cal value of var(.~ - ~) being determined in part by scaling parameters for predictor 
dimension ~ that are generally irrelevant to predictive use o f £  [see Rozeboom, 1978]. The 
sensitivity of  this approach to scaling artifacts has tricked Wainer into choosing premises 
for his Equal Weights Theorem that can be satisfied only when there are at most three 
predictor items. 

Proof  Wainer stipulates that x~, • • • , x,,  are linearly uncorrelated with unit variances, 
and that their regression weights {b~} for y are "uniformly distributed on the interval [.25, 
.75]." Then ~'~71 =1~ = var(~"]."l=~b~x,) = var(~) < var(~) + var(y - J )  = ~.~, or Y ~  ~1~ < 1 
since y is also assigned unit variance. Hence ag + 62 = Y ~ = l b ~ / m  < m -~, where b'and ~rb 
are respectively the mean and standard deviation of b~, . . . ,  bin. But b- = .5 and or0 > 0 
under the premised weight distribution; whence m < b --2 = 4, i.e. integer m must be three 
or less. [ ]  

Wainer's approach can easily be generalized to m greater than 3; but to do so the 
range stipulated for {bt} must be formulated as a carefully controlled function of  m, with 
the common weight given to each predictor in the equal-weight composite similarly 
varying with m, 

Alternatively, however, we can avoid scaling irrelevancies by assessing the y-predic- 
tive efficiency of an arbitrary item composite £, compared to the accuracy of regression 
estimate .~ of  y, simply by the squared correlation p~ between'k and ~ in P. For  since 
O~ = O~xp,~, where Oyx (= aye) is y 's multiple correlation with the x~ in P, 

is the measure that tells what proportion ofy ' s  variance accounted for by y 's  regression on 
{xt} is still accounted for when y is predicted just from .,?. Since none of  these squared 
correlations is affected by linear transformations of  y, ~, or ~?, we can let constants wo and 
w in equal-weight composite g = wo + ~_.,~ =~ wx~ be arbitrary. It is conceptually useful to 
let wo = 0 and w = m -~, in which case our equal-weight composite is the centroid, g =tier 
(~_,] =1 x~)/m, of the predictor items. In what follows, I will show how the correlation p~  
between the centroid of predictor items x~, . . . ,  Xm and criterion variable y's projection 
into X-space is determined jointly by certain critical properties of y's regression coeffi- 
cients {b~} on the X-configuration and the variance structure of  the items. Actually, it will 
be irrelevant that the bt are regression coefficients for predicting an external criterion y. 
The main point at issue is simply the correlation between some target composite J = bo + 
~_~ =~ b~x~ and the unweighted (equal-weight) composite of  the same items. 

Before the virtues of  centroid predictors can be meaningfully examined, something 
needs be said about  item scales. For  insomuch as each direction in X-space is collinear 
with the centroid of  the item configuration under some choice of item scales (since scaling 
parameters can adjust an item's orientation as well as its mean and variance), any theorem 
establishing high efficiency o f g  for predicting y would be trivial if we are allowed to select 
item scales to yield g = .~. Also, the familiar theoretical expedient of unit-variance items is 
virtually never implemented in applied prediction. Accordingly, the present analysis will 
assume fixed but arbitrary item scales. Still, even without estimating regression parame- 
ters, we have great latitude in choosing item scales; and some such selection must be made 
in any event, with or without an assist from statistical considerations. After we see how the 
correlation between ~ and £ is determined for an arbitrary choice of  item scales we will be 
in a better position to judge the merits of various scaling alternatives. 

