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Tversky's contrast model of proximity was initially formulated to account for the observed 
violations of the metric axioms often found in empirical proximity data. This set-theoretic 
approach models the similarity/dissimilarity between any two stimuli as a linear (or ratio) 
combination of measures of the common and distinctive features of the two stimuli. This paper 
proposes a new spatial multidimensional scaling (MDS) procedure called TSCALE based on 
Tversky's linear contrast model for the analysis of generally asymmetric three-way, two-mode 
proximity data. We first review the basic structure of Tversky's conceptual contrast model. A 
brief discussion of alternative MDS procedures to accommodate asymmetric proximity data is 
also provided. The technical details of the TSCALE procedure are given, as well as the program 
options that allow for the estimation of a number of different model specifications. The non- 
linear estimation framework is discussed, as are the results of a modest Monte Carlo analysis. 
Two consumer psychology applications are provided: one involving perceptions of fast-food 
restaurants and the other regarding perceptions of various competitive brands of cola soft- 
drinks. Finally, other applications and directions for future research are mentioned. 

Key words: multidimensional scaling, asymmetric proximity data, Tversky's contrast model, 
consumer psychology. 

1. Introduction 

Tversky's (1977) contrast model provides a flexible framework for understanding 
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similarity across a range of stimulus and judgment contexts. This model describes the 
similarity between two stimuli as a linear (or ratio) combination or contrast of measures 
of their common and distinctive features. It captures a family of possible similarity 
relations depending upon the feature measures of the stimuli (Gati & Tversky, 1982, 
1984; Sattath & Tversky, 1977, 1987; Tversky, 1977; Tversky & Gati, 1978, 1982; 
Tversky & Hutchinson, 1986). Ideally, the representation of these proximity relation- 
ships should incorporate this same flexibility. Yet, existing procedures only represent 
special cases of the general model. Additive tree (Sattath & Tversky, 1977) and ex- 
tended tree (Corter & Tversky, 1986) procedures, for example, express the distance 
between stimuli only in terms of distinctive features, while hierarchical clustering (S. C. 
Johnson, 1967) and additive clustering procedures (Shepard & Arable, I979) express 
distance only in terms of common features. No one procedure captures the full range 
of possible similarity measures permissible under this contrast model. 

This article describes TSCALE, a multidimensional scaling procedure based on 
Tversky's contrast model for asymmetric three-way, two-mode proximity data. A 
unique aspect of TSCALE is the conceptualization of a latent dimensional structure to 
describe the judgmental stimuli. Whether stimuli are dimensional or feature-based in 
their attribute representations, these attributes can be captured at a more abstract level 
using continuous dimensions (Johnson & Fornell, 1987). This abstract or latent dimen- 
sional structure is linked to a corresponding feature-based representation and the un- 
derlying similarity judgment process. Our proposed procedure utilizes the information 
in the proximity data to estimate both the latent structure and the degree to which 
various common and distinctive aspects of this latent structure surface in the particular 
judgment task. 

We begin by describing Tversky's contrast model in more detail. A number of 
alternative MDS procedures for asymmetric proximity data are briefly described. The 
TSCALE procedure is then presented followed by the results of a preliminary Monte 
Carlo analysis and two consumer psychology applications. Finally, directions for future 
research are discussed. 

2. Tversky's Contrast Model 

Traditional spatial models of similarity represent stimuli as points in a derived 
multidimensional space where the metric distances between these points correspond in 
some manner to the empirical proximity data (Shepard, 1962). Nonspatial models, such 
as ultrametric and additive trees, represent stimuli at the terminal nodes in a defined 
graph structure with a specified distance metric (S. C. Johnson, 1967). As Tversky 
(1977) observes, the metric axioms implicit with the use of such models (e.g., minimal- 
ity, symmetry, and the triangle inequality) are often systematically violated in such 
collected data. Tversky's contrast model arose as an alternative (to the metric-distance 
approaches) that could account for these violations. This conceptual model was initially 
based on the presumption that stimuli are cognitively represented using features rather 
than dimensions. Whereas dimensions are attributes on which stimuli vary as a matter 
of degree, features tend to be more dichotomous aspects that a stimulus either has or 
does not have (Garner, 1978). Feature-based representations are common in psycho- 
logical research. Originally investigated by Restle (1959), features are central to models 
of semantic judgment (Smith, Shoben, & Rips, 1974), stimulus categorization (Rosch, 
1975; Rosch & Mervis, 1975), choice (Tversky, 1972), as well as similarity (Shepard & 
Arable, 1979; Tversky, 1977). 

Tversky (1977) views similarity judgments as comparisons or contrasts of common 
and distinctive features. When faced with a similarity task, people extract and compile 
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a limited list of relevant features from remembered information. Their judgment  of  
similarity is based on a comparison of these features. Formally stated (for the linear 
version of the model), the dissimilarity between two stimuli i and j is modeled as: 

6 o -= , ~ f ( t  - J )  + / 3 f ( J  - I )  - of(t n J), (1) 

where the two stimuli i a n d j  are associated with feature sets I and J ,  respectively, a, 
/3, and 0 are nonnegative scalar parameters, 60 is the observed (asymmetric) dissimi- 
larity between stimuli i and j ,  and f is some specified function. According to this model, 
the dissimilarity between the two stimuli is a function of  their common features, 
(I n J) ,  the features distinctive to i, (1 - J) ,  and the features distinctive to j ,  ( J  - I). 
This particular model expresses the proximity of  i and j as a linear combination, or a 
contrast, of  their common and distinctive features. Overall similarity (dissimilarity) 
increases (decreases) with the measure of common features and decreases (increases) 
with the measure of  distinctive features. The scale values f(1) and f (J)  capture the 
overall measure of the feature sets of stimuli i and j ,  respectively, which vary with the 
"intensity,  frequency, familiarity, good form, and informational content"  of the stimuli 
and their features (Tversky, 1977, p. 332). This linear version can accommodate both of 
Restle 's (1961) models of psychological distance where either (a = /3 = 0, 0 = I) or 
(a = /3= 1, 0 = 0). 

A family of dissimilarity relations are possible under this model depending upon 
the parameters a, /3, and 0, which describe the importance of the different feature 
measures with respect to the observed dissimilarity judgments. Note, this model is not 
limited to situations where stimuli are described only by features. Nominal variables 
with more than two levels can be expressed as a set of  features or qualitative dimen- 
sions (Gati & Tversky, 1982, p. 329). Ranges of an inherently continuous dimension can 
also be treated as features depending on the stimuli (Johnson & Fornell, 1987) or the 
preferred mode of  processing (Garner, 1978). 

The contrast model in (I) expresses a simple form of  feature matching. Tversky 's  
(1977) framework allows for other matching functions, including a ratio model in which 
similarity or dissimilarity is normalized. For  example, dissimilarity can be modeled as 
a ratio of distinctive to total features, where 

a f ( l  - J) + / 3 f ( J  - I) 

~ij ~ a f ( I  - J)  + / 3 f ( J  - I)  + Of(l  n J)  " 
(2) 

In addition, similarity can be expressed as a ratio of common to total features. These 
ratio models assume that the proximities are normalized between 0 and 1. Ratio for- 
mulations of  the contrast model are somewhat attractive because they generalize sev- 
eral existing set-theoretic models of similarity (see Tversky, 1977). For  example, Greg- 
son's (1975) and Sjrberg's  (1972) models are special cases of  the similarity analog to (2) 
where a = / 3  = 0 = 1, while Bush and Mosteller's (1951) model presumes ot = 0 = 1, 
/3 = 0, and Eisler and Ekman 's  (1959) model presumes 0 = 1, a = / 3  = 1/2. 

