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CANONICAL ANALYSIS OF CONTINGENCY TABLES WITH LINEAR 
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A generalized least squares approach is presented for incorporating linear constraints on 
the standardized row and column scores obtained from a canonical analysis of a contingency 
table. The method is easy to implement and may simplify considerably the interpretation of a 
data matrix. The approach is compared to a restricted maximum likelihood procedure. 
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Canonical correspondence analysis (CCA) is a useful tool for obtaining a graphical 
representation of the dependence between the rows and columns of a contingency table 
(e.g., Benzecri et al.; 1980; Girl, 1981; Greenacre, 1984; Lebart, Morineau, & Warwick, 
1984; Nishisato, 1980). This representation is achieved by assigning scores in the form 
of coordinates to row and column categories. The interpretation of the multidimen- 
sional representation of the row and column categories may be greatly simplified if 
additional information about the row and column structure of the table is available. By 
incorporating this external information through linear constraints on the row and/or 
column scores, a representation of the data may be obtained that is not only more 
parsimonious but is also easier to understand. Recently, a restricted maximum likeli- 
hood (ML) strategy has been suggested for placing linear contrasts constraints on 
scores estimated in a canonical correlation or in an association model (Gilula & Hab- 
erman, 1986, 1988; Goodman, 1985). As discussed by Escoufier and Junca (1986), a 
constrained least squares approach may be more useful for exploring a contingency 
table. In this note, we present a noniterative least squares approach for incorporating 
linear constraints on the row and column scores. This method is easy to implement and 
is an extension of Rao's (1964) work on the estimation of restricted eigenvectors. In an 
illustrative analysis of a small data set, the least squares and the restricted maximum 
likelihood solution are compared. Related work on linear constraints is given in Nish- 
isato and Lawrence (1989), ter Braak (1988), Yanai (1988), Takane (1987), and Takane 
and Shibayama (in press). In particular, the latter reference provides a comprehensive 
framework for imposing linear constraints on data matrices. 

Canonical Correspondence Analysis with Lineara Constraints 

Consider an I x J contingency table P with proportions PO describing the joint 
distribution of two categorical random variables, X and Y, with I and J categories, 
respectively. Let D r and Dc be diagonal matrices containing the row and column sums 
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of P, respectively; that is, the diagonal elements of D r a r e  Pi.  = ~ ' J  ~/'= 1 P0", and the 
diagonal elements of D c are p. j  = ~,[=i Pij.  In a canonical analysis, elements of the 
matrix P are represented as 

t M-1 t Pij = Pi.P.j  1 + ~ P m  Xim Yjm , (1) 
m = l  

where M is min (/, J)  and Pl >- P2 >- " " " >- PM-1 >-" O. Moreover, for I -< m - m' - 
M - 1  

J I 

E PdYjm = E Pi. Xim = O, 
j = l  i=l 

and 

J I 
E P.jYjmYjm' = Z Pi. Xim Xim' = ~mm', 

j = l  i=1 

where 6mm' is the Kronecker delta. The parameters Xim and Yjm a r e  standardized row 
and column scores, respectively, and the parameter Pm is the canonical correlation 
between these scores. Goodman (1985) presented an iterative maximum likelihood 
estimation procedure for determining the parameters of (1). 

Alternatively, least squares estimates can be obtained by first calculating the P 
matrix of proportions under the assumption of independence as E = Drl l 'Dc (where 
1 is a unit vector), and then computing a singular value decomposition (SVD) of the 
matrix Z, 

Z = D r l / 2 ( P -  E ) D c  1/2 = U D a V  ' ,  (2) 

where U'U = I = V'V, and D~ is a diagonal matrix with singular values A in descending 
order. Standardized row scores and column scores may be computed as 

X = D71/2U, and Y = Dcl/Ev, (3) 

yielding X'DrX = I = Y'DcY, and I'DrX = 0 = l'DcY (e.g., van der Heijden, de 
Falguerolles, & de Leeuw, 1989). 

