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Given known item parameters, the bootstrap method can be used to determine the statis- 
ileal accuracy of ability estimates in item response theory. Through a Monte Carlo study, the 
method is evaluated as a way of approximating the standard error and confidence limits for the 
maximum likelihood estimate of the ability parameter, and compared to the use of the theo- 
retical standard error and confidence limits developed by Lord. At least for short tests, the 
bootstrap method yielded better estimates than the corresponding theoretical values. 
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Introduction 

This paper addresses the use of the bootstrap method for assessing the accuracy of 
ability estimates in item response models, with an emphasis on estimating standard 
error and confidence limits. In earlier work, Lord (1983) derived theoretical formulas 
for estimating the standard error of ability estimates assuming items were fixed and 
their parameters known. Because the bootstrap method requires resampling of item 
responses from some estimated sampling populations, a distinction should be made 
between sampling responses from n fixed items and from a random sample of items. In 
this paper, the distinction between item selection procedures and its effect on the 
resampling techniques will be developed in detail, followed by examples of applying the 
resampling techniques to estimating standard error and confidence limits for maximum 
likelihood (ML) estimates of ability parameters assuming all item parameters are 
known. Through a Monte Carlo study, the results obtained from the bootstrap approach 
are compared to the use of the approximate formulas developed by Lord. 

The Bootstrap Method 

We begin by considering the bootstrap method within a framework of simple 
random samples, and discuss a generalization to nonidentically distributed samples in 
the next section. Explicitly, let x be a random vector containing n observations from an 
unknown probability distribution F, 

x ' ~  ( x l ,  x2 . . . . .  xn) - F,  
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and let 6- be a statistic based on x that estimates the true value of tr in the population. 
Our main concern is with the sampling error of b as an estimate of tr, and the con- 
struction of approximate confidence limits around the unknown o-. As notation, we let 
P denote an estimate o fF ,  x* a bootstrap random sample drawn with replacement from 
#, and b* a bootstrap random variable calculated on the basis of x*. If P is a close 
approximation to F, the sampling distribution of 6" can be estimated through the re- 
peated random sampling of x* and the recalculation of 6-*. Thus, the Monte Carlo 
algorithm leading to bootstrap estimates proceeds in three steps: (i) estimation of the 
probability model F from the observed data x, producing #; (ii) construction of boot- 
strap random samples x~, x~ . . . . .  x~ from P according to the sampling rule by which 
the empirical x is drawn from F; and (iii) assessment of the accuracy of b based on the 
observations b*. 

The crucial step for the bootstrap method obviously lies in an estimation of the 
unknown F (Chao, 1984; Efron & Tibshiran, 1986). The mechanism originally proposed 
by Efron (1979) is very general and merely uses the empirical distribution of the data as 
an estimate of F, that is, 

1 
F: probability mass - on xt ,  x2 . . . . .  xn. (1) 

n 

It can be shown that # is a nonparametric ML estimate of F, in the sense that if a 
random sample of size n is drawn from P with replacement, the likelihood of observing 
a sample vector that will exactly match the empirical x is at a maximum. If a more 
specific model for F is assumed, other estimation strategies may be more appropriate. 
For instance, if F is assumed normal, it can be estimated with a normal distribution 
having the same mean and variance as the sample data (Efron & Tibshiran). 

After the estimate i ¢ is available, the B bootstrap random samples can be drawn, 
and the bootstrap random variables b'* constructed. A bootstrap estimate of standard 
error is simply the sample standard deviation of the b*, 

(6-I-6-t.))2 , 

= 1  

SE (6-*) = B ~  1 " ' (2) 

where 

2 6 - 7  
6-t) = 8 

A confidence interval for or can be obtained through the percentile method (Efron, 
1981a, I982). Explicitly, if 

Cdf (tr0) = Prob (6--* -< or0) 

is the cumulative distribution function of the bootstrap distribution of 6-*, the 1 - a 
confidence limits (o" 1 , o- 2) are 

trl = Cdf -1 (1/2a) and tr 2 = Cdf -1 (I - 1/2a), (3) 

or equivalently, the 100.1/2a and 100-(1 - 1/2a) percentile points in the bootstrap 
distribution. The bootstrap sample size B is arbitrary, but we do note that values as 
small as 250 have been shown to generate reasonably accurate confidence intervals 
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(assuming b is approximately normally distributed; see Efron, 1984), and even smaller 
values may be sufficient for obtaining good estimates of the standard error. The reader 
is referred to Efron (1984, section 8) for a detailed discussion of the choice of bootstrap 
sample size. 