For  any fixed scalings of  predictor items X = (xl, • • . ,  xm), let v~ be the coefficient of 
variation for the coefficients in target composite ~ = b0 + Y]"~=~ b~x~. That  is, v~ = o-~/b-, 
where b- and cr~ are respectively the mean and standard deviation of bl, • • . ,  bin. Quantity 
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vo, which may be thought of  as the "extremity" of  weight distribution {btl, characterizes 
the degree to which the item weights in J diverge from equal weighting; and it is intuitively 
evident that the larger is v~, the smaller on the whole should be p~.z (When v~ = 0, p ~  = 1 
since J and .~ are then collinear.) But it is also evident that for fixed {b~}, the more 
homogeneous are the xt the larger will be 2 p~.  And in fact, we shall see that 2 p~  is largely 
determined just by vb and the predictor items' internal consistency in a way that sustains 
the classic contention [see e.g., Gulliksen, 1950] that differential weighting of a goodly 
number of reasonably homogeneous items tends not to matter much. However, the 
reliability of that simple trend is profoundly modulated by properties of the predictors' 
variance structure other than homogeneity. This latter effect does not seem to have 
received much recognition; yet it is just as important a part of the item-weighting story as 
is the general trend. 

To make clear how p~ is determined by item weights {bt} and the predictor configura- 
tion's variance structure, we need some partly-unfamiliar technical machinery. Let each 
predictor item x~ (i = 1, • • • ,  m) be analyzed as the sum, x~ = d~ + $, of  two components, a 
"saturat ion"  component  .~ (i.e. the items' centroid) shared by all the items plus a "dis- 
persion" component  dl =~r  x~ - ~. Because )-'~"}=~ dt = 0, the total X-variance V x  =a~f 
~-~:~=~ cr 2~, analyzes as the total variance ma l  of the items' m saturation components plus the 
total variance Vo =def~"~=~ a~,of the items' dispersion configuration D = (dl, • • • , din). 
Pr f: m 2 _  m - _ ,~ 2 2 ( o o . ~ , = 1 ¢ x , -  ~ , = ~ v a r ( d ~ + x ) -  Y~,= l r ra ,+~"}=l  cov(d, .f) + ma~ while 

Y~I =~ cov(d, ~) = cov(Y~:~=~ d ,  d) =coy(0, ~) = 0.) I fsa tx  and dispx are the proportions 
of total item variance that are saturation variance and dispersion variance, respectively, 
i.e. 

2 m~r~ 
satx =aer -'gx ' 

VD 
dispx =a~r v x '  

we thus have satx + dispx = 1. The variance ratio satx may be viewed as a measure of item 
similarity, since it equals the average of all elements in the item configuration's covariance 
matrix C x x  divided by the average item variance. However, a purer measure of item 
homogeneity, homx. is the average off-diagonal element in C x x ,  i.e. the average between- 
item covariance, divided by the average item variance. It can easily be shown that the ratio 
of homx to satx is the item configuration's "alpha coefficient," a quantity long familiar to 
modern test theory as an internal-consistency approximation to the item-centroid's relia- 
bility [see Rozeboom, 1966, p. 410f.] and for which we shall have later use. Specifically, 

homx mhomx 
( 1 )  ~ = - -  - 

s a t x  ( m -  l )homx + 1 

For  any fixed homx > 0, a x  increases asymptotically to unity with increasing m. 
The sensitivity of  p~  to a given extremity vb of  item weighting is determined impor- 

tantly by the proportion of  the items' total variance given to their dispersion configura- 
tion, but alsowwhich is the tricky part for a theory of item weighting to make per- 
spicuouswby their dispersion configuration's shape. It is not hard to show that for any 
m-tuple (bl, • • ", b,~) of non-identical item weights, the weighted item composite ~ = bo + 
~_,~ =1 btx~ is collinear with ml/~2 + vbdb for some axis d0 of  an orthonormal rotation of dl, 
• -- ,  d,~ selected by the inequalities among the item weights {b~}. 