However,  several considerations support the appropriateness of a linear, as op- 
posed to a ratio, formulation of  the contrast model in equation (I). Linear models of  
judgment  are conceptually simple and straightforward. They have proven to be very 
powerful predictors in a number of judgment tasks (Dawes, 1979). Linear models are 
also paramorphic to a wide range of possible judgment processes (Einhorn, Klein- 
muntz, & Kleinmuntz, 1979). At the same time, Abelson and Levi (1985) suggest that 
linear models are robust primarily in tasks that are characterized first by conditional 
monotonicity between the cues or attributes used to make judgments and the corre- 
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sponding performance or objective being judged, and second by large error components 
where nonlinear relationships are easily hidden. 

Tversky provides considerable support for the contrast model in studies involving 
people, countries, faces, forms, and figures (Gati & Tversky, 1982; Sattath & Tversky, 
1977; Tversky & Gati, 1978, 1982). The flexibility of the contrast model stems from the 
manner in which a,/3, 0 and the function f depend on the nature of the similarity task 
and the construction of the set of stimuli. For example, the model highlights the dif- 
ferential importance of common and distinctive features across task environments. 
When judging similarity, it is natural to focus on what alternatives have in common 
(e.g., 0 > a +/3). When judging dissimilarity, we naturally focus on what is distinctive 
to the alternatives (e.g., o~ + /3 > 0). Thus, similarity and dissimilarity may not be 
perfectly negatively correlated. If a pair of alternatives has both many common and 
many distinctive features, it may be both more similar in a similarity task and more 
different in a dissimilarity task than another pair with fewer common and distinctive 
features. Consistent with this prediction, Tversky and Gati (1978) report instances in 
which one group of subjects selected prominent pairs of countries (e.g., East Germany 
and West Germany) as more similar than nonprominent pairs (Ceylon and Nepal), while 
a second group selected these same pairs as more different. Intuitively, more prominent 
countries have both more common and more distinctive features than nonprominent 
countries. In a slightly different vein, Gati and Tversky (1984) demonstrate the differ- 
ential importance of adding a common or distinctive feature to verbal and pictorial 
stimuli (e.g., descriptions of persons versus schematic faces). Their results show that 
common features are more pronounced for verbal stimuli while distinctive features 
loom larger for pictorial stimuli. 

The contrast model also captures asymmetric proximity relationships where the 
(i, j )  and (j ,  i) elements of the right side of (1) or (2) may not be equal. Asymmetric 
relationships are particularly evident in directional or subject-referent similarity judg- 
ments of the form "how similar is i to j ? " ,  where i is the subject and j  is the referent. 
For example, Tversky and Gati (1978) found subjects' rating of the similarity of North 
Korea to Red China to be greater than the similarity of Red China to North Korea. 
Whenever a stimulus is the focus or subject of the judgment, or serves as the anchor 
against which another stimulus is compared, it is natural to focus on that stimulus' 
features. As a result, the distinctive features of the subject often detract more from 
similarity than the distinctive features of the referent (oL > /3). The contrast model 
predicts asymmetry in this context when stimuli differ in their distinctive feature mea- 
sures (a ~/3 and f(1) ~ f(J)).  In Tversky's (1977) Red China-North Korea example, the 
contrast model explains the observed asymmetry given a greater distinctive feature 
measure for Red China that detracts more from similarity when Red China is the subject 
rather than the referent in the comparison. 

3. Alternative MDS Procedures for the Analysis of Asymmetric Proximity Data 

There are a number of existing MDS procedures that are available for the analysis 
of (typically one-mode, two-way) asymmetric proximity data. For example, Gower 
(1978) and Constantine and Gower (1978) proposed the application of multidimensional 
unfolding for the analysis and spatial representation of asymmetric proximity data 
(Bennett & Hayes, 1960; Coombs, 1950). Here, the rows and columns are considered 
as distinct entities (e.g., stimulus and response, subject and referent, etc.) and are 
represented as two distinct sets of points. The basic mathematical structure of this 
model is as follows: 
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~ij ~_~ g(dij), di j  = ( Yit - X j t  ) 2 , 
t=l 

where ~ij is the observed asymmetric dissimilarity between row stimulus i and column 
stimulus j ,  f is some monotone function, and dij is the Euclidean distance between row 
stimulus i and column stimulus j in a derived T-dimensional space. Unfolding proce- 
dures estimate the coordinates of these two sets of points ( Yit, Si t)  in some specified 
number of dimensions (T) whose distances in the derived space optimally approximate 
the 8ij's. A number of unfolding procedures exist for such analysis such as PREFMAP 
(Carroll, 1980), GENFOLD2 (DeSarbo & Rao, 1984, 1986), KYST (Kruskal, Young, & 
Seely, 1973), and ALSCAL (Takane, Young, & de Leeuw, 1977). 

Young (1975) proposed an alternative distance approach called ASYMSCAL for 
the analysis of asymmetric proximity data. ASYMSCAL estimates one set of stimulus 
coordinates, as well as differential weights for dimensions for either the row or column 
stimuli, or both. Let Wit (row) and Cjt (column) designate such weights. Then, the 
model for the general case may be written as 

1 1/2 
ij ~--" di j  = ~ W i t  Cj t  (X i t  - X j t  ) 2 . 

t=l 

ASYMSCAL produces a multidimensional map of the stimulus space and separate 
configurations of stimulus weights. 

In considering scalar-product models (i.e., spatial, but non-distance models) for 
asymmetric proximity data, there is Harshman's (1975) metric procedure that involves 
a matrix decomposition into directional components (DEDICOM). The strong case of 
the model assumes a common set of dimensions for the rows and columns, so that the 
model is in that sense symmetric. Asymmetry is modeled by a set of indices of "di- 
rectional relationship" that indicate the degree to which each dimension affects each 
other dimension. Let S denote the (N x N) matrix of asymmetric similarity data. The 
DEDICOM model can be written as: 

S ~ VDV', 

where V is an (N x T) matrix of weights of N stimuli on T (<N)  dimensions and D is 
an asymmetric square (T × T) matrix giving the directional relationships between 
dimensions. 

A different approach involving a geometrically interesting generalization of scalar 
products (defined initially only for two or three dimensions) has been formulated by 
Chino (1978) for asymmetric data. Chino (1979, 1990) has extended the Chino (1978) 
procedure into dimensions higher than three. This extended model can be written as 

sij = aX[Xj + bX[I*Xj + c, 

where sij denotes the similarity judgement between stimuli i and j ,  and Xi, Xj denote 
the T-dimensional coordinate vectors of stimuli i and j ,  respectively, while a, b, and c 
denote constants. Moreover, I* is a skew-symmetric matrix of the form 
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where 

I ~ = 

0 1 -1  1 
-1 0 1 -1  

1 - I  0 1 
- I  1 - I  0 

• I 8 • 

t t • • 

~ • 4 

. o  

':1/ 

0, if two in ices ar**ho same, 
"'" = 1, if permutation (... p q ..) is even, 

sgn . P q - 1 ,  if permutation (... p q ..) is odd. 

MDPREF (Carroll, 1980) is another type of scalar-products or projection model 
(vector model) useful for two-mode, two-way dominance or asymmetric proximities 
data. It is a form of weighted principal components analysis for determining a multi- 
dimensional representation for the rows and columns of the input data. In the case of 
asymmetric proximity data, MDPREF produces a joint space of the row stimuli as 
vectors and the column stimuli as points in the space. Its mathematical structure is 
given as 

T 

Sij ~ E YitSjt o r  S = Y X ' ,  

t = l  

where S = ((sij)), Yit is the t-th coordinate of the vector terminus for row stimulus i 
(Y = ((git))) and Xjt is the t-th coordinate of the point for column stimulus j (X = 
((Xjt))).  The asymmetry is captured by the patterns of projections of column points 
onto row vectors in the joint multidimensional space. 

