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Traditional network research analyzes relational ties within a single group of actors; the 
models presented in this paper involve relational ties that exist between two distinct sets of 
actors. Statistical models for traditional networks in which relations are measured within a 
group simplify when modeling unidirectional relations measured between groups. The tradi- 
tional paradigm results in a one-mode sociomatrix; the network paradigm considered in this 
paper results in a two-mode sociomatrix. A statistical model is presented, illustrated on a 
sample data set, and compared to its traditional counterpart. Extensions are discussed, includ- 
ing those that model multivariate relations simultaneously, and those that allow for the inclusion 
of attributes of the individuals in the group. 
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Introduction 

Most standard statistical techniques are designed for subjects-by-variables data 
sets, where the focus of  the analysis is to model the associations among the variables; 
for example,  analysis of  variance (Scheffr,  1959), regression (Draper & Smith, 1981), 
multidimensional scaling (Kruskal & Wish, 1978; Torgerson,  1958), and so on. These  
analyses generally aggregate over  subjects who are assumed to provide independent  
observations,  although exceptions exist. For  example,  the primary focus in factor  
analysis is generally the modeling of  the covariance structure among the measures,  but 
subjects may also be modeled,  as in Q-factor analysis (Gorsuch, 1983), three-mode 
factor  analysis (Tucker  I963, 1966, I972), or in estimating subject-factor scores (Har- 
man, 1976; McDonald,  1985). Another  exception would be those methods developed 
for social networks.  Briefly, a network is defined to be a group of  actors,  usually 
persons,  who may interact in some way (e.g., social friendship ties, communicat ion 
e-mail links, etc.). Social network models (described in Huber t  & Baker,  1978; Kenny  
& LaVoie,  1984; Knoke  & Kuklinski, 1982; Wasserman, 1987; Wasserman & Faust,  
1990; Wasserman & Iacobucci,  1988) attempt to examine the structure of  the interre- 
lationships that exist among the actors,  including the incorporation of  information on 
properties of  the actors to help understand the structural relations present  (e.g., Fien- 
berg & Wasserman, 1981; Wasserman & Iacobucci,  1986). 

Usually, social network models and applications are considered for relations mea- 
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sured within a single group of  actors. For  example,  classic studies in sociometry mea- 
sured the friendship ties among all the children in a classroom. Thus,  the network 
consists of  a single closed set of  actors and the friendship links among them. In this 
paper, we consider the case where relational ties exist between distinct groups of  
actors. For  example,  we might be interested in modeling relations that originate with 
adults and are directed toward children (e.g., scolds, helps, etc.) or from buyers  to 
sellers (e.g., makes payment ,  requests information, etc.); the network relations flow 
from one set of  actors (e.g., adults, buyers) to another  (children, sellers). We discuss 
the two-group case in detail, but  briefly describe the extension to three or more groups. 
In the first section of  this paper,  we distinguish the new two-group situation from the 
standard one-group case. A statistical model for the two-group situation is presented in 
the second section, and demonstrated on an example data set in the third. The fourth 
section discusses extensions of  the model. 

Terminology and Notat ion 

To differentiate the current  discussion from previous research,  we refer  to the 
modeling o f  unidirectional relations observed in a two-mode network,  or on a bipartite 
directed graph. Each term will now be defined. 

Standard social network research (and even early sociometry) tabulates relational 
ties between actors in a sociomatrix X with entries: 

X O. = 1 if actor  i relates to actor  j ,  for i, j = 1, 2 . . . . .  g; 

= 0 otherwise. (1) 

A sociomatrix has a row and column for each of  9 actors in the set of  all actors G so that 
X is 9 × 9- The diagonal is usually taken to be zero; relations such as friendship or 
communicat ion ties are not considered to be reflexive. Equation (1) defines the simplest 
sociomatrices,  those representing binary re la t ions-- the  presence or absence of  a link 
between two actors in the network.  Alternatively, the strength of  that relation may be 
measured,  and the sociomatrix could be defined more generally as: 

X 0 = k if actor  i relates to a c t o r j  at strength k; 

= 0 otherwise. (2) 

These  standard sociomatrices may be referred to as one-mode matrices, drawing 
from Tucker ' s  factor  analysis terminology (Tucker  1966, 1972). A two-dimensional 
matrix may  be one-mode or  two-mode.  A one-mode matrix contains the same entities 
as indices of  both the rows and columns. A two-mode matrix has two different sets o f  
entities as indices. For  example,  a subjects-by-variables data matrix is two-mode,  since 
the rows delineate subjects and the columns, variables. A correlation matrix among 
variables is one-mode,  since both the rows and columns represent  a single set of  
ent i t ies-- the  variables. 