Proof.  Put do =act ~'~=laidt ,  where a~ =act (bt - 6)/ml/2a~, and note that~"}=16d~ 
b m - T .~ _ m - m - m -- ' m - -  = ~ ,  ,=,d, - O. hen - bo - ~_~ ,=ib,x, - (Y~. ,o lb ,x)  + ( ~ ,  ,=1) - (~.,',=~b)x 

+ ~,~=1 (b, - 6)dr = m65~ + m~/2trb(~..mt=la,dt) = m6Yc + ml/2aodb = ml/26(mt/2ff + vbdb). 
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And since )-'~."]=1 a~ = 1, d0 = )-'~]=1 a~d~ is an axis in some orthonormal rotation of 
dl, . . . ,  dm.[] 

Excluding Vb = O, any value of v0 can be combined in {bt) with any choice of d0, so 
extremity and D-axis selection are independent properties of the weight set. From the 
collinearity of ~ with m~/2~ + vbdb it follows that 

- ObOx) vgqo( l ~ 2 
(2) 0 ~  = 1 - 1 + vgqb + 2voq~/2OoOx >>" 1 - v~qo, 

where 0x is the multiple correlation of .f  with the d .  Oo is the correlation between do and :?'s 
projection into D-space, and q0 is the variance of d0 in proportion to the variance ofm*/2.f, 
i .e .  

(3) qb =a~ ma--'~ " 

P r o o f  For  any variables x, y, and z such that x is collinear with y + z, o~y = o~y+~y = 
cov(y, y + z)2/[var(y) • var(y + z)] = [crg + 2tr~ cov(y, z) + cov(y, z)2]/a~[tr~ + 2 cov(y, z) + 
a ,  =] = 1 - tra2azy ~ - cov(y, z)2]/~raY[~r~ + 2coy(y, z) + ~r~] = 1 - r~(l - 0~) / (1  + 2rpy~ 
+ r2), where r =eer a J O y .  From there we obtain (3) by substituting . / f o r  x ,  m*/2:? for y, 
and vodo for z, while noting that var(vodo)/var(m*/~Yc) = vg~g~/rntr2x - = vgqo, that 
p~,,,,,~ = p/a and p~,,,,,~ooa~> = p~n~ , 'and thatlby/partitioning 2 into its projection into 
D-space plus an orthogonal residual, pxe0 can be analyzed as the product o f  Ox and O~.~ 

Equation (2) is not very insightful as it stands. However, the product of correlations 
Ox and O0 will almost always be negligible compared to the main terms in (2).* And if we 
reasonably estimate OoOx to be approximately zero, the equality in (2) simplifies to 

(4) 2 vgqo ..... voqo) • 
P:~"~ 1 -  1 +v~qo = (1 + 2 -1 

(Note that when vg qo is on the order of 10 -1, the approximate value ofo~,~ given by (4) is 
not much greater than the lower bound 1 - vgqo on p~ given in (2).) Ignoring minor 
perturbations from OoOx, then, we see that the effect of differential item weighting can be 
described by just two parameters, vg and q~. The nature ofvg is clear, so it only remains to 
elucidate q0. 

Variance ratio qo is not nearly so obscure as it may seem on first encounter; for its 
denominator ma~ is just the X-configuration's saturation variance while its numerator,  tr = t /0  , 

is one axis' worth of dispersion variance selected by weights {b~}. Since not all D-axes 
generally have the same variance, the particular {b~} makes some difference for ~r~ and 
hence for q0; but even so, a~ has upper and lower bounds determined just by the D- 
configuration's shape regardless of {b,}. The nature of these will be readily grasped by 
anyone familiar with the effect of orthonormal rotations on an item configuration's 
variance structure: Total  variance remains invariant, but is redistributed among the 
rotated axes in ways that can best be described in terms of  the configuration's principal 
components and their associated variances. Specifically, any axis do in any orthonormal  
rotation of D = (d~, - - - ,  am) is a linear composite do = Y~."~=~ a*d*~ of the principal 
components d]~, - - . ,  d* of  the D-configuration while the variance of d0 is a corresponding 
weighted average tr ~e~ = Y~"~=~a*Z~ m (Y~."}=, a~ ~ = 1) of ~.m, " " ,  ~,om, where each ~o~ is 