The approaches discussed above implicitly assume that the symmetric and asym- 
metric aspects of the data are inseparable parts of the same fundamental process. 
Another approach is to model these aspects of the data directly to reflect different 
underlying processes. The simplest example of this approach is the common tendency 
to estimate symmetric dissimilarity as the mean of ~ij and ~ji. This procedure thus 
attributes any deviations from symmetry to random error. Bishop, Fienberg, and Hol- 
land (1975) describe models that predict the asymmetry in 6ij from two functions, one 
on i and the other on j ,  that may or may not be identical. Constantine and Gower (1978) 
proposed a method in which ~ij is partitioned into symmetric and skew-symmetric 
orthogonal components. While the symmetric part is represented by some established 
distance-based method, the skew-symmetric part is represented by points whose rela- 
tionships are interpreted in terms of areas of triangles. Holman (1979) proposed a series 
of models using a matrix decomposition approach. These models proposed by Holman 
represent the data as a monotonic combination of a symmetric function on pairs of 
stimuli, and a "bias function" on individual stimuli. His models make no prior assump- 
tion about the symmetric function; however, all the models assume that the bias func- 
tion is one-dimensional, and they impose additional conditions on the bias function. 
Many of the models proposed by Holman concerning the matrix decomposition ap- 
proach are mathematically elegant, but generally do not provide any theoretical basis 
for the analysis and geometric representation of the skew-symmetric part. 

Perhaps a more appropriate manner to account for asymmetry is to model it di- 
rectly into the derived metric space (e.g., Krumhansl, 1978; Nakatani, 1972). This 
amounts to "redefining" distances in the space so as to alleviate the symmetry con- 
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straint. This may be accomplished by superimposing an additional structural property 
inherent in the space onto the basic distance model. This is exactly what Krumhansl 
conceptualized in her distance-density model, where the Euclidean distance model is 
augmented by the spatial density of the points in the surrounding configuration. (De- 
Sarbo, Manrai, & Burke, 1990, have operationalized Krumhansl's distance-density 
model in a nonspatial, hierarchical clustering context; DeSarbo and Manrai (1992) 
generalize the methodology to spatial models.) Based on a principle similar to Krum- 
hansl's distance-density hypothesis, Saito (1986) has proposed a metric MDS procedure 
for symmetric dissimilarity data. His model can be written as 

6 j k  ~ d j k  - -  e j  - -  ek, 

where djk is the Euclidean distance between stimuli j and k, and the e's are stimulus 
specific (row and column) scalar constants. (Okada & Imaizumi, 1987, have recently 
developed a nonmetric extension of this type of model.) With certain restrictions on the 
parameters, Saito's model represents stimuli as regions (rather than points) in a psy- 
chological space. He conjectures proximity judgment to correspond to inter-region 
distance (rather than inter-point distance). While an interesting supposition, it requires 
further empirical support. 

Note that virtually all of the techniques discussed above are data analytic proce- 
dures that attempt to fit a particular model structure to proximity data. In most cases, 
there is no theoretical or empirical evidence to support such specific model fitting. For 
example, we have no evidence to suggest that subjects cognitively perform unfolding 
analyses or project points onto vectors when eliciting their (asymmetric) proximity 
judgments. The popularity of these procedures is mainly due to the parsimonious geo- 
metrical/spatial structures generated to summarize the structure in the data. Tversky's 
(1977) contrast model, however, introduces a theoretical motivation for the potential 
causes of the asymmetry. This theory discusses asymmetry from the notion of a con- 
trast of the common and distinctive features of stimuli. Our research goal is to devise 
a MDS-based procedure that is more theoretically justifiable. We wish to incorporate 
Tversky's (I977) contrast model within a new MDS procedure for the spatial analysis 
of asymmetric proximity data. 

4. The TSCALE Procedure 

Tversky's (1977) contrast model is quite general and can potentially explain a 
variety of empirical findings. Unfortunately, this generality creates difficulties when 
operationalizing the model, and attempts at estimating the model have been somewhat 
limited. Two general methods have been advanced to directly estimate the model's 
parameters. The first, described in Gati and Tversky (1984), estimates the weight of 
common to distinctive features by manipulating the independent components of sepa- 
rable, controlled stimuli (e.g., schematic faces, landscapes), and comparing the result- 
ing similarity ratings. The second approach relies on memory probes to measure f(l) 
and f(J) .  In Tversky (1977), for example, memory probe estimates of common and 
distinctive features were correlated with subjects' similarity ratings of vehicles. Prod- 
uct-moment correlations revealed that common features increased similarity while dis- 
tinctive features decreased similarity, supporting the contrast model. Using a similar 
procedure, Johnson (1986) found support for the contrast model using memory probes 
and multiple regression to estimate the models' parameters across similarity, dissimi- 
larity, and subject-referent judgment tasks. 

However, both of these approaches require assumptions regarding feature struc- 
tures (Tversky, 1977). Specifically, both approaches presume a one-to-one correspon- 
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dence between either an experimental manipulation (Gati & Tversky, 1984) or a mem- 
ory probe (M. D. Johnson, 1986; Tversky, 1977), and the feature salience measures in 
the contrast model: f(I) and f(J) .  As perceptual variables, these feature measures are 
not often directly observable. One cannot assume that an experimental manipulation 
always will result in a different internal feature structure, or that a change in feature 
structure always will be reflected in a memory probe. At the same time, these theoret- 
ical feature measures may be treated as latent variables that can be indirectly observed 
or manifested at an empirical level. Attaching empirical meaning to these latent vari- 
ables would require either alternative/redundant indicators or conceptually indepen- 
dent sub-dimensions of the constructs. Another problem is that, while experimental 
feature manipulations are limited to separable stimuli, using memory probes to measure 
the salient features of natural stimuli is problematic. The time involved in both admin- 
istering and coding memory probes makes them prohibitive in most applications, and 
the coding rules are themselves subjective. 

The other alternative is to scale the model directly from the observed perceptions 
of proximity. Scaling methods have been developed that operationalize special cases of 
the model. For example, Shepard and Arabie's (1979) additive clustering procedure, 
ADCLUS, operationalizes a common-features model. Assuming f(1) = f (J) ,  similarity 
is treated as a linear function of the measure of i andj ' s  common features (see Tversky, 
1977). Sattath and Tversky (1977) describe an alternative technique, ADDTREE, for 
estimating rooted additive trees with a path length metric. An additive tree is a special 
case of the contrast model where similarity is a function of  distinctive features, and it 
is assumed that symmetry and the triangle inequality hold. An extension of ADDTREE, 
Called EXTREE (Corter & Tversky, 1986), accommodates non-nested feature struc- 
tures and is well-suited for representing stimuli with nominal factorial structures. How- 
ever, like ADDTREE, EXTREE is also a distinctive-features model. More recently, 
Manrai and Manrai (1989) present an operationalization of a ratio model of proximity 
related to a special case of Tversky's ratio contrast model with a = /3 = 0 = 1. 

To summarize, Tversky's contrast model captures a number of alternative simi- 
larity relationships. Unfortunately, direct attempts at estimating the model are limited 
or problematic, and more indirect scaling procedures only represent special cases of the 
underlying model. In the next section, we propose a new spatial MDS procedure for the 
analysis of  (generally asymmetric) three-way, two-mode proximity data. The proce- 
dure, called TSCALE, estimates Tversky's contrast model directly from observed 
dissimilarity data and allows for a variety of different versions of the model. 