Similarly, in the social network context ,  the terms one- and two-mode may be used 
to describe different network paradigms. Standard sociomatrices,  defined by (I) or (2), 
are one-mode matrices since the single set of  actors in G form both the rows (i = I, 2, 
. . . .  9) and columns ( j  = 1, 2 . . . . .  9). In contrast ,  we will focus not on the relations 
sent within a single set of  actors,  but on those relations that are sent between two sets 
of  actors. The first set of  actors is denoted by G (i = I, 2 . . . . .  9) and the second by 
H ( j  = 1, 2 . . . . .  h), where 9 is generally not equal to h. The entries in a sociomatrix 
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that tabulates the relations sent from actors in G to their partners in H are defined as 
follows: 

Xij = k if actor i in set G relates to actor j  in set H with strength k; 

= 0 otherwise. (3) 

The matrix defined in (3) is g x h and is two-mode, because the actors in G form the 
rows of X and the partners in H form the columns. Note that now there is no main 
diagonal and reflexive relations may not even be considered. (Some researchers might 
also call the matrix in (3) rectangular, but this term is not truly descriptive, since g may 
equal h, even though the sets of actors may still be distinct.) 

Social network researchers who are not familiar with the mode terminology may 
instead use related graph theory concepts, since many graph theoretic concepts form 
the foundation of much of social network methodology (see Hage & Harary, 1983; 
Wong, 1989). In the graph theoretical perspective, actors are represented as points and 
the relational ties between any pair of actors is represented by a link or arc between the 
points (e.g., Bondy & Murty, 1976). A bipartite graph is a special type of graph in which 
the actors may be partitioned into two groups in such a way that all links are between- 
group links, and no within-group links exist (see Wilson, 1982, and Fararo and Doreian, 
1984, for related issues on bipartite and tripartite graphs). These between-group links 
are those tabulated in two-mode matrices. For example, in the network where scolding 
is measured, the relation would flow from the group of adults to the group of children. 
We would expect to see few scoldings among the adults or scoldings among the chil- 
dren, and therefore would probably not even code for such interactions. 

In this same context as above, few if any scoldings would originate with the group 
of children directed toward the group of adults, reflecting the property of unidirection- 
ality. In two-mode networks, the relation flows in one direction--from the row actor 
(i ~ G) to the column actor ( j  E H), and not the reverse. For example, an adult might 
scold a child but a child would not scold an adult. Or, a corporation might make 
donations to a nonprofit organization, but the reverse would not be true. In more 
standard one-mode networks, the relation may flow in either direction--the actor i may 
relate to the actor j ,  and the actorj  may reciprocate and relate to actor i. For example, 
actor i may claim j as a friend, and j might also claim actor i as a friend. Note that if a 
different relation is measured on the sets of actors, the relation might be unidirectional 
but flowing in the opposite direction (e.g., a child asks for help of an adult, or a 
nonprofit organization solicits support from an organization). Note also that the defi- 
nition of a unidirectional relation tabulated in two-mode sociomatrices as defined in (3) 
would be represented by a direc ted  bipartite graph, where the arcs originate in set G 
and flow to set H. 

The Model 

Modeling a single unidirectional relation in a two-mode network follows analo- 
gously to modeling the standard one-mode case, and in fact, is parametrically simpler. 
The model introduced by Holland and Leinhardt (1981) for the standard one-mode 
network measured on a single binary relation, is referred to as Pl. The model presented 
here, which might be labeled P2, is a close relative of p l ,  and is applicable to a network 
with two sets of actors. (The subscripts on Pl and P2 may serve as a mnemonic for 
one-mode and two-mode network models.) 

To present the model, the likelihood function, and the method of parameter esti- 
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mation and testing, a contingency table is defined, which is termed a Y-array and used 
in many different types of  applications (beginning with Fienberg & Wasserman, I981): 

Yoh = 1 if actor i E G relates to a c t o r j  E H at strength k; 

= 0 otherwise. (4) 

For  binary data, k equals 0 or 1, and the Y-array is of size y x h × 2. For discrete or 
ordinal data in general, k = 1, 2 . . . . .  C, and the Y-array is a y x h × C contingency 
table. For  each dyad, there will be a single " I "  in one of the k = 1, 2 . . . . .  C cells, and 
the remainder will be zero. 