The Statistical Accuracy of Ability Estimates 

The 3-parameter (3P) logistic model posits that the distribution of the random 
observation ui, representing a zero or one response to item i, has the form: 

1 - -  C i 
Pi(ui = llo) = c, + (4) 

1 + exp {-1.7ai(O - bi) } 

(Lord, 1980) where 0 denotes the true ability value, and ai, bi, and ci are known item 
parameters. Given n items, the log likelihood (L0) for the response vector can be 
written as 

n 

Lo = log 1-[ pu, Q ] - . , ,  
i=1 

where Qi =-- 1 - Pi. The ML estimate, 0, is obtained by maximizing L 0 and typically by 
solving for 0 through some iterative method on the basis of the likelihood equation: 

n 

LI =-- OLo ~, (ui - Pi)P[ 
= 0 

__ O0 i= 1 P!Qi 
(5) 

(Lord, 1983) where P~ is the first derivative of e i  with respect to 0. 

Theoretical Analysis o f  0 

Under regularity conditions and in a neighborhood of 0, the likelihood equation can 
be expanded into a Taylor series: 

(0 - 0 )  2 ( 0  - 0 )  ~ 
0 = L1 + (0 - O ) L 2  + - -  L 3  + - -  L 4  + "  • ", 

2 6 

where by definition 

Ok 
Lk = ~ log p~iQ/l-u,10 (k = 1, 2 . . . .  ), 

i=1 

and 0 in the equation is evaluated at its true value. For simplification, the symbol y is 
used to denote (0 - 0), and the Taylor series rewritten as 

y2 y3 
-L1  = yL2 + -~ L3 + -~ L4 + " " • 

= y { L 2  + Y  y2 } ~L3 +-~-L4 + . . .  

y{~(y)}, 
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where ~ y )  denotes a series in powers of y. By Lagrange's formula (Miller, 1960), the 
series can be inverted as follows: 

n a ( k -  l) 

= - L l  + ~ (--Ll)kOy(k_l) 
k=2 y=O 

+ . . .  

- L ,  L~L3 L~(3L 2 -  LzL4) 

L2 2L 3 6Lz 5 
~-..- (6) 

Following Lord (1983), we define 

I 1 
sk =- -- E(Lk) and 3'~ =- - [Lk - E(Lk)], 

n n 

and note that 

L2 =(Sz +3~2) - k =  s2 1 + 

According to the 3P logistic model, E(ui) = Pi, and therefore, sl = 0. I f y  is replaced 
by (0 - 0), the inverted function in (6) becomes 

(0 - O)= -Y l  s2 z + s2 3 . . . .  2 s2 2 + " "  

. . . . .  Y~{3(s3 + Y3)Z- ( s2  + Y2)(s4 + Y4)} ( ) 5 + . . .  (7) 

If item responses are independent of each other and the Pi are all bounded away from 
0 and 1, Yk is simply the mean of n independent and finite random variables, and thus, 
by the general version of the Central Limit Theorem, (n)l/2y k is asymptotically nor- 
mally distributed with zero mean and finite variance. Therefore, E(Yk) is of order n-1/2. 

The expansion in (7) leads to the following asymptotic expectations: 

E( O - O ) -  s----~2 2 s----~2 + o , 

and 

E ( O - O )  2= s--~z + °  . 

Lord (1983) derived the same asymptotic expectations with the procedure called "ad- 
justed order of magnitude" (Shenton & Bowman, 1977) which relies on a normal 
approximation of 0. With the local independence assumption, the first-order error vari- 
ance can be reduced further to 
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- ~ - -  = + o . ( 8 )  E(0 0) 2 + o 

In practice, b may be substituted for the unknown 0 in (8) to estimate the standard error. 
We do note, however, that these asymptotic expectations are valid only if b is in a 
neighborhood of 0 (e.g., when the bias in b is small). 