The TSCALE Model 
Whether cognitively represented using features or dimensions, the properties of 

stimuli can be captured at a more abstract level using continuous dimensions. This 
abstraction implies an integration of information into an underlying latent dimensional 
representation (M. D. Johnson & Fornell, 1987). TSCALE starts with the presumption 
of an underlying or latent dimensional representation (X). Let t index derived latent 
dimensions; i, j index stimuli; r index replications (e.g., subjects); Xi t  --" the t-th 
coordinate for stimulus i ( S i t  >-~ 0 ) ;  t~ij r = the observed dissimilarity value on the r-th 
replication between the two stimuli i and j ;  and ~ijr = the model predicted dissimilarity 
value between the two stimuli i and j for the r-th replication. 

When cognitively representing and processing stimuli, subjects often adopt more 
feature-based representations. As Tversky (1977) notes, when faced with a task, "we  
extract and compile from our data base a limited list of relevant features on the basis of 
which we perform the required task" (p. 329). Garner (1978) similarly argues that 
inherently dimensional stimuli may be more naturally processed using features as a 
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special case (also, see Prinz & Scheerer-Neumann, 1974). Conceptually, features are 
considered a special case of more general dimensional representations; dimensions can 
refer to any attribute, feature or distinction that can serve as a basis for discriminating 
between two stimuli (Lopes & Johnson, 1982; also, see Krumhansl, 1978). Therefore, 
modifying the notion of perceptual "quanta" introduced by Manrai (1986) and Manrai 
and Sinha (1989), we assume that the latent dimensional structure has a corresponding 
representation such that 

T 

f ( I f q J )  = ~ O r min ( X i t ,  X j t ) ,  (3) 
t = l  

and 

T 

f(I - J )  = ~ a r ( S i t  --  X j t  ) + ,  (4) 
t = l  

T 

f ( / -  I) = ~ [ ~ r ( X j t  - X i t ) +  , (5) 
t = l  

where (a - b)+ = max (a - b, 0). Accordingly, the c o m m o n  features of two stimuli 
are represented as the minimum or intersection along various dimensions (as in (3)), 
while the d i s t inc t i ve  features of two stimuli are represented as differences (as in (4) and 
(5)). Note that this specification is applicable to attribute representations that are either 
quantitative or qualitative at a given level of abstraction. Both types of attributes are 
captured at a more abstract or latent scale level by continuous, quantitative dimen- 
sions. The transformation of dimensions to features is also congruent with Tversky's 
notion that subjects extract and compile features from an available base of information. 

This allows for an extension of Tversky's model to a latent dimensional structure 
where, for example, 

T T T 

~iJ r'~- 2 ° l r ( X i t - X j  t)+-[- Z ~r (X j  t - s i t ) + -  2 0 r m i n ( X i t ,  Xj t ) ,  ( 6 )  

t = l  t = l  t = l  

for a linear contrast analog, or, 

T T 

2 °~r(Xit - XJ t)+ 3c 2 [~r(Xj t - S i t )+ 
t = l  t = l  

~ijr = T T T , ( 7 )  

2 O: r (Sit  -- S i t  ) + "I- 2 fl r (Sit  - S i t  ) + -]- 2 0 r min (Xit, Xjt ) 
t = l  t = l  t = l  

for a ratio, distinctive features model, where 

a r denotes the impact or salience that is distinctive to the first stimulus, i, in pair 
i j ,  presented on the r-th replication (e.g., subject r); 

[3 r denotes the impact or salience that is distinctive to the second stimulus, j ,  in 
pair i j ,  presented on the r-th replication; and 

O r denotes the impact or salience that is common to the stimulus pair ij pre- 
sented on the r-th replication. 
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It is assumed that 0 -< 6ij r, 6/jr - 1 for the ratio version of the contrast model in (7). 
As in Tversky (1977), we assume Xjt, at ,  fir, Or >>- 0 in both (6) and (7) above. Note, 
there is a multiplicative indeterminacy in the estimation of X, a ,  I~, and 0 in both (6) and 
(7). More specifically, one can multiply a,  15, and 0 by some nonzero constant and then 
divide X by this constant without any effect to 6ijr. 

Notice that the measures defined above in (3) through (5) on the latent structure 
( X  = ((Sit))) capture the same information as the f function in Tversky's model, which 
reflects the salience or prominence of the various features in any given task. From a 
researcher's perspective, X represents the latent properties underlying a given set of 
stimuli in a given judgment task. This latent structure will differ for different stimuli in 
the same task (e.g., conceptual versus perceptual stimuli), and for the same stimuli in 
different tasks (e.g., similarity versus dissimilarity judgments of conceptual stimuli). 
Meanwhile, the parameters at ,  fir, and Or reflect the degree to which the various 
common and distinctive aspects of the latent dimensional structure actually surface and 
affect 6ijr. Here, these parameters represent (a) the degree to which a latent feature 
effect can be manipulated asymmetrically within any given task (i.e., ar versus fir), (b) 
the relative impact of common versus distinctive features on the proximity judgments 
for any given replication (i.e., ar + [3r versus Or), and (c) differences in the impact of 
common or distinctive features from replication to replication (e.g., individual differ- 
ences: 01 versus 02). 

Estimation 
We wish to estimate X = ((Xit)), ~ = ( ( O t r ) ) ,  1~ = ( ( f i r ) ) ,  and O = ((Or)), given 

and a value of T, to minimize the following root-mean-error sum-of- a___ = ((~u~)) 
squares: 

'+r 
¢ =  i5 ' (8) 

r 1 

where 6ijr is given by (6) or (7). The APL code o fTSCALE I is currently written for 6ijr 
defined by (6), given the popularity of the linear contrast model and certain computa- 
tional advantages involved in the ability to utilize multiple regression in the estimation 
of a ,  I$, and 0. This minimization problem in (8) is decomposed into an alternating 
(conditional) least-squares procedure involving two major phases: 

1. Phase I: Estimate X. Given the computational complexity of the analytical 
derivatives of • in (8) with respect to X, we utilize a conjugate gradient procedure 
involving forward-finite difference numerical approximations of the derivatives (see 
Gill, Murray, & Wright, 1981 ; also, see Rao, 1984 for a more complete discussion of the 
benefits of finite difference approximations over analytical derivatives in various opti- 
mization scenarios). Here, such numerical approximations are obtained via 

a ~  cI,(Xit) - ,I,(Xi, + e) 
~ , ( 9 )  

OXu e 

where (8) is substituted into (9) with e = .001 based on empirical evidence we derived 
from the analysis of several synthetic data sets. Note that X is normalized to constant 
length prior to each iteration so that the scale of X is stable across different applications. 
For sake of convenience, assume that the entire set of X parameters to be estimated in 

t An  A P L  listing o f  T S C A L E  is available f rom the senior  author .  
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iteration MIT are contained in the vector X (MIT) and that V ~  is the vector of partial 
derivatives for this set of parameters. The conjugate gradient procedure can be briefly 
summarized (see Rao, 1984) as follows: 

1. Start with initial parameter estimates X ~l) (default option is to generate X ini- 
tially via a singular value decomposition of A); set the iteration counter (MIT) = 1. 

2. Set the first search direction S (1) = - V ~  (~). 
3. Find X (2) according to the relation 

X (2) = X (1) + u ( l ) s  (1), (10) 

where u (1) is the optimal step length in the direction S (l) . The optimal step size is found 
by quadratic interpolation methods. Set MIT = 2. 

4. Calculate VCI ~(MIT) and set 

[V(][D (MIT)]' [V¢I) (MIT)] 

S (MIT) = _ V ~  (MIT) + [ v I I )  (MIT - 1 )], UI~(]D (MIT - 1 )] S (MIT - I ( I  1 ) 

5. Compute the optimal step length u (M~T) in the direction S (MIT), and find 

x(MIT + I) = x(MIT) + u(MIT)s(MIT). (12) 

6. if X (MIT+I) is optimal, stop. Otherwise, set MIT = MIT + 1 and go to Step 4 
above (i.e., undertake another iteration). 