• For arbitrary weight selection, the expected value of 0~, is (m - 1 )-L 1 have found it very difficult to develop 
analytic evaluations of  Ox's likely magnitude except for linearly independent items whose centroid is collinear 
with one of  their principal axes, in which case 8x ~- O. (One can contrive items having any stipulated value of 0x; 
but what values are apt to arise in practice and how Ox is affected by item orientations remain unclear to me.) 
Even so, it seems unlikely that in practice ~ will often be greater than, say, .2 or .3, especially if the items are 
convergently oriented (see below) with roughly equal variances. 
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both the variance of d~ and the i th root of the D-configuration's covariance matrix. In the 
present case, moreover, ~,o,, = 0 while the weight of d* in db= ~-'~"~=1 a~d~ = ~_,~=~ 
a*d*~ l (at =def (b~ - tf)/ml/2~ro, cr0 > 0) is zero 

Sketch of  proof  Since ~-']~"i=~ d~ = 0, d~ = Y]~"~ol m-I/2d~ has zero variance and is 
the D-configuration's m th principal component. Moreover,  since the vector of coeffi- 
cients in db = ~-']~"~=~ ((b~ - l;)/mao)dt is orthogonal to the vector of  coefficients in d* = 
~.,~=~ m-~/2d~, there exists an orthonormal  rotation d[, . . . ,  d"  of  the d~ in which d" = a~ 
while d0 is one of  ~ ,  " ., dm_~.' From there it is straightforward to show that d*, • • • 
d*,-i are an orthonormal  rotation of ~,  . . . ,  d',_l and conversely.Vq 

Consequently, ~g~ is a weighted average of ~m, ' " ,  ~O(m-l~ and is bounded from 
above by ~ol and from below by ~OCm-,. Any value for crg b within this range can be selected 
by an appropriate choice of  {b~} given any assigned nonzero value of ug. 

What do these constraints on o,g~ imply about q0? Since ~,om = 0, ~m, " " ,  ~,o~,,-1~ 
must sum to Vo; but how the ~o~ otherwise partition that sum among themselves is entirely 
up to the shape of the item configuration. If  this allocates equal dispersion variance to all 
directions in D-space, then XDt = Vo/(m -- 1) for all i = 1, • • . ,  m -- 1, and agb also equals 
Vo/(m - 1) regardless of {b~}. On the other hand, the D-configuration's variance ellipsoid 
can come in any degrees of eccentricity up to the extreme where ~o~ equals Vo for i = 1 and 
0 for i > 1. Regardless of how Vo is distributed across ~ol, " " ,  ~,o~,,-1~, however, the value 
of db to be expected from a random choice of item weights remains Vo/(m - 1). 

These considerations urge that a predictor configuration's sensitivity to differential 
item weighting can be concisely described in terms o f ( a )  the value o f o ~  that arises when 
aa~ is in the vicinity of its value expected under random selection of do, and (b) the smallest 
value of  O~ that can occur when ~ approaches its maximum possible value of ~o~. (The 
upper bound on p'~ that similarly follows when ~rg~ = Ao~,,-l~ will usually be too close to 
unity for ug on the order of 1 or less to hold much interest.) Regarding (a), since satx = 
homx + (1 - h o m x ) / m  and hence dispx = 1 - satx = (1 - h o m x ) ( m -  l ) /m,  while 1 - a x  
= (satx - homx)/Satx  = (1 - homx) /m  satx, plugging ~rg~ = Vo/(m - 1) into (3) gives 

V~ dispx = 1 - ax  
(5) gx[qo] = (m 1)m~r~ - ( m -  1)satx 

(random do), where " g "  is subscripted with parameters on which the expectation is 
conditional. (Subscript " X "  in this context means a given item configuration, or more 
specifically fixed Cxx.)  Hence from (3)-(5), replacing qo in (4) by its expectation under 
random selection of  do, 

(6) gx.,,Lo~] --- [1 + ~g(l - ax)]- '  ~ 1 - ug(1 - ax)  

(random do), where the simpler approximation in (6) is virtually as good as the other if~g is 
no greater than the order of  10 -I . 