Using a restricted maximum likelihood approach, Gilula and Haberman (1986, 
1988) extended Goodman's canonical correlation model by introducing linear con- 
straints on the canonical row and column scores. These constraints take on the form 

I 

E giam Xim = 0, 
i=l 

and 

where 

J 

E =0, 
j=l 

1 J 
E giom= Z hi,,,=o. 
i=1 j = l  
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For  each m, the a contrast  vectors of  the row scores, 9iam, and the b contrast  vectors 
of  the column scores, hjbm, are linearly independent.  Similarly to the unrestricted case, 
a least squares approach can be developed which is noniterative. This procedure  is 
based on a straightforward extension of  Rao 's  (1964) work on estimating linearly re- 
stricted eigenvectors.  Linear  row and column constraints are defined as 

G ' X * = 0  and H ' Y * = 0 ,  (4) 

where G is a I x K matrix of  rank K and H is a J × L matrix of  rank L. The constrained 
standardized row and column scores are denoted by X* and Y*, respectively. These 
scores are computed from the singular value decomposit ion of  

{I - D r V2G(G'Dr 1G) - IG 'D 71/2}Z{I - Dc V2H(H'Dc 1H)- 1H'D~- 1/2} = MD,7 B',  (5) 

with M 'M = I = B'B, and Dn is a diagonal matrix with singular values ~ in descending 
order.  The standardized constrained scores are given by X* = Dr l /2M and Y* = 
Dcl/2B with X*'DrX* = I = Y*'DcY* and I 'DrX* = 0 = I 'DcY*. It can be shown that 
(5) is equivalent to (2) in the unrestricted case by setting G = Drl  and H = D¢ 1. These 
constraints ensure that the weighted average of  the row and column scores equal zero. 
Although this procedure imposes the constraint defined by (4) on each singular vector,  
we may use a successive approach to define different constraints on each singular 
vector.  For  example, it may be useful to impose uniform spacing on the scores of  the 
first singular vector  but equality constraints on the scores of  the second singular vector.  
Different constraints can be introduced by extracting the standardized row and column 
scores corresponding to the first singular value r h and computing the rank-one reduced 
matrix Zt as 

Z 1 = (I - mlm~)Z(I - blb~), 

where m 1 and bl are the singular vectors corresponding to r h . In the next  step, we 
substitute Z 1 for Z in (5) and, in addition to the new constraints, we augment the 
matrices G and H in (4) by D1/2ml and Dcl/2hl, respectively. These additional con- 
straints ensure that the relationships, X*'DrX* = I = Y*'DcY*, are satisfied. We may 
extract  further singular values subject to certain constraints by following this succes- 
sive procedure.  

Finally, similar results can be derived for the association model. Both Escoufier  
(1988) and Gilula (1982) present  an approach to transform a contingency table such that 
its structure conforms to the association model. Linearly constrained row and column 
scores of  the transformed table may be obtained by applying the methods discussed 
above.  

Application 

To illustrate the approach, we analyze a 9 x 3 table (Table 1) from Haberman 
(1979, p. 399). The nine rows of  this table are a result of  a 3 × 3 cross-classification of  
religion and years of  education, while the column variable describes attitudes towards 
nontherapeutic abortion. Gilula and Haberman (1988) analyzed this small data set using 
their restricted maximum likelihood approach. 

An unrestricted CA yields the singular values At = 0.2769 and A2 = 0.0653. 
Clearly, a one-dimensional solution is sufficient for  representing this table. In Table 2, 
the rows and column scores obtained from (2) are presented.  In their analysis, Gilula 
and Haberman (1988) noted that given religion, the scores appear to be approximately 
linear in the three educational levels. Moreover ,  the linear spacing seems to be similar 
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TABLE 1 