It has been demonstrated that conjugate gradient procedures can avoid the typical 
"cycling" often encountered with steepest descent algorithms. In addition, they dem- 
onstrate valuable quadratic termination properties (Himmelblau, 1972)--that is, conju- 
gate gradient procedures typically will find the global optimum for a quadratic function 
in Q steps, where Q is the number of parameters to be solved. This conjugate gradient 
method is particularly useful for optimizing functions of several parameters since it 
does not require the storage of any matrices (as is necessary in quasi-Newton and 
second derivative methods). However, as noted by Powell (1977), the rate of conver- 
gence of the algorithm is linear only if the iterative procedure is "restarted" occasion- 
ally (i.e., returning to step b above). Restarts have been implemented in the algorithm 
automatically, depending on successive improvement in the objective function within 
this Phase I estimation. However, the maximum MIT value typically is set at 5 (based 
on the analyses of several synthetic data sets) to reduce computational efforts, and 
restarting thus is rarely necessary. 

Note, the present formulation presents some theoretical difficulties given the po- 
tential discontinuities inherent in (3), (4), and (5), when Si t  = S j t .  As such, a gradient 
(analytical or numerical) based procedure for such nonlinear estimation is "theoreti- 
cally" incorrect since the gradients would not be defined at such points of equality. 
Subgradient optimization (see Shor, 1979) would be more appropriate given such prob- 
lems, although there are associated difficulties here also. Namely, subgradients defined 
at such points of equality are not necessarily unique, and deriving them in this context 
is quite difficult. Also, given the form of (3), (4), and (5), it is difficult to show that (8) 
is everywhere convex, a necessary step in demonstrating the global properties of sub- 
gradients. 

2. Phase H: Estimate or, 9, and O. These three sets of multiplicative constants 
for (6) are estimated by constrained multiple regression using a modification of the 
Lawson and Hansen (1972) procedure. In the linear specification of TSCALE in (6), 
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nonnegative estimates of  a t ,  fir, and Or, for r = 1 . . . .  , R ,  can be obtained by solving 
R linear least-squares problems with linear inequality constraints. We define: 

hr = vec (6ijr) = an N ( N  - 1) × 1 vector  composed of  the i # j  elements ( i , j  = 
I, . . . ,  N)  in the r-th replication or slice of  a ;  

d~r = (a r, fir, Or) parameter  vector;  
(1) (2) (3) w ~ - ~  E E~(I (Er , Er , Er ), h~..~ 

vcc ( ~ = !  (Xit - X j t )+) ,  for i # j ,  (i, j = 1 . . . . .  N) ;  
E!  2) vec(Y~tT=l (Xjt - X i t )+) ,  f o r i  ~ j ,  ( i , j  = 1, . . . ,  N) ;  
Er (3) vec (ET= 1 min (Xit ,  Xj t ) ) ,  for i # j ,  (i, j = l ,  . . .  , N) .  

We can then reformulate this estimation problem in terms of  R nonnegative least- 
squares problems 

Minimize IIErd~r - h~II subject  to ~ r  - 0, for  r = l . . . . .  R ,  

which trivially can be shown to conditionally (holding X fixed) minimize (8). The algo- 
rithm, briefly outlined below, follows directly from the Kuhn-Tucker  conditions for 
constrained minimization. For  a given r, form the N ( N  - l)  x 3 matrix of  " indepen-  
dent var iables ,"  E r, and the N ( N  - I) x 1 vector  of  dissimilarities (acting as the 
dependent  variable) hr. In the description below, the 3 x 1 vectors Wr and Zr provide 
working spaces. Index sets Pr and Z r will be defined and modified in the course of  
execut ion of  the algorithm. Parameters indexed in the set Z~ will be held at the value 
zero. Parameters  indexed in the set Pr will be free to take values greater than zero.  If  
a parameter  takes a nonpositive value, the algorithm will ei ther move  the parameter  to 
a positive value or  else set the parameter  to zero and move its index from set Pr to set 
Z r. On termination, ~b r will be the solution vector  and w r will be the dual vector.  

I. Set Pr := Null, Z r :=  {1, 2, 3}, and t ~ r  : =  0. 
2. Compute the vector  w~ :=  E ' ( h r  - E~+~). 
3. If  the set Zr is empty or i fwrj  <- 0 for a l l j  E Zr,  go to Step 12. 
4. Find an index a E Z r such that Wra = max {Wrj: j E Zr}. 
5. Move  the index a from set Zr to set Pr. 
6. Le t  E~ r) denote  the N ( N  - 1) x 3 matrix defined by 

{oOlUmn j of  Er i f j E P r  
Column j o f  E (r) := i f j  E Zr .  

Compute  the vector  z r as a solution of  the least-squares problem E~ r) z r ~ h r . Note  that 
only the components  z d,  j ~ Pr,  are determined by this problem. Define z d = 0 for 

j E Z r .  
7. I f z  d > 0 for a l l j  E Pr,  set d~r :=  z r and go to Step 2. 
8. Find an index v E Pr  such that 6~v/(~b~v - z~v) = min {¢bd/(4, q - zd):  Zrj <- 

O, j E Pr}. 
9. Set Qr :=  ~r , / (4~ ,  -- Zr,). 
10. Set ~b r :=  d~r + Q~(zr - ~ ) .  
11. Move  from set e r  to set Z r all ind ices j  E e r  for  which ~rj = 0. Go to Step 

6. 
12. End. 

On termination, the solution vector  6~ satisfies 

~rj > O, j E P~; (13) 

and 
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qbrj = O, j E Zr ,  

and is a solution vector to the least-squares problem 

E r)+r --  hr .  

The dual vector Wr satisfies 

and 

where 

(14) 

(15) 

Wrj = O, j E Pr ,  (16) 

Wrj <-- O, j ~ Zr, (17) 

W r  = E ' ( h r  - ErdPr). (i8) 

Equations (13), (14), (16), (17), and (18) constitute the Kuhn-Tucker conditions char- 
acterizing a solution vector ~b r for this constrained least-squares problem. Equation 
(15) is a consequence of (14), (16), and (18). These twelve steps are then repeated for 
the next value of r. 

Program Options 

TSCALE allows for a variety of linear contrast models to be fit to the empirical 
6ijr. The oL, 13, and 0 parameters can be specified as given constants, indexed by 
replication (e.g., o~ r) or indexed by replication and dimension (art). Constraints can be 
imposed to estimate symmetric versions of these models (i.e., et = 13), as well as 
confirmatory models using equality constraints to allow for competing models akin to 
those of Restle (1961) discussed earlier. Options exist to hold X fixed, estimate X, or 
reparameterize X via 

M 

Sit  = E 
m = l  

Him Tmt, (19) 

where m indexes 1 . . . . .  M observed descriptor variables or features, Him is the value 
of the m-th descriptor variable or feature for stimulus i, and Trot is the coefficient 
denoting the contribution of the m-th descriptor variable or feature on the t-th dimen- 
sion. Such a reparameterization can aid in the interpretation of the derived dimensions 
(see Bentler & Weeks, 1978; Bloxom, 1978; de Leeuw & Heiser, 1980; Noma & 
Johnson, 1977), and can replace the post-analysis (property-fitting) methods often used 
in an attempt to interpret subsequent results. As in CANDELINC (Carroll, Pruzansky, 
& Kruskal, 1980), Three-Way Multivariate Conjoint Analysis (DeSarbo, Carroll, Leh- 
mann, & O'Shaugnessy, 1982), and GENFOLD2 (DeSarbo & Rao, 1984), these repa- 
rameterization options can be used to examine what effect such features/attributes have 
on the derived solution. This option can be utilized to directly relate observed features 
to the derived dimensions. Note, when such reparameterization options are utilized, 
the number of background variables in the linear function cannot exceed the number of  
entities that exist for those variables. For example, if N stimuli have M attributes, 
N -> M since, at most, only N T  coordinates can be identified (depending on respective 
parameter indeterminacies associated with the particular model by being estimated with 
TSCALE). Thus, in most applications, such a reparameterization actually improves the 
degrees of freedom of the model by reducing the number of parameters to be estimated. 
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Options also exist for fixing any desired parameter  set in the analysis to specified 
values. 

