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A GENERALIZED FAMILY OF COEFFICIENTS OF RELATIONAL 
AGREEMENT FOR NUMERICAL SCALES 
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A family of coefficients of relational agreement for numerical scales is proposed. The 
theory is a generalization to multiple judges of the Zegers and ten Berge theory of association 
coefficients for two variables and is based on the premise that the choice of a coefficient depends 
on the scale type of the variables, defined by the class of admissible transformations. Coeffi- 
cients of relational agreement that denote agreement with respect to empirically meaningful 
relationships are derived for absolute, ratio, interval, and additive scales. The proposed theory 
is compared to intraclass correlation, and it is shown that the coefficient of additivity is identical 
to one measure of intraclass correlation. 

Key words: agreement coefficient, meaningfulness theory, scale type, intraclass correlation. 

Zegers and ten Berge (1985) proposed a general formula for bivariate association 
coefficients for metric scales, and Zegers (1986) proposed a chance-corrected version of 
the general formula. Their theory was based on the premise that the choice of an 
association coefficient between two variables depends on the scale type of the vari- 
ables, defined by the class of admissible transfomations. Stine (1989a) extended the 
Zegers-ten Berge theory to several additional scales not considered by Zegers and