These data are modeled using two primary sets of  effects--one for the actors in G 
and one for the actors in H: 

In P{Yuh = 1} = A o + Oh + aik +/3jh, (5) 

with the following constraints: 0k = 0 for k = 0, aik = 0 for k = 0, X i Otik = 0 for all k, 
[3jk = 0 for k = 0, Xj/3# = 0 for all k. The {A0} ensure the probabilities sum to one over 
k for each dyad. The {0k} reflect the volume of the relations, like the density of  the 
choices over the entire network, and will vary depending on whether the relations from 
G to H tend to be at low or high strengths (k). The two sets of  effects of primary interest 
in typical network applications will be the {a/h} and {/3#}; the former represent the 
expansiveness of the actors in G-- the  tendency for each actor i to make relational ties 
at the various strengths k; the latter represent the attractiveness of  the actors in H- - ten-  
dencies for each ac to r j  to receive relational ties at strength k. (Note that in contrast to 
the standard model P l ,  there are no a ' s  for actors in H nor/3's for actors in G since the 
relation in the current application cannot originate in H and extend back to G. Fur- 
thermore, given the unidirectionality of the flow of the relation, there is no opportunity 
for reciprocal behavior. Thus, the reciprocity parameter of P l is irrelevant in (5).) 

To make (5) mirror P l more closely, consider a binary relation (k = 1, 2; C = 2) and 
constrain {a/h} and {/3#} so that the first columns in these y x 2 and h x 2 tables of  
parameters are zero. That is, propensities to not send a relation or receive a relation 
(k = I) are forced to be zero, while propensities to send or receive relations (k = 2) are 
the nonzero expansiveness or attractiveness parameters.The model in (5) simplifies to: 

In P{Yol = 1} = AO; 

In P{Y02 = 1} = A/j + 0 + a i + &- (6) 

(Note that the dependence on k is dropped, which no longer appears as a subscript 
when C = 2, because of  the constraints that 0k = 0 for k = 0, a i = 0 for k = 0,/3j = 
0 for k = 0. Model (5) is the more general statement for C - 2.) 

The likelihood function that will enable parameter estimation and the fitting of  
models to data, is derived by assuming dyads to be independent. The assumption of  
independence is made to simplify the mathematics, and we consider its plausibility in 
the last section of  this article. The log of  the product of  these dyadic probabilities 
defines the log likelihood function for the entire network: 

In L({AU}, {Ok}, {~ik}, {[3jk}l{Yiyk}) 

= 2 AijYij+ + ~_~ Oky++k + 2 2 aikYi+k + ~, 2 fl#Y+#. 
i,j k i k j k 

(7) 
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TABLE I 

Models Fit to the 3-d Y-array on the Corporate-Promotlons Data 

711 

Model Margins AG 2 &df Tests 

£n P { Yijk=l } = 

I) Aij + 0 k + aik + ~jk 

2) Aij + 0 k + ~jk 

3) Aij + #k + ~ik 

[12][13][23] 

[121123] G2(2)-G2(1)=321.01 * 

[12][13] G2(3)-G2(1)-I41.56 * 

164 H0: all {~ik}-0 

54 H0: all {~jk)=0 

¢¢ 
p < .  01 

Maximum likelihood estimates for log linear models are obtained by setting the suffi- 
cient statistics (the margins {y/j+}, {Yf+k}, and {Y÷jk}) equal to their expected values 
under (5). The log linear model for y can be denoted by [12] [13] [23], which is Fien- 
berg's (1980) notation for the interactions between Variables I and 2, 1 and 3, and 2 and 
3, as well as all lower-order terms, since these models are hierarchical. Statistical tests 
for the significance of the contributions of the {aik}'S to (5) are conducted by comparing 
the fit of (5) (i.e., [12] [13] [23]) with the special case of (5) where all {a/k} = 0 (i.e., [12] 
[23]). Alternatively, to test H0: all {/3jk}'s = 0, the fit of (5) is compared to the fit of the 
model [I2] [13]. Parameter estimation and testing, and the likelihood ratio test statistic 
( G2 = E/jkY/jkln (Y/jk/Y/jk), where p is the corresponding fitted cell value), is described 
in more detail in Wasserman and Weaver (1985). 