Goodness-of-Fit 
A variety of  goodness-of-fit measures are computed in T S C A L E  between the 

observed data, 6ijr, and the model predicted values, ~ijr, given by (6) or (7). The three 
primary measures are 

1. A root-mean-square (RMS) measure as in (8), 
2. A sum-of-squares-accounted-for (SSAF) measure: 

i~j ~r ~i jr~i jr  

SSAF = , (20) 
NN R NN R 

i~j r i~j r 

3. A variance-accounted-for  (VAF) measure: 

i%j r (~i jr  -- ~Ur) 

1 
where 6.. r is defined as the average dissimilarity value in the r-th replication. These  
measures are also calculated by replication for r = 1, . . .  , R.  

Monte Carlo Results 
In preliminary testing of  this two-stage algorithm on several synthetic data sets 

(with no error),  it was found that the procedure recovered the true X, at, 13, and 0 values 
in all but two cases where locally optimal solutions occurred.  Given this propensi ty,  as 
well as concerns of  model indeterminacy raised by Sattath and Tversky  (1987, in a 
symmetric  version of  the linear contrast  model), and by one helpful reviewer,  we 
decided to conduct  a more thorough test of  the proposed T S C A L E  procedure.  Some 
ten independent factors were specified as having potential effects on the performance of  
TSCALE.  These ten factors are shown in Table 1, and reflect various aspects of  the 
input data, the specific T S C A L E  model, algorithm control parameters ,  and error.  The 
first seven factors and their respective levels are somewhat  self-explanatory; the final 
three independent factors require some explanation in terms of  operationalization. The 
features model factor  specifies magnitude relationships between the at, 13, and 0. Ini- 
tially, simulated values for these three sets of  parameters  were all generated from the 
same uniform distribution. In the mixed-features model,  these values were unchanged.  
In the common-features  model,  0 was multiplied by a large positive constant  to enlarge 
the impact of  common features;  at and 13 were unchanged. In the distinctive-features 
model,  at and 13 were multiplied jointly by a large positive constant ,  and 0 was unaltered 
to enlarge the impact of  the distinctive features.  

The three levels of  error  are also shown in Table 1, where 0- 2 = 20" 1 , and o- 1 = 1. 
Error  was added to the synthetically generated proximities to form 6ijr, after  X, at, 13, 
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TABLE 1 

Independent Factors for the TSCALE Monte Carlo Analysis 
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Factor Level 

1. Number of  Dimensions T=2 
T--A, 

2. Nnmher of Stimuli N=7 
N=12 

3. Number of  Subjects R=3 
R=8 

4. Input Proximity Data Asymme~c 
Symmetric 

5. Stimulus Configuration Estimat~ X 

Reparan~ted~ X = H T 

6. Start for X Random 
~ Torgerson method 

7. e-value e = .01 
= .001 

8. Features Model Common 
Distinctive 
Mixed 

9. Error to A None 
N(0, Ol) 
N(O, o2) 

10. Variation of X Small 
~ Medium 

Large 

and 0 were randomly generated. Finally, X was initially generated from a uniform 
distribution: U(0, 3). We then investigated the performance of TSCALE for various 
levels of dispersion of these coordinates. For small dispersion, the coordinates were left 
unaltered. For medium dispersion, these initial values were squared. For large disper- 
sion, these initial values were cubed. 

Some seven dependent measures of algorithm performance were specified mea- 
suring computational effort, overall goodness-of-fit, and parameter recovery: 

Y1 = number of major iterations required for convergence; 
Y2 = S S A F  (6ijr ,^~ijr)  , 
Y3 = VAF (Sij r,  8ijr); 
Y4 = RMS (c~, &); 
Y5 = RMS ([3, ~); 
Y6 = RMS (0, 0); 
Y7 = RMS (X, X) after appropriate permutation and normalization. 
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The ten independent factors were combined in a 2733 fractional factorial design (Ad- 
delman, 1962) for main effects estimation (an initial full factorial design with factors 4, 
8, 9, and 10 was performed at the request of one reviewer and produced only a few 
significant interaction terms). Such efficient designs have been employed previously in 
methodology testing by DeSarbo (1982) and DeSarbo and Carroll (1985). Twenty seven 
trials with a single replication were specified as in a conjoint analysis (see Green and 
Rao, I971) where such fractional factional designs, converted to dummy variables, are 
used as independent variables in a regression context to explore the effects of desig- 
nated experimental factors on a selected dependent variables. Here, the seven depen- 
dent measures stated above were analyzed via multiple regression to examine the 
relative effects of the various levels of the ten independent factors. Note, the intercept 
value would thus represent the predicted value of the specified dependent measure 
when all independent variables were fixed at their "base"  or zero-coded value(s). The 
remaining regression coefficients denote the additions to or subtraction from this base 
predicted value. 

Table 2 presents the regression results for these seven dependent measures. The 
only significant regression equation concerns Y~, the number of major iterations re- 
quired for convergence, where R = 8, symmetric model, reparameterized X, and 
Torgerson start each significantly reduce this dependent variable across all factor lev- 
els. While there are scattered and isolated significant effects among the remaining six 
dependent variables, none of these equations are significant, indicating somewhat con- 
sistent fitting over a variety of different model and data types (arc sine transformations 
were also applied to the second and third dependent variables given their restricted 
range and no major changes in these ~regression results occurred). While promising, 
these results are preliminary given the simple design utilized for Monte Carlo testing. 

To examine the absolute performance of TSCALE in this Monte Carlo experiment, 
Table 3 displays the list of means and standard deviations (in parentheses) for each of 
the seven dependent variables across all factor levels. Overall, there appears to be 
somewhat consistent fitting over the various factor levels. However,  a few cells in this 
table prove interesting. F o r  example, the choice of e-value appears to render rather 
different SSAF (rijr, ~ijr) means. The reparameterization option for X tends to result 
in smaller RMS (X, X), perhaps due to the fact that additional information/data is 
provided with such an option (i.e., H), and there are typically fewer parameters to 
estimate in such analyses. Oddly, the intermediate variation of X level tends to result 
in better recovery of the model parameters. Finally, the recovery of 0 appears to be 
somewhat better in a common features model, as opposed to a distinctive features 
model. 

5. TSCALE Applications 

Method and Procedure 
Proximity data on perceptions of fast-food restaurants and cola soft-drinks were 

collected and analyzed via TSCALE to illustrate the procedure. Table 4 presents the 
two sets of stimuli, each consisting of 12 alternatives. Each of the stimuli in the two sets 
were readily available or accessible in the geographical area of the study. Subjects 
(graduate students) were screened for a minimal level of awareness of these stimuli. 
Each set of stimuli contains twelve alternatives, with subjects providing both (i, j)  and 
(j ,  i) comparisons. A subject/referent format was adopted. 