As for (b), although the upper bound ~m/rna~ on q0 that follows from ~ra~ ~'s maximum 
~D~ is easy to compute numerically from the X-configuration's covariance matrix Cxx, the 
algebraic character of  this bound is not especially perspicuous. (It is mildly insightful to 
note that ~o~/ma~ equals dispx/satx times the proportion of the D-configuration's total 
variance accounted for by its first principal axis. But it takes some practice to think in 
terms of those quantities.) However, if ~x, (i = 1, 2, . . - )  is the variance of the X- 
configuration's i tn principal component,  i.e. the items' total variance accounted for by 
their i tn principal axis, it can be seen that ~x~ > ma~ while almost always ~o~ > ~x~. Hence 

~o~ ~x~ (7) q~ < maxx[qo] = ~ > - -  

The rightmost inequality in (7) is not particularly helpful when the X-items have been 
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oriented without regard for item convergence. But if the items have been oriented to 
maximize homx, or approximately so, the X-configuration's centroid will usually correlate 
highly with its first principal component,  in which case rn~  and ?~ol are well-approximated 
by Xxl and ~.x2, respectively, and the rightmost inequality in (7) becomes an approximate 
identity. Hence from (7) and (4), given well-chosen item orientations, the smallest value to 
which p ~  can be driven by an unfavorable do is approximately 

(8) minx.~Lo~]---[1 + u~( X~x~)1-1 

(strictly convergent X-configuration), where the X-configuration is "strictly convergent" 
just  in case homx cannot be increased just  by reflecting some of  the items. (For  a more 
detailed discussion of item convergence, see Rozeboom, 1966, p. 344ff.) In the ideal special 
case where 2 is perfectly collinear with the X-configuration's first principal component,  
(4), (8), and the left-hand approximation in (6) are all strict identities while also XoL = 
;kx<t+l~ for i = 1, • . .  , m-l.  (That is because, in this ideal case, each d~ differs only by an 
additive constant from the component  of xt orthogonal to the first principal component  of 
xl, -" -, xm (see footnote on p. 372 of  Rozeboom, 1966) whence Ox = 0 and the remaining 
principal components of  the xt are then the first m - 1 principal components of  the d~.) 

From the foregoing, we can see with easy clarity how the similarity 2. p~x between 
weighted and unweighted item composites Yc = bo + ffff,~ol b~x~ and .~ = m -1 ) ' ~ 1  x~ is 
determined jointly by (a) the initial choice of item scales and orientations, (b) the 
extremity v~ of differential item weighting {&} in J ,  and (c) the axis of the items' dispersion 
configuration selected by {bt}. Regarding (a), if the item orientations and scale units are 
chosen without heed for the global properties of the X-configuration that so results, homx, 
satx, and a x should tend to be in the vicinity of  O, m-1, and O, respectively. 1 f so, the value 
of  px½ to be anticipated from random weighting is the same as it is when the X-configura- 
tion is orthonormal, namely, given Cxx  = I, 

(9) p.~ = (l + vg)-' 

(which follows from what has been said above by virtue of the axes in any orthonormal 
rotation of an orthonormal item configuration being also orthonormal). But whereas (9) is 
an exact equality for uncorrelated, equal-variance items regardless of d~, when the X- 
configuration's variance structure is appreciably elliptical even though homx ~ 0 due to 
uncoordinated item orientations, qb in (4) can easily be one or more orders of magnitude 
larger than unity with 2 p ~  correspondingly near zero unless vg is on the order of  l 0  -2  or 
less. High 2 p ~  is still possible in this case even for appreciable vg, but there is now no 
general tendency for g to well-approximate .~. 