The likelihood equation in (5) is the sum of the independent random variables, 
I" i = (u i - P i ) P ~ / P i Q  i (i = 1 . . . . .  n).  By a more general version of the Central Limit 
Theorem, L1 is approximately normal with mean zero and finite variance, ~-2(0) = 
E(•i  1-'2) = ]~i (P~Z/PiQi)" It follows from the properties of the normal distribution that 
an asymptotic confidence interval with confidence coefficient 1 - a can be obtained for 
LI :  

Prob {z0/2~)~-(0) -< L1 -< -z(V2~) 'r(  O)} = I - a ,  

where z 0/2'0 is the 100"I/2a percentile point of a standard normal variate. Assuming that 
the function L1 is one-to-one (which is always true for the Rasch and the two-parameter 
logistic models) and that the sample size n is sufficiently large, the statement that L 1 lies 
in the interval +z (1/2~) 7(0) is equivalent to 0 itself lying in the interval (01, 02) , where 01 
and 02 are the roots of the equations L 1 = +-z(1/2a)~(O) (Lloyd, 1984). Given a response 
vector u = (ul . . . . .  Un), for instance, the 95% confidence limits satisfy 

i ~Q-~i = ± 1.96 . ~ /  (9) 

Alternatively, if we are willing to make an assumption that b is asymptotically normally 
distributed (Bradley & Gart, 1962; Lord, 1983) with mean zero and variance 1/72(0), the 
approximate 95% confidence limits (Lloyd, 1984, p. 303) for 0 are simply 

b -- 2{'r(0)} -1. (I0) 

The computation of standard error and confidence limits for b can be illustrated by 
considering a sample test with twenty items whose a, b, and c parameters have average 
values of  0.976, -0.197,  and 0.I37, respectively. With the response vector 
(11111011101011101101), for instance, the three functions, L 1, + 1.96~(0), and - 1.96r(0) 
in (9) are plotted in Figure 1 for different 0 values. In this Figure, the function L 1 is 
plotted with the solid line and has a zero value at 0 = 1.62, which is also the ML 
estimate of 0. The function Ll  intersects the dashed curves for the two functions 
--- 1.967(0) at the points (0.36, 2.61), which are approximately the 95% confidence limits 
for 0. The first-order standard error has an estimate 0.47, computed by substituting b 
into (8). If  we rely on the normal approximation of 0, the central 95% confidence 
derived from (10) yields an interval (0.68, 2.57). 

B o o t s t r a p  A n a l y s i s  o f  0 

If  the true values of  P i  are all known, we can resample each bootstrap response 
from the corresponding Pi  for i = 1 . . . . .  n. For instance, an item score u* is simulated 
by first generating a random number from a uniform distribution, and then assigning a 

* if the random number is less than or equal to P i ,  and a score 0 otherwise. score 1 to ui 
After observing all the u*, we then evaluate 0". This resampling procedure is designed 
primarily to simulate an examinee's  random responses to the fixed n items. The re- 
sampling process is repeated until B bootstrap random variables, b~ ( j  = 1 . . . . .  B), are 
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observed, and the bootstrap estimates of standard error and confidence limits can then 
be calculated based on (2) and (3), respectively. The Pi, however, can never be known 
exactly and must be estimated from the empirical data. In this study, we suggest 
substituting the ML estimate, 0, for 0 in (4) to estimate ei" The obtained estimates, Pi, 
have the desirable property that, if we repeat the random sampling of u* from the 
P i  (i = 1 . . . . .  n) ,  the likelihood of observing a bootstrap response vector identical to 
the empirical u is at a maximum. 

An obvious question arises regarding the alternative mechanism specified in (1) for 
obtaining the bootstrap random samples. In other words, we can place the probability 
mass 1/n on u l ,  u2 . . . . .  u n and resample n item scores along with the corresponding 
item parameters from the empirical distribution to evaluate the bootstrap random vari- 
able 0". In fact, the sources of sampling error involved in b can be viewed from two 
independent perspectives--an examinee's random responses on the fixed n items and 
random selection of the n items from a population of items. In the literature, the 
standard error of b is typically considered for n fixed items (Lord, 1983), and we have 
implicitly assumed so. If we apply the random mechanism specified in (1) to ui ,  the 
random error involved in 0* will primarily reflect the sampling of items. If the re- 
searcher wishes to incorporate variability in 0 due to the random choice of n items, we 
propose the use of two-stage sampling to obtain an estimate of the standard error of 0. 
Given that the n items are randomly selected from the population of items, we take 
advantage of the random mechanism proposed by Efron (1979) to approximate the 
unknown sampling population ~ with the nonparametric ML estimate, 3 ,  that is, 

1 
~: probability mass - on PI ,  P2 . . . . .  f i n ,  

n 

where the e i  are estimates of the Pi" First of all, we randomly select a bootstrap 
sample, A, ei, of size n from ~ with replacement (the i-th item is selected, for instance, if 
the integer of R n  + 1 is equal to i, where R is a random number from a uniform 
distribution). This procedure is designed to simulate the sampling of n items from a 
population of items. Second, we resample u* from the corresponding P*, for i = 1 . . . . .  
n, to simulate an examinee's random responses on the n random items. Based on u*, 0* 
is evaluated, and the two-stage sampling is repeated until B bootstrap random variables 
are observed. The bootstrap standard error is then computed with (2). 