Subjects were asked to rate the similarity of i t o j  andj  to i on a scale ranging from 
0 (very similar) to 10 (very dissimilar) which appeared to the right of each pair. Indi- 
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TABLE 2 

TSCALE Monte Carlo Regression Results 
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No. of SSAF VAF 
~ ~ RMS(X,X)  It~atio~ (6ijr, (6ijr' RMS(a,~) RMS(~,~) RMS(0,~) 

intercept 27.17 0.95 0.98 0.15 0.17 0.02 0.15 

T---4 0.83 0.02 0.01 -0.06 -0.03 -0.03 -0.03 

N=12 2.33 4).01 4).01 -0.02 4).00 -0.03 4).04 

R=8 -3.67" 0.02 0.01 -0.04 -0.06 0.02 -0.03 

Symmetric -6.17"* 4).01 -0.01 0.02 0.00 0.02 0.02 

x = a v  -7 .83** 0 .02  0.01 4) .02  -0 .05 -0.03 -0.08* 

Torgerson start -4.50* 4).01 0.00 0.01 0.06 0.03 0.02 

e = .001 -1.83 0.01 0.00 -0.04 0.01 -0.05 -0.03 

Distinctive -2.78 0.01 0.01 -0.01 -0.05 0.11" 0.01 

Mixed 1.11 0.03* 0.02* -0.01 -0.03 0.05 -0.02 

N(0, a l )  -1.33 -0.02 -0.01 0.00 0.00 -0.00 -0.01 

N(0, a 2) -2.67 -0.02 4).01 0.03 0.03 0.08 0.03 

Medium 2.00 0.01 4).00 -0.06 -0.09* 4).00 -0.02 

Large 2.67 0.01 4).00 -0.02 -0.04 0.01 0.03 

S.E. 4.06 0.03 0.01 0.08 0.08 0.08 0.07 

R 2 0.82 0.58 0.64 0.43 0.60 0.63 0.57 

adj. R 2 0.65 0.16 0.29 -0.14 0.19 0.27 0.14 

F-Ratio 4.64** 1.38 1.81 0.76 1.47 1.72 1.3I 

*p < .05 

**p< .Ol 

vidual level confidence, experience,  and preference measures were also collected be- 
tween the i to j and j to i judgments to minimize carry-over ,  and the sex of  each 
respondent  was recorded. The subjects rated their confidence in evaluating each alter- 
native on a scale from 0 (not at all confident) to I0 (very confident). Frequency of  
consumption experience for each stimulus was rated on a five point categorical scale 
(every day, every  week, every  month, every  year, never). The subjects'  preference for 
each alternative was also measured on an eleven point scale ranging from - 5  (very 
much dislike the alternative) to 0 (neutral) to 5 (very much like the alternative). 
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TABI .w 4 

Sets of Stimuli for the Two TSCALE Applications 

"I"I'II " '  . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . .  

Fast Food Restaurants plot Codes Cola Soft Drinks 

I. Arby's A I. Coke Classic 

2. A&W Drive-in B 2. Pepsi 

3 Burger King C 3. Dr. Pepper 

4. Church's Fried Chicken D 4. Diet Pepsi 

5. Hardee's E 5. Diet Faygo 

6. Kentucky Fried Chicken F 6. Diet Big K 

7. Little Caesar's G 7. New Coke 

8. McDonald's H 8. Cherry Coke 

9. PizT~ Hut I 9. Diet Coke 

10. Taco Bell J 10. FaygoCola 

11. Wendy's K 11. Big K Cola 

12. White Castle L 12. Tab 

61 

A pencil and paper format was used to collect data in a classroom setting. For each 
set of stimuli, half of the subjects gave, in order, the i to j proximity ratings, stimulus 
confidence, experience and preference, and then the j  to i proximity ratings. The other 
half gave the j to i proximity ratings first and the i to j proximity ratings last. The 
presented pairs of stimuli appeared in random order for the first group of subjects, while 
this order was reversed for the second group. A total of 71 graduate students partici- 
pated in the study, 37 for the fast-foods and 34 for the cola soft-drinks. One of the 
soft-drink subjects was eliminated from the analysis for failing to complete the ques- 
tionnaire. 

Hypotheses 
Based on the recent literature in consumer psychology, product experience should 

play an important role in consumer judgment (see Bettman, 1986), prompting initial 
focus on this variable. As experience grows, consumers first group products into cat- 
egories and then distinguish among the brands within those categories (Howard, 1977). 
Therefore, the weight that consumers place on distinctive features (i.e., the distinguish- 
ing features of the brands), should increase with experience. However, any increase in 
the salience of distinctive features is likely maximized at an intermediate level of 
experience. Researchers have shown that consumers' recallable knowledge of brand- 
level differences not only levels off, but may decrease somewhat at higher levels of 
experience or product familiarity (Bettman & Park, 1980; E. J. Johnson & Russo, 1984). 
As very experienced consumers rely more on stored overall evaluations and engage in 
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less evaluative processing, attribute differences are less salient. Therefore, we expect 
a general increase in distinctive-feature salience with experience that is maximized at 
an intermediate experience level. 

The two sets of stimuli themselves should differ with respect to the importance of 
experience. The fast-food restaurants represent a more dissimilar and complex set of 
stimuli than the cola soft-drinks. Any differences across experience levels should be 
more pronounced for the fast-food stimuli. Quite simply, the cola soft-drinks require 
little, if any, experience to enable perception of their salient differences (e.g., diet 
versus nondiet), especially given the massive advertising performed by the major na- 
tional brands. Finally, given the subject/referent format of the proximity judgments, the 
distinctive features of the subject should be somewhat greater than the distinctive 
features of the referent for both sets of stimuli (Tversky, 1977). 

F a s t - F o o d  R e s t a u r a n t  A n a l y s i s  

Given the consumer psychology literature mentioned above on the role of experi- 
ence in consumer perception, three clusters of subjects initially were created prior to 
TSCALE analysis representing different levels (high, medium, and low) of fast-food 
restaurant experience (later, the same was done for cola soft-drinks). The five level 
categorical scales were assigned simple quantitative values f rom 0 (never eat at the 
restaurant) to 4 (eat at the restaurant every day), and aggregated across stimuli for 
analysis. A K-MEANS (Hartigan, 1975) split of the subjects' experience clustered the 
subjects into low (n = 10), intermediate (n = 20), and high (n = 7) experience groups. 
We use these clusters as replications to illustrate the TSCALE analyses in detail. 

A number of different TSCALE models were estimated in 1-3 dimensions. Based 
upon goodness-of-fit, interpretation, and parsimony, the two-dimensional, linear 
TSCALE solution with et, 13, and 0 parameters indexed by experience group was 
selected as best representing the structure in the data, producing an overall sum-of- 
squares-accounted-for value of 0.990 and a variance-accounted-for value of 0.891. 
Note, because of a general scale indeterminacy associated with this version of the linear 
model, we normalized vec (X) to constant length and multiplied the corresponding a,  13, 
and 0 by this constant. 

The two-dimensional space for the fast food restaurants is presented in Figure 1. 
The solution is quite interpretable. Dimension one represents a chicken/nonchicken 
dimension. While hamburgers are the primary product at McDonald's, Burger King, et 
cetera, chicken is the primary product at Kentucky Fried Chicken and Church's. Ar- 
by 's  has an intermediate location on this dimension given its roast beef image together 
with the recent addition of a number of chicken items to its menu. The second dimen- 
sion separates the pizza and Mexican restaurants (serving food of non-American origin) 
from the chicken and hamburger (traditionally, American fast-food) restaurants. 

The common and distinctive-feature parameters, presented in Table 5, vary pre- 
dictably with experience. The relative weights on distinctive versus common features, 
presented in the column to the far right, are 10.105, 12.194, and 11.427, from low to high 
experience levels. As expected, experience has a general positive effect on relative 
distinctive feature salience and, consistent with previous research, this distinctive fea- 
ture salience is highest at an intermediate level of experience (Bettman & Park, 1980; 
E. J. Johnson & Russo, 1984). 

However,  the results concerning subject-referent asymmetry are mixed. Overall, 
there is little asymmetry in these proximity data as noted by the similar magnitudes for 
ar and/3 r within each experience level. (A Constantine and Gower, 1979, decompo- 
sition of the pooled 8ij r , averaged over these three experience groups, revealed that the 
symmetric portion accounts for 99.2% of the variance in this data. The corresponding 
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Dimension 1 

Chicken 
VS. 