An Example 

As an example of model fitting, parameter estimation and testing, and interpreta- 
tion, we use a data set collected on a two-mode network where the set of actors in G 
are corporations and the set of actors in H are advertising agencies and public relations 
firms. The relational tie measured was a simple binary indicator of whether corporation 
i employed agency j. There were 825 corporations selected to represent service (e.g., 
banking, transportation) and industrial (e.g., pharmaceuticals, metal manufacturing) 
companies (Friedland, Barnett, & Danowski, 1988), and 125 promotional organizations 
selected from 1985 directories for advertising agencies and public relations firms. Be- 
cause the y-array for these data would be 825 x 125 x 2, and computationally unman- 
ageable, a pseudo-random sample of 165 was selected of the 825 corporations (9 = 165), 
and 25 advertising agencies and 30 public relations firms (h = 55). The y-array is now 
I65 x 55 × 2, but still large enough that we have not provided a table containing this 
array. Briefly, for each of the 165 × 55 dyads (corporation i and promotional agency j), 
there are two cells, the first of which contains a I if actor i did not hire actor j ,  the 
second of which contains a 1 if actor i did in fact hire actorj .  Note that a promotional 
agency j (those actors in H)  would not hire a corporation i (those actors in G) so the 
relation of "hiring" is indeed unidirectional, and the network is two-mode. 

The models fit to this 3-dimensional contingency table are listed in Table 1, along 
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TABLE 2 

Frequency Distribution of Parameter Estimates 

A A 

~ik frequency ~j k frequency 

5.1 5.5 3 
4.6 5.0 5 
4.1 4.5 16 
3.6 4.0 ii 
3.1 3.5 35 
2.6 - 3.0 0 
2.1 2.5 0 
1.6 2.0 0 
i.i 1.5 0 
.6 1.0 0 
.i - .5 0 

- . 4  . 0  0 

- . 9  - . 5  0 

-1.4 -i.0 0 
-1.9 -1.5 0 
-2.4 - -2.0 0 
-2.9 -2.5 95 

I.I - 1.5 5 

.6 - 1.0 14 

.i - .5 27 

- .4 - .0 0 

- .9 - - .5 0 

-1.4 - -I.0 0 
-1.9 - -1.5 0 
-2.4 - -2.0 0 
-2.9 - -2.5 9 

with the test statistics. The significance tests of the {aik} and the {/3jk} are also given, and 
show that both sets of parameters contribute significantly to the fit of the model. This 
result is true even given the size and sparseness of the corporate relations' array, and 
suggests heterogeneity of  corporate expansiveness and promotion attractiveness. The 
estimates are given in Table 2. 

The majority of  the expansiveness parameters (a) are negative, reflecting the fact 
that many of the corporations have no relations to any of the promotional agencies. (We 
are treating these absences of links as sampling rather than structural zeros, since at 
least in theory, any corporation may hire any promotional firm.) Among those corpo- 
rations with links to promotional agencies, the histogram indicates a greater variety of  
expansive tendencies. The beta estimates present a similar picture, with some promo- 
tional agencies not being used, and others used to different extents. In practice, we 
might have additional information (e.g., corporate industry, promotional agency size, 
etc.) that may be correlated with these estimates to further our interpretation. 

Model Extensions 

In this final section, we generalize (5) to apply to more network research settings. 
The first two extensions are the two-mode counterparts to models already presented for 
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the more standard one-mode case--the inclusion of attribute variables (e.g., Fienberg 
& Wasserman, 1981) and multiple relations (e.g., Fienberg, Meyer, & Wasserman, 
1985; Iacobucci, 1989; Iacobucci & Wasserman, 1988). The remaining two extensions 
are solutions to problems that exist only for the two-mode case. 

A t t r i b u t e  V a r i a b l e s  

Although the primary focus of network research is on the structural ties between 
actors, researchers may also find it useful to use a more traditional statistical focus, and 
study attributes of the actors themselves. With these two sources of information, pat- 
terns of relational ties may be understood as a function of the different characteristics 
of the actors. For example, in studying friendship choices in young children, gender 
should be a critical attribute. Attribute information has been treated in various ways, 
but the most common assumption is that actors who share similar properties (e.g., 
education level of adults, size of corporation, sex of children, etc.) will behave simi- 
larly. Specifically, the assumption is that the pattern of relations is expected to show 
structural equivalence (see Lorrain & White, 1971; White, Boorman, & Breiger, 1976). 