We consider the sample items used previously as an example, and substitute b = 
1.62 along with the item parameters into (4). A vector of P i  can be obtained as (.998, 
.997, .827, .852, .995, .388, .999, .711, .999, .779, .999, .419, .830, .985, .935, .432, .525, 
.282, .807, .960). To simulate the bootstrap item responses, uniformly distributed ran- 

* (the random dom numbers are generated and compared with t h e / 5  i to assign the u i 

numbers were generated by IMSL subroutine RNUN; International Mathematical and 
Statistical Libraries, 1987). A histogram of 1,000 bootstrap 0* values is shown in Figure 
2 by a solid line. The 1,000 bootstrap random variables have a sample standard devi- 
ation of 0.50, which is an estimate of the standard error of 0. The 2.5th and 97.5th 
percentile points in the distribution are, respectively, 0.84 and 2.78, which are also the 
95% confidence limits for 0. In Figure 2, the dashed histogram is the distribution of 
1,000 bootstrap 0* values based on the method of two-stage sampling. The 0* values 
from the two-stage sampling yield a sample standard deviation 0.52 that is virtually 
identical to 0.50. Therefore, random selection of 20 items from the population of items 
seems to have little effect on the estimation of the underlying true ability. 
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TABLE 1 

The Averages and Standard Errors of ML Ab i l i t y  
Estimates (T r i a l s  = 500) 

63 

20--Item 40-Item 60--Item 

e Ave(g) SE(~) Ave(g) SE(~) Ave(g) SE(~) 

2.50 2.464 0,448 2.626 0.476 2.583 0.433 

2.00 2.039 0.467 2.046 0.367 2.026 0.286 

1.50 1.492 0,426 1.515 0.308 1.518 0.255 

1.00 1.016 0.447 1.018 0.324 0.995 0.256 

0.50 0.525 0.534 0.506 0.320 0.511 0,267 

0.00 -0 .056  0.622 -0 .005  0.338 -0 .020 0.266 

-0 .50  -0 .519  0.611 -0 .562 0.426 -0 .534  0.344 

-1 .00  -0 .988  0.740 -1 .026  0.508 -1 .052 0.414 

-1 .50  -1 .523  1.280 -1 .520  0.622 -1 .503  0.460 

-2 .00  -2 .282 2.475 -2.011 0.725 -2 .022 0.508 

-2 .50  -3 .044  3.209 -2 .629 1.783 -2 .530 0,610 

Simulation Study 

To evaluate the bootstrap estimates of standard error and confidence limits, a 
simulation study was conducted by assuming the 3P logistic model. Three hypothetical 
tests containing 20, 40, and 60 items were designed to approximate the item parameters 
in the College Entrance Examination Board's Scholastic Aptitude Test, Verbal Section 
(see Lord, 1983, p. 238). The 20- and 40-item tests comprise items 1-20 and 1-40, 
respectively, of the 60-item test. For a given 0, each item response in u was generated 
from the corresponding P i  (i  = 1 . . . . .  n ) .  An item score u i was simulated by first 
generating a random number from a uniform distribution with the IMSL subroutine 
RNUN, and then assigning a score l to u i if the random number was less than or equal 
to P i ,  and a score 0 otherwise. The ML estimate 0 was found by solving (5) with 
Newton's method, with a convergence criterion of 0.1 percent change in 0. A simulated 
perfect score or zero score was eliminated from the evaluation, resulting in a truncation 
of the sampling distribution of 0. The averages (Ave) and standard errors (SE) of 0 over 
500 simulation trials for selected ability levels are contained in Table 1. Because the 
simulated items provide little information at the lower end of the ability scale, the 
standard errors of ML ability estimates tend to be large for the low ability levels 
especially for the 20-item test. 