Non-Chicken 
Fast-Food 

Restaurants 

0 

F 
D 

A 

E 
K 

C 

B 

H 

L 

J 

American vs. Non-American 
Fast-Foed Restaurants 

G ! 

Dimension 2 

Plot Code 

A - Arby's G - Little Caesar's 

B - A&W Drive-in H - McDonald's 

C - Burger King I - PizTa Hut 

D - Church's Fried Chicken J - Taco Bell 

E - I-lardee's K - Wendy's 

F - Kentucky Fried Chicken L - White Castle 

FIGURE 1. 
The  two-dimensional  T S C A L E  solution for fast-food res taurants .  

figures by experience group are 96.4%, 98.9%, and 98.1%, respectively, for the low, 
medium, and high experience groups.) The asymmetry ( a t  ~ f i r )  was in the predicted 
direction only for the high experience group, although the oL r - f ir  difference is still 
quite small. Those subjects with relatively little experience with the fast-food restau- 
rants appear to focus somewhat on the referent of comparison, although these t~ r - 13r 

differences are again small. Recall that the similarity rating scales appeared to the 
immediate right of each stimulus pair in the data collection task. These subjects' lack 
of experience, combined with the proximity of the referent to the ratings scale, may 
produce a focus on the referent rather than the subject. In hindsight, two other factors 
may have contributed to this lack of symmetry. Unlike the original Tversky and Gati 
(1978) study, the collected similarity judgments here were not embedded in sentence 
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TABLE 5 

TSC_.A~ Parameter Valu~ 

Stimuli 

III 

Expeaence a r 1~ r 0 r a r + 13r-- 0 r 

Fast-Foods 

Low 5.741 5.819 1.455 10.105 

Intermediate 6.084 6.111 0.001 12.194 

High 5.743 5.685 0.001 11.427 

Soft l>rinks 

Low 4.873 4.762 3.739 5.896 

Intermediate 4.755 4.743 4.174 5.324 

High 4.871 4.713 4.345 5.239 

Gender a r 13 r 0 r %+ I~ r -  0 r 

Soft Drinks 
Male 4.809 4.758 4.642 4.925 

Female 5.314 5.205 2.964 7.555 

form for each pair of stimuli. In addition, the (i, j) and (j ,  i) stimulus pairs were 
collected within, rather than between, subjects. 

Cola Soft-Drinks Analysis 
Following the same procedure, TSCALE was estimated for three clusters of sub- 

jects representing three levels of cola soft-drink experience: low (n = 5), intermediate 
(n = 18), and high (n = 9). (One subject had a significantly higher level of experience 
than all three groups and was eliminated.) The two-dimensional solution produced a 
sum-of-squares-accounted-for value of 0.984 (variance accounted-for = 0.884), utilizing 
a similar model structure as in the fast-food restaurants. The two dimensions extracted 
separate diet from nondiet brands, and regional from national brands. The estimated 
parameters, reported in Table 5, reveal that the effects for experience are predictably 
negligible compared to the fast-food restaurants. There is a very slight decrease in the 
relative weight of total distinctive versus common features (equal to 5.896, 5.324, and 
5.239 for the low, intermediate, and high experience subjects, respectively). Here, 
distinctive-feature salience is greatest at the lowest experience level, although these 
differences are again quite small. The less complex nature of the cola soft-drinks may 
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be reflected in these small differences across experience levels. This could also be due 
to the massive advertising campaigns undertaken by the national brands that would 
increase overall awareness of the differences between the brands. There are somewhat 
expected results regarding the subject/referent manipulation. The distinctive features of 
the subject were slightly more salient than those of the referent for all three experience 
groups, but these a r - ~ r  differences are very small, indicating a lack of asymmetry. 

A review of the consumer psychology literature suggests that contrasting male and 
female perceptions often provides a parsimonious view of product perceptions (e.g., 
Doyle & Hutchinson, 1973; Gentry, Doering, & O'Brien, 1978; Meyers-Levy, 1988; 
Turle & Falconer, 1972). This prompted a second analysis of the cola soft-drink per- 
ceptions along these lines. TSCALE was applied to the two gender groups (18 males 
and 15 females). Again, a variety of models were estimated in 1-3 dimensions. Based on 
goodness-of-fit and interpretation, the two-dimensional, linear model (sum-of-squares- 
accounted-for = 0.988, variance-accounted-for = 0.911) is deemed as parsimoniously 
representing the structure in the data. The resulting two-dimensional solution is pre- 
sented in Figure 2. Dimension two separates the diet from the nondiet drinks. Dimen- 
sion one distinguishes the regional from the major national brands, with two excep- 
tions: TAB (L) and Dr. Pepper (C)--two poorly positioned, weak national brands. 
There are very systematic differences between the males and females with respect to 
feature salience, as seen at the bottom of Table 5. Looking across the model parameter 
sets, the females appear to have greater relative distinctive feature salience than males. 
Finally, consistent with our initial expectations and Tversky's prediction, ar > /3r for 
each gender on each dimension, although these differences are again small. (The cor- 
responding Constantine and Gower, 1978, decomposition on the pooled 8 i j r ,  averaged 
over these two gender groups, reveal that the symmetric portion accounts for 98.5% of 
the variance in this data. The corresponding figures by gender group are 97.7% for 
males and 97.3% for females.) 

6. Conclusions 

We have presented an alternative spatial MDS procedure for the analysis of three- 
way, two-mode proximity data based on a latent dimension version of Tversky's (1977) 
contrast model of similarity. We have demonstrated that such a procedure can be 
applied to empirical proximity data that do not necessarily satisfy the metric axioms. 
There are a variety of other potential applications of the TSCALE procedure for the 
analysis of symmetric and asymmetric proximity data in the domain of psychology. For 
example, TSCALE could be employed gainfully in the study of confusions data, word 
association tasks and semantic domains, olfaction, psychoacoustics, and other sub- 
stantive problems in psychology where MDS has been found useful. Perhaps the most 
fruitful applications of TSCALE wilt arise in examinations of stimuli that vary on some 
underlying or abstract dimensions, yet are likely represented by subjects using dichot- 
omous features (e.g., conceptual stimuli--Pruzansky, Tversky, & Carroll, 1982; Tver- 
sky, 1977). In addition, stimulus domains that exhibit substantial individual differences 
in perception may benefit from TSCALE analysis. 

There are a number of avenues for future research. One, more rigorous testing of 
the procedure is required vgith more complex Monte Carlo analyses employing larger 
designs with full factorial specifications, replications, additional factors, etc. Second, 
an extension of TSCALE to tree structures is needed. Similarly, the development of 
hybrid models combining the fitting of both tree structures and Euclidean spaces would 
also be a useful direction for research. Finally, as mentioned above, the use of the 
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Dimension 1 

Major  National 
VS. 

Regional  
Cola Soft-DrinE~ 

H 

C 

A G 

B 

J 
K 

Diet vs. Non-Diet 
Cola Soft-Drinks 

D 

E 
F 

L 

Dimension 2 

Plot Code 

A - Coke Classic G - New Coke 

B - Pepsi  H - Cherty Coke 

C - Dr. Pepper  I - Diet  c o k e  

D - Diet  Pepsi J - Faygo  c o l a  

E - Diet  Faygo  K - Big K c o l a  

F - Diet  Big K L - Tab 

FIGURE 2. 
The two-dimensional TSCALE solution for cola soft-drinks. The product names shown are trademarks of 

their respective companies. 

p r o c e d u r e  in d i f fe ren t  and  m o r e  va r i ed  app l i c a t i ons  w o u l d  a l so  p r o v e  benef ic ia l  in 
a c c u r a t e l y  e v a l u a t i n g  the  va lue  o f  this  new p r o c e d u r e .  
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