Briefly, two actors are structurally equivalent if they relate to all other actors in the 
network in the same way, and in turn are related to by all other actors in the same way. 
For example, two structurally equivalent boys in a network of friendship ties would 
claim the same other children as friends, and those children who chose one of the boys 
would also choose the other boy. More recently, researchers have relaxed this assump- 
tion to allow for probabilistic tendencies toward equivalence (Wasserman & Anderson, 
1987), rather than the more demanding and exact structural equivalence. In our previ- 
ous analysis of standard one-mode networks, individuals with the same characteristics 
were aggregated and the resulting subgroups were modeled rather than the individual 
actors. A similar strategy is taken here. 

Before presenting the models that use this information, equivalence must be re- 
defined for a two-mode network. For one-mode networks, in which bidirectional rela- 
tions are measured, equivalence considers both the sending and receiving perspectives. 
That is, for actors i and j  to be equivalent, all choices from i must resemble the choices 
from j, and all choices directed to i must resemble the choices to j. In two-mode 
networks, the definition of equivalence can be simplified, since the relations are inher- 
ently unidirectional. 

Equivalence is defined separately for the actors in G and for those in H. Two actors 
in G, i and i', are equivalent if the choices they make to actors in H are identical. Two 
actors in H, j and j ' ,  are equivalent if the choices they receive from actors in G are 
identical. Thus, one evaluates (or assumes) the equivalence of actors in G separately 
from the consideration of equivalence of actors in H. Seeking equivalence in the stan- 
dard one-mode case requires the simultaneous analysis of the rows and columns of the 
sociomatrix (i.e., the columns of the sociomatrix and its transpose as in Arabie, Boor- 
man, & Levitt, 1978). Analyzing a two-mode network for equivalence of actors in G 
would require focusing on the rows of the sociomatrix; analyzing the network for 
equivalence of actors in H would require focusing on the columns of the sociomatrix. 

The assumption of stochastic equivalence is imposed when actors who share sim- 
ilar characteristics are aggregated. The number of subgroups formed by the actors in G 
is denoted by S. For example, if the sex of actors in G is noted, and we aggregated over 
boys and girls, S = 2. The number of subgroups formed for the actors in h is denoted 
by T. The actors in G (i = 1, 2 . . . . .  g) and H ( j  = 1, 2 . . . .  , h) are mapped into one 
of the mutually exclusive and exhaustive categories using mapping functions s(') and t(') 
( s ( i )  = 1, 2 . . . . .  S for actors in G and t ( j )  = 1, 2 . . . . .  T for actors in H). This 
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mapping results in aggregating over  the g x h × C contingency table defined in (4) to 
form a S × T × C W-array defined below: 

S T 

Ws(i)t(j)k = ~,, ~ ,  YUk. (8) 
i ~ s(i) j E t( j)  

Note  that special cases of  W are defined when there is attribute information on one set 
of  actors but  not on the other.  We can either define a one-to-one mapping or (8) can be 
simplified in the following manner: 

For  attributes in G but  not H: 

S 

Ws(i)jk = Z 
i ~ s(i) 

Y(/k ; (9) 

T 

for attributes in H but not G: W;t(j)k = ~ Yijk. (10) 
j E t( j)  

Model (5) can be rewritten as it would apply to the W-array; its appearance is 
similar, but  the parameterizat ion is simpler. Stochastic equivalence is assumed so that 
actors in G who are equivalent share an a, and actors in H who are equivalent share a 
t3: 

I n  P{Yok = 1} = A s(i)t(j) + O k + oL~ (i) -~- [3tk ( j ) ,  ( 11 )  

with the following constraints: 0 k = 0 for k = O, a~ (i) = 0 for  k = O, 

~] a~ (i) = O for all k, f l ~ ( J ) = O f o r k = O ,  ~ /3~ ( j ) = O f o r a l l k .  
s( i ) t( j ) 

The model is still written at the level of  the dyad- - the  individual actors i and j .  How- 
ever,  the model has fewer  parameters,  since they are shared by all actors i and i' in s(i), 
and j and j '  in t ( j ) .  In (5), there are (g - 1) (C - I) and (h - 1) (C - 1) degrees of  
f reedom for the a and t3 parameters ,  since a set of  (C - I) parameters  is est imated for 
each individual actor  i and j .  In (11), there are fewer  parameters ,  given the simplifying 
assumption o f  stochastic equivalence. The degrees of  f reedom for the ~ and/3  o f  (1 I) 
are (S - I) (C - I) and (T - 1) (C - 1), respectively. S and T can be far fewer  than g 
and h; for  example when sex is an attribute variable (T = 2) for  a group of  100 children 
(h = 100). 