However,  it is common prae t ice~and  rightly so - - to  scale predictor items to have 
roughly equal variances, at least within the same order of  magnitude, and also to choose 
orientations that more or less minimize negative item correlations. Together, these opera- 
tions push Satx close to the maximum value this can attain just  through adjustments of the 
items' scale units and orientations. (This maximum equals the proport ion of  the items' 
total variance accounted for by their first principal axis under equal-variance item scaling. 
See Rozeboom, 1966, p. 592.) In psychometric practice, satx and hence homx are then 
likely to be substantially larger than.  I, possibly as great as .4 or .5; whence if the predictor 
items are fairly abundant,  say m >> 10, 1 - a x  will be little if at all greater than.  I so that 
vg can be as large as the order of  1 and still leave a high expectation in (6). 

As for weighting extremity ,~, formulas (2, 4, 6, 8, 9) are entirely clear about how this 
affects 2 p~, but say nothing about  how large ug is likely to be. So long as the b~ can be 
negative as easily as positive, b- can be arbitrarily close to zero and vg hence arbitrarily 
large. On the other hand, if virtually all the b~ have the same sign, say positive, vg will be on 
the order of  I or less unless (as, however, can readily occur) the weight distribution has a 
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strong positive skew. In particular, if {b~} is uniformly distributed over an interval of width 
w and midpoint c, z,g = (w/c)V 12, which is less than .34 when no weights are negative. Just 
the same, when {bt} comprises the items' regression coefficients for an outside criterion y, it 
does not seem reasonable to expect vg to be much smaller than .  1 or .2, even when each x~ 
is oriented to have positive coefficient, unless item scales have been chosen to align £ with 
an estimate of  y's projection into X-space. 

If  p~i were always well-approximated by its expectation (6), we could conclude that 
for a decently homogeneous item configuration of appreciable size, differential item 
weights have little effect unless the weighting extremity is very large. Thus ifm = 20 and vg 
is less than .5, the approximate expectation o fp~  is over .92 if homx = .20 and over .96 if 
homx = .40. And for some item configurations, (6) is indeed reliable. Specifically, this will 
be so if the X-configuration is strictly convergent, or nearly so, and is strongly dominated 
by a single factor, i.e. ifXx2 is only a minor fraction of Xxl. However, if one or more roots 
of Cxx after its first are nearly as large as Xxl, then it is possible for {bt} to select a D-axis db 
for which q0 -~ 1 and hence p~ _ (1 + vg)- 1. To be sure, that same configuration's D-space 
also undoubtedly contains other directions for which qb is so small that p~ is near unity 
even for extreme ug; but for a worst-case analysis, only maximal qb is relevant. 

Let me review these results, starting with their motivation. The aim is not to deter- 
mine the correlation between weighted and unweighted item composites ~ and £ for any 
specific selection of item weights, since numerically that is a simple computation from {bt} 
and Cxx. Neither is it a search for lower bounds on 0~; for when the predictor items span 
an m'-dimensional space (where m' may or may not equal the number of items), item 
weighting can put ~ anywhere within the m' - 1 dimensional item-space that is orthogonal 
to .~. Rather, the intent is to develop a generalized insight into how 2 . pe~ ~s constituted out of 
{b~} and the item configuration's variance structure; specifically, to see whether there may 
not be a small number of abstract properties of {b,} and Cxx (which jointly contain 
m(m + 1)/2 independent parameters) that not only suffice to determine p~, or approxi- 
mately so, but are also conceptually meaningful. The present analysis makes such insight 
available at three levels of accuracy. 