By assuming the same item parameters, item responses were independently sim- 
ulated, and 0 estimated by the ML procedure. The observed first-order error variance 
was calculated by substituting 0 for 0 in (8). One computational problem with the 
first-order error variance involves r2(0) in the denominator of (8), which cannot be 
close to zero, because otherwise, the standard error estimate would become extremely 
large. The simulation restricted the ability estimates within the range of (-5.0,  5.0), 
resulting in a further truncation of the sampling distribution of 0 especially for the 
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TABLE 2 

The Theoretical Standard Errors and Empirical Sizes of 
the Theoretical Confidence Limits for ML 

Abi l i ty Estimates (Trials = 500) 

20--1tern 40--Item 80--Item 

e SE,(~) ~ SE=(~) • SE=(~) 

2.50 0.602 0 .94(0 .98)  0.497 0 .97(0 .99)  0.404 0.96(0.97)  

2.00 0.481 0 .96(0 .98)  0.359 0 .94(0 .97)  0.287 0.95(0.97)  

1.50 0.440 0 .95(0 .96)  0.302 0 .94(0.96)  0.257 0.95(0.95)  

1.00 0.452 0 ,95(0 .96)  0.304 0 .95(0 .97)  0.254 0.95(0.95)  

0.50 0,498 0 .94(0 .96)  0.315 0 .95(0.95)  0.258 0.93(0.94)  

0.00 0.586 0 .94(0,94)  0.340 0 .95(0 .97)  0.278 0.95(0.95)  

-0 .50  0.654 0 .96(0 .95)  0,420 0 .95(0.95)  0.339 0,94(0.94)  

-1 .00  0.721 0 .96(0 ,92)  0.513 0 .95(0.93)  0.412 0.95(0.94)  

-1 .50  0.815 0 .95(0.95)  0.570 0.95(0,92)  0.467 0.95(0.94)  

-2 .00  0.914 0 .95(0 ,94)  0,662 0 .95(0,95)  0.510 0.95(0.96)  

-2 .50  1.070 0 .96(0,95)  0.830 0 .95(0.97)  0.568 0.96(0.97)  

Note. The values in parentheses are the empirical sizes of  the 

confidence Intervals  computed from (10).  

simulated ability at the lower end. The average of the first-order error variances over 
500 simulation trials was computed. The symbol SE1 (0) in Table 2 denotes the square 
root of the average value. In each trial, the 95% confidence limits were found by both 
(9) and (10), and the solutions for 01 and 02 in (9) were also found by Newton's method. 
Because the two solutions might not be unique, the numerical program selected the two 
solutions that were right above and below b as the confidence limits. Given a true value 
of 0, the proportion of trials in which the range of the confidence limits contains 0 is 
reported in Table 2. For convenience, the value of the proportion is referred to as the 
empirical size of the confidence interval, and 95% as its nominal size. 

In general, the first-order standard error is quite close to the actual standard error 
in Table I for the 60-item test. For shorter tests of 20 or 40 items, the theoretical 
estimator tends to underestimate the true sampling error for the lower ability levels. 
The empirical size of the confidence interval computed from (9) is quite close to its 
nominal size except for a few ability levels at the upper tail. The empirical size of the 
confidence interval calculated on the basis of normal approximation of 0, on the other 
hand, tends to be larger than its nominal size. 

From the known Pi  (i = 1 . . . . .  n), an empirical response vector was indepen- 
dently and randomly generated for evaluating the bootstrap estimators. The b value was 
also restricted within the range of (-5.0, 5.0). The/6 i were computed by substituting b 
for 0 in (2), and the bootstrap sample u* generated from the Pi for calculating the by. For 
a given 0, the bootstrap sampling was repeated 1,000 times (B = 1,000). Based on the 
1,000 bootstrap samples, the bootstrap error variance and 95% confidence limits were 
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TABLE 3 

The Bootstrap Standard Errors  and Empir ical  Sizes o f  the 
Pe rcen t i l e  Confidence L imi ts  f o r  HL A b i l i t y  

Est imates ( T r i a l s  = 500) 

65 

20--Item 40-ltem 60--Item 

e $E(~*) g SE(~*) • SE(~*) 