To demonstrate  the use of  attributes in the modeling, we return to the corporate-  
promotion data. There  are many attributes to choose from, such as the size of  the 
organization (using, say pre-tax annual income--Galaskiewicz,  1985), its industry,  
characteristics of  its parent  corporation,  and so on. We have chosen to continue to 
model the actors in G (the corporations) as individual actors,  so S = g = 165. The actors 
in H come in one of  two varieties: 25 advertising agencies and 30 public relations firms. 
Thus,  T = 2, which is much less than h = 55. Since we are not  aggregating over  
corporat ions,  the assumption of  stochastic equivalence among them is not needed in 
their choices of  promotional  agencies hired. However ,  forming two subgroups of  the 
promotional  agencies requires that different ad agencies are chosen with equal tenden- 
cies, and similarly that all the public relations firms are chosen with equal tendencies.  
This view may be too simplistic, and additional attributes of  the ad agencies and public 
relations firms may be required for a bet ter  fitting model and a more complete under- 
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TABLE 3 

Models Fit to the 3-d W-array 

715 

Model Margins AG 2 ddf Tests 

~n P { Yijk=l } = 

~it(j) + Ok + 

i) + aik + @k t(j) [12][13][231 

2) + Ok t(j) [12][23] G2(2)-G2(1)-314.50 * 164 HO: all {aik}-O 

3) + aik [12][13] G2(3)-G2(1) = 1.47 i H0: all {~kt(J)}=0 

ADVERTISING 

PUBLIC RELATIONS 

~k t(j ) estimate 

k-O k-I 

t(j)-I 0 .093 

t(j)=2 0 -.093 

p<. 01 

standing of  the data. But we continue with the two subgroups on H to demonstrate 
fitting model (11) to the W-array defined in (10). 

Table 3 contains the models fit to the W-array formed from these data. The fit 
statistics are also listed and indicate that the expansiveness parameters are significant. 
(These estimates are highly correlated (r = .99) with the alpha estimates resulting from 
fitting (5) to the Y-array in the previous modeling.) The/3 estimates are not significant 
suggesting that ad agencies are no more or less attractive than public relations firms 
when a corporation makes the decision to support promotional campaigns. The /3 
parameters require only (T - 1) (C - 1) = (2 - 1) (2 - 1) = 1 degree of freedom; the 
2 × 2 table of  the parameter estimate is also given in Table 3. (There is no correlation 
between the two sets of beta estimates from the two different models, due to the 
presence of  little variation in the beta estimates in the second modeling (i.e., 1 df). 
When each ad agency is represented by the/~ they share because of the assumption of  
equivalence (.093 for t(j) = 1), and each public relation firm is represented by the/~ 
they share (- .093 for t(j) = 2), the correlation coefficient is .039.) 
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Multivariate Models 
In this section, (5) and (11) for the Y- and W-arrays are extended to allow for two 

or more (in general, R) relations to be measured on the same groups of actors. For  
example, we might observe the following ties between the corporations and the pro- 
motional agencies: corporation i in G hires agency j  in H,  corporation i pays agency j ,  
corporation i sends referrals to agency j ,  and so on. The first relation between actors i 
a n d j  is denoted by the subscript k I , where kt = 1, 2 . . . . .  Cl .  The remaining relations 
may be denoted by k 2 = l,  2, . . . , C 2, k 3 = 1, 2 . . . . .  C3, and so on. The Y- or 
W-arrays would be (2 + R)-dimensional; for R = 3, these are sizes 9 x h × C 1 x 
C 2 × C 3, and S × T x C l × C 2 × C3, respectively. The Y-array for three relations has 
elements: 

Yuk~k#, = I if actor i in G relates to actor j in H at strength k l 
on the first relation, k2 on the second, and k3 on the third; 

= 0 otherwise. (12) 

Model (5) can be extended to include parameters that reflect the associations 
among these different relational ties. One example is: 

In P{Y#k, k2k3 = 1} = A# + 0(l)k, + 0(2)k: + 0(3)k~ + a(1)ikl + a(2)ik2 + O~(3)ik3 

+ flO)jk~ + fll2)jk~ +/30)jk, + O02)k~k~ + 003)k~k~ + 0(23)k#~, (13) 

with constraints similar to those for (5). Model (13) contains an expansiveness param- 
eter (a) for each of the three relations, since the tendencies for actor i to hire, pay, or 
send referrals t o j  may differ. The three fl's represent the attractiveness parameters of 
the three different relational structures. The remaining three 0's are known as multi- 
plexity parameters (e.g., Fienberg et al. 1985), and are pairwise associations between 
the relations. 