At the lowest accuracy level, we find that p}~ is largely determined by only two 
parameters, one a property just of {b,} and interpretable as the extremity with which these 
differentially weight the items, and the other a property just of Cxx that is not very 
intuitive in its own right but has become classic in test theory as a measure of internal 
consistency. Specifically, from (6), 

(6') O~i -~ [1 + ug(l - ax)]-', 

where the X-configuration's alpha coefficient may be viewed as the items' homogeneity 
amplified by their numerosity as set forth in (1). The main term in (6') is ub, simply because 
we can make its numerical value as large as we please by our choice of item weights. (In 
contrast, we have only limited control over ax, though it is important to appreciate how 
our choice of item orientations and scale units influence ax through their effect on homx.) 
Thus (6') may be viewed as telling how o~i decreases as a single-parameter function of 
weighting extremity ub, while that function's parameter, 1 - ax, is the item configuration's 
sensitivity to differential weighting. 

Approximation (6') is lucid, powerful, and often highly accurate. Even so, depending 
on properties of Cxx additional to ax  and on whether {bt} takes advantage of them, (6') 
can be seriously misleading for a particular {bt}. If the item scales and orientations, 
especially the latter, are chosen more or less to maximize homx, and all principal axes of X 
after the first are approximately equal in the amount of total X-variance each accounts for, 
then approximation (6') is for all practical purposes an identity over all possible choices of 
item weights. (Note that this is true regardless of how weak the items' first principal axis 
may be.) However, if the item configuration also contains principal axes after the first that 
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have secondary prominence, analysis of  p~ at a higher accuracy level must revert to 
approximation (4). This has the same form as (6'), but  replaces 1 - ax in the latter by a 
sensitivity parameter qb that can be viewed as a selection by {b~} from a range of 
sensitivities (centered on 1 - ~x) made available by the item configuration. If  the items 
have arbitrary orientations even though some of their intercorrelations are appreciable, qb 
can easily be one or more magnitudes greater than unity, in which case formula (4) is not 
particularly useful. But if the items have been oriented to strict convergence, or nearly so, 
then the items' maximum sensitivity to weighting is approximately equal to ~x~/~xl, i.e. 
the strength of the items' second principal component compared to that of their first, and a 
worst-case analysis should proceed in terms of  (8). The practical difference between (6') 
and (8) is that for a factorially complex item configuration, hx2/h×l may well be in the 
vicinity of .5 or more even when, due to large m, 1 - t~x is quite small. 

Finally, at the highest accuracy level, o~  can be analyzed exactly, as in (2), for all item 
configurations, by appeal to two minor parameters 0b and Ox additional to vb and qo. 
Formula (2) is hard to interpret, however, an~ when the item configuration is close to 
strict convergence it seems likely that in practice the difference between (2) and (4) will 
seldom if ever be appreciable. 

Formulas (6) and (8) give little reason to favor equal weighting in applied prediction, 
even though the two preconditions stipulated by Wainer [1976], (i) that all predictor 
items have the orientations that regression weighting would give them, and (ii) that none 
of the regression-oriented items are negatively correlated, do retard the general proclivity 
of p~ to approach zero. (Condition (i) implies that none of  regression weights {b~} are 
negative, whence ug is likely to be on the order of 10 -1 even though vg will still approach or 
exceed unity if a small proportion of  the bg exceed the remainder by an order of  magni- 
tude. And (ii) requires the item configuration to be strictly convergent, which does its best 
to maximize homx but insures neither that homx is high nor that qb is much less than 
unity. Also, the higher the latent item homogeneity, the less likely it is that (i) and (ii) 
can be jointly satisfied in the first place for a given outside criterion.) Even so, present 
results do support  a more restrained version of Wainer's thesis. This is simply that if items 
{x~} are fairly numerous and at least modestly homogeneous when provisionally scaled to 
align ~ as best we can with our target axis of X-space (i.e. when initial weights are 
temporarily absorbed into the item scales), then moderate readjustments of the items' 
provisional scale units, corresponding e.g. to rounding the items' raw-scale weights to a 
small number of alternatives such as 0, +1, 4-2, 4-3, +4 [cf. Green, 1977, p. 270], will 
almost always leave the modified composite virtually indistinguishable, correlationally, 
from its precursor. To put  the point bluntly, second-digit precision in item weighting is 
generally a waste of  effort. 
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