2.50 0.436(0.461) 0.98 0.443(0.455) 0.92 0.421(0.425) 0.92 

2.00 0.455(0.476) 0.95 0.383(0.395) 0.94 0.318(0.331) 0.95 

1.50 0.458(0.485) 0.95 0,323(0.339) 0.94 0.267(0.274) 0.95 

1.00 0.486(0.512) 0.94 0.310(0.324) 0.95 0.257(0.263) 0.94 

0.50 0.535(0.700) 0.94 0.326(0.335) 0.95 0.263(0.268) 0.94 

0.00 0.626(0.954) 0.95 0.366(0.390) 0.95 0.292(0.296) 0.94 

-0 .50 0.902(1.555) 0.95 0.466(0.548) 0.94 0.352(0.358) 0.95 

-1 .00 1.365(2.243) 0,94 0.577(0.917) 0.96 0.418(0.443) 0.96 

-1 .50 1.932(3.335) 0.94 0.935(1,480) 0.96 0.526(0.660) 0,95 

-2 .00 3.031(4.377) 0.93 1.630(2.444) 0.95 0.749(1.059) 0.94 

-2 .50 4.359(5.478) 0.95 2.826(3.719) 0.94 1.399(1.745) 0.95 

Note. The values in parentheses are standard e r ro r s  based on two-stage 

sampl i ng. 

computed with (2) and (3), respectively. The bootstrap scheme--model estimation, 
random sampling--was repeated with 500 simulation trials, and the average bootstrap 
error variance and the empirical size of the percentile confidence interval were com- 
puted for the 500 simulation trials. The square root of the average variance and the 
empirical size of the confidence interval are contained in Table 3. 

The bootstrap standard error seems to overestimate the true sampling error 
throughout the simulation conditions. The bootstrap estimator, however, performs 
collectively better than the theoretical estimator especially for the 20-item test. This 
finding is consistent with earlier findings of Wainer and Wright (1980) who used another 
resampling scheme--a modified jackknife to correct guessing distortion in Rasch ability 
estimates and found that the resampling technique worked well for short tests of  I0 or 
20 items. The empirical size of the percentile confidence interval is also close to its 
nominal size except for a few ability levels at the upper tail. The standard errors based 
on two-stage sampling are listed in Table 3 and suggest that the ability estimates at the 
lower end are more likely affected by random selection of  items when the test contains 
only 20 items. 

Discussion 

The validity of the first-order standard error in (8) is guaranteed by the Central 
Limit Theorem. Both the bootstrap and first-order standard errors rely on rationales 
independent of the usual assumption that b is normally distributed (Lord, 1983). If the 
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true 0 value is known, the bootstrap method with a sufficiently large number of boot- 
strap samples will yield a standard error that is exact. Under the same condition, the 
first-order standard error will still approximate the true standard error due to the trun- 
cation of higher degree terms in the Taylor series. In application, if bias in b is negli- 
gible, the /6  i will yield the same information as its underlying true model, Pi. Therefore, 
both the bootstrap method and the Taylor series method need the same assumption that 

is in a neighborhood of 0 (Efron, 1981b, 1982; Parr, 1983). When this is violated, the 
simulation study suggests that the bootstrap method yields more accurate results than 
the theoretical estimator, which is a promising finding for circumstances where test 
length cannot be increased sensibly. The computation of the first-order standard error 
is much simpler than the resampling method, and, therefore, its use is still recom- 
mended for tests of reasonable length (e.g., 40 items). The simulation results also 
suggest that the percentile confidence interval computed from 1,000 bootstrap samples 
is equally useful as the theoretical confidence interval based on (9). Although validity 
of the theoretical confidence interval is guaranteed by the Central Limit Theorem, the 
assumption that the function L1 is one-to-one should be noted, because it can be 
violated when a test has a short length or item responses are seriously distorted by 
guessing. It would be useful to plot the three functions L1 and +-1.96-r(0) against 0 
before deciding on the confidence limits, 01 and 02. 

In the framework so far outlined, individual ability is estimated with predetermined 
item parameters as in item banking and tailored testing. By knowing item parameters, 
the theoretical formulas and the bootstrap method suggest two competitive solutions 
for assessing the statistical accuracy of 0. Perhaps a potential use of the bootstrap 
method lies in the circumstance where the theoretical formulas are rather complicated 
to derive. With the bootstrap method, for instance, error resulting from random selec- 
tion of n items for measuring ability can possibly be evaluated by including the item 
population, ~.  Another useful example would be in estimating the standard error of b 
when item parameters are jointly estimated by the ML procedure. Furthermore, a 
practitioner might be more interested in the consequence of violation of the logistic 
model to estimation of ability. In that case, the response process proposed by Tucker, 
Humphreys, and Roznowski (1986) suggests a more realistic sampling procedure for 
simulating the bootstrap random sample u*. With more complicated problems, how- 
ever, the validity of using the bootstrap method needs to be tested further. 
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