The log linear model for (13) is the model that contains all two-way interactions: 
[12] [13] [14] [15] [23] [24] [25] [34] [35] [45]. Higher-order associations might also be fit. 
For  example, a parameter such as O023)k~k2k3 (with its sufficient statistic [345]) would 
suggest a three-way interaction among the three relational variables. A parameter such 
as Oik~ would suggest that the association among the first two relations (kl and k 2) 
varies depending on the actors i in G. 

We have been careful to choose three relations that all flow from actors in G to 
actors in H. I f  there were unidirectional relations that flowed in the opposite direction, 
such as promotional agency j in H sends a bill to corporation i in G, one of  two 
strategies may be followed. The first and simplest is to reword the relation with its 
passive form so that all relations flow in the same direction (e.g., corporation i in G 
receives a bill from agency j in H) .  Then, associative parameters between other rela- 
tions and the billing relation would simply be translated in the interpretation. For  
example, assuming payment  and billing are highly associated, the parameter could be 
interpreted as a multiplex relation: corporation i receives a bill and pays the bill to 
agency j ,  or as an exchange parameter with the two original directions of  the relational 
flows: agency j billed corporation i and in exchange, corporation i paid agency j .  Note 
that the meaning of  the a and /3 parameters would reverse, so that the a ' s  would 
represent the differential tendencies for actors in G in attracting bills, and the/3's would 
represent the differential tendencies for actors in H to send bills. 

The alternative to simply rewording the relations would be to create a one-mode 
network by concatenating the sets of actors in G and H. However,  the size of  the 
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Y-array will become even larger. A two-mode network for a single binary relation on 
these data would be of size 165 x 55 x 2. The comparable one-mode Y-array would be 
of size 220 x 220 x 2 x 2. The researcher should simply reword the relation or use the 
methods in Wasserman and Iacobucci (1989), to be discussed shortly. 

Multivariate models can be easily postulated and fit for as many unidirectional (in 
either direction) relations that are measured and whose simultaneous analysis is de- 
sired. The subgroupings of actors in G and/or H becomes even more useful in multi- 
variate models to keep the size of the contingency tables relatively small. The relations 
need not be substantively different relations, but alternatively, may be the same relation 
measured at different points in time, or some combination (e.g., Allison & Liker, 1982; 
Iacobucci & Wasserman, 1988). Thus, one may ask correlational questions, such as: 
are the ties on the first relation associated with the ties on the second relation?; or 
predictive questions such as" is the network structure on the relation at time 1 useful in 
predicting the network structure at time 2? (Wasserman, 1987; Wasserman & Ia- 
cobucci, 1988). 

One-Mode  and Two-Mode Ne tworks  Mode led  Simultaneously 

In Wasserman and Iacobucci (in press), models are described for the case where 
different relations are measured within G and within H, from G to H, and from H to G. 
For example, the two sets of within-group relations would form one-mode networks if 
studied in isolation (e.g., corporation i in G shares a board member with corporation i' 
in G, and agencyj  in H is represented at the same trade shows as agencyj '  in H). The 
between-group relations would form two-mode networks in isolation, and either may be 
modeled using the methods described here. In Wasserman and Iacobucci (1989), meth- 
ods are presented for the simultaneous modeling of these four mini-networks or some 
subset, since relations in one of the networks may indeed affect the practices in rela- 
tions of another sort. 