Attitudes Towards Nontherapeutio Abortion 

classified by Religion and Education of Respondents 

A t t i t u d e  

Religion Education (Years) Positive Neutral Negative 

N. Protestants <8 49 46 115 

9-12 293 140 277 

~13 244 66 100 

S. Protestants <8 27 34 117 

9-12 134 98 167 

213 138 38 73 

Cathol ic  _<8 25 40 88 

9-12 172 103 312 

Z13 93 57 135 

for the North  and South Protestant  groups, but different for the Catholic group, Thus,  
a constrained solution was computed by setting H = Dcl  and G = ( D r l I G  ]) with 

/ 1 - 2 1 0  0 0 0 0 0 ~  

0 0 0 1 - 2  1 0 0 
G i =  

0 0 0 0 0 0 1 - 2  

1 - 1  0 - 1  1 0 0 0 

While the first three rows of  Gi ensure the linear spacing of  the standardized row 
scores,  the last row restricts the spacing to be the same for both Protestant  groups. The 
standardized column and row scores corresponding to the first singular value of  the 
unrestr icted and restricted SVD are presented in Table 2. The scores indicate only 
subtle differences between the two solutions. Using equally-spaced coefficients for  the 
rows, we can account  for  most  of  the variations in the residuals. The singular values 
obtained from the restricted SVD are r/] = 0.2759 and 72 = 0.0252. Moreover ,  the row 
and column scores agree closely with the row and column scores obtained by Gilula and 
Haberman ' s  restricted ML solution presented in the last column of  Table 2. 
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TABLE 2 

Column and Row Scores of SVD Decomposition of Table 1 

637 

a) Row Scores Corresponding to 41 

Singular Value Decomposition 

Unconstrained Constrained Constrained (ML) 

-1.033 -1.121 -1.110 

+0.349 +0.338 +0.342 

+1.724 ~I.797 +I.794 

-1.749 -1.620 -1.624 

-0.154 -0.161 -0.172 

+1.378 +1.299 +1.280 

-1.495 -1.299 -1.349 

-0.655 -0.764 -0.764 

-0.334 -0.228 -0.180 

b) Column Scores Corresponding to 41 

Singular Value Decomposition 

Unconstrained Constrained Constrained (ML) 

+1.271 +1.269 +1.274 

-0.309 -0.296 -0.324 

-0.940 -0.944 -0.935 

Discussion 

Introducing linear constraints on the row and column coordinates of a CA repre- 
sentation is useful in a variety of applications. For example, a CA of paired comparison 
data (Nishisato, 1980) may be easier to understand by imposing row constraints that 
contain external information about the choice alternatives. Other important applica- 
tions where external information is available are, for example, the analysis of confusion 
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or transition matrices (van der Heijden, & de Leeuw, 1985). The implementation of 
linear constraints is both straightforward and may greatly simplify the interpretation of 
the data matrix. Moreover, the possibility of imposing different constraints for each 
singular value may be useful in developing a parsimonious representation of a fre- 
quency table. 

In the exemplary application, the scores derived from the SVD and the restricted 
ML procedure agreed closely. This result is not too surprising when considering the low 
dimensionality of the solutions. Although a statistical modeling approach can rigorously 
address certain questions, for instance, the dimensionality of the dependence or good- 
ness-of-fit, there are certain advantages in utilizing a least squares approach that are 
discussed in detail by Gilula (1982). For example, the estimates obtained from the SVD 
are consistent estimates and when used as starting values in an iterative ML estimation 
procedure, the least squares estimates lead to convergence of the ML procedure with 
probability 1 (see Goodman, 1974). A more important advantage of  the least squares 
approach is that canonical correspondence analysis is generally performed on large data 
tables. Clearly, an iterative maximum likelihood approach for estimating row and col- 
umn scores may be quite costly and possibly infeasible if a large number of  constraints 
are incorporated. In contrast, the SVD is numerically very stable and does not require 
any iterations. Thus, particularly in large scale applications with sparse matrices and 
matrices with some low cell frequencies, the least squares approach with linear con- 
straints provides an attractive alternative to the restricted ML approach. 
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