More  Than Two Groups o f  Actors  

A researcher might wish to extend the models in this paper to the case of three or 
more groups of actors, and the models desired would be appropriate for a k-partite 
directed graph, where the actors may be partitioned into k groups, G1, G2 . . . . .  Gk, 
and relational ties exist only between groups. When three or more groups are involved, 
the simplification from a one-mode, sparse sociomatrix to a two-mode sociomatrix is no 
longer possible. Relations from say G l to G 2 could be modeled separately from rela- 
tions from G2 to G 3 using methods described here, but to simultaneously model those 
sets of between-group relations requires building a matrix where the sets of actors are 
concatenated, so that both the rows and columns of the matrix represent all the actors 
( i , j  = 1, 2 . . . . .  g l ,  e l  + 1 ,g l  + 2 . . . . .  gl  + g2, etc.). 

Final Considerations 

We conclude with the discussion of the important assumption of dyadic indepen- 
dence. The assumption is made for mathematical convenience: it allows us to write the 
likelihood as a simple product of the probabilities of all dyads (or, the log likelihood as 
a simple additive function), greatly facilitating the estimation procedure. Specifically, 
the assumption requires that the probabilities of the social relations between any two 
actors i and j are independent of the probabilities of the social relations between any 
other two actors, q and z. When these actors are all distinct, the assumption of statis- 
tical independence is quite reasonable. For an example in a one-mode network, a 
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clinical psychologist studying patterns of dyadic interactions between husbands and 
wives (e.g., Gottman, 1979) would have a social network in which i = husband 1, j = 
wife 1, q = husband 2, z = wife 2, and so on, where no husband or wife interacts with 
any other membes in this sparse network. For an example in a two-mode network, if 
corporations i and i' in G were competitors, they would hire distinct advertising agen- 
c ies j  andj '  in H to prevent conflicts of interest, and it would be reasonable that these 
dyads were assumed to be statistically independent. 

For other applications (i.e., when the actors are not distinct), the assumption of 
dyadic independence is more questionable. For a one-mode network example, children 
i and j  liking each other might affect the probability that children i and q like each other. 
The plausibility of the assumption might even vary with networks. For example, we 
might assume that adults, unlike children, are capable of  choosing their friends without 
considering the balance of relations with other friends. For a two-mode network ex- 
ample, a corporation i in G with a finite budget for advertising, might hire agency j in 
H, which would likely affect how many other agencies in H that corporation i might 
hire. 

We also note that as g increases in a one-mode network (or g and/or h in a two- 
mode network), the assumption of independent dyads becomes more reasonable, for a 
fixed density (proportion of existant ties in the network). Conversely, for a fixed num- 
ber of actors, the assumption of independent dyads becomes more reasonable as the 
network becomes less dense, such as in the case of the marital interactions described 
above. 

Recently, researchers have begun investigating the properties of models such as 
the ones discussed here. In particular, Strauss and Ikeda (1988) investigate a pseudo- 
likelihood estimation procedure---a generalization of maximum likelihood using an ap- 
proximate likelihood function that does not assume dyadic independence for the stan- 
dard, one-mode network case. The theoretical foundations of their work is found in 
Frank and Strauss (1986). The pseudo-likelihood is written as a function of each data 
point x U, conditional on the remainder of the data, unlike the methods using the true 
likelihood (as in this paper) in which the modeling unit is the dyad Dij = (xij ,  xji), and 
not the components of the dyad. This conditioning enables the pseudolikelihood esti- 
mation procedure to model any interdependencies, and the assumption of indepen- 
dence is not needed. Their methods should also be applicable to this newer, two-mode 
network case. This application should be more straightforward because actors in H do 
not choose actors in G, so that dyads have fewer associations than in one-mode net- 
works. 

Strauss and Ikeda (1988) compared the performance of the standard maximum 
likelihood estimates (MLEs) to their maximum pseudolikelihood estimates (MPEs) in a 
simulation study, and in the analysis of the "l ike" relation measured on Sampson's 
monastery (Sampson, 1968). Under all conditions for which both MLEs and MPEs 
could be estimated, the two performed similarly. This comparison addresses the issue 
of  how well the maximum likelihood estimation of model parameters performs even 
under conditions where the assumption of dyadic independence is known to be vio- 
lated. Thus, this research suggests the assumption of dyadic independence might not be 
so restrictive--the simpler MLE methods can be used with less concern that violations 
of the assumption will greatly affect the nature of the results. Furthermore, the MLE 
and MPE parameter estimates were highly correlated in the reported analysis of the 
Sampson data. The main advantage in the use of MPEs is that there are conditions 
under which one can estimate the MPEs and not the MLEs. Thus, the MPE approach 
expands the applicability of the Pl and its relatives, such as P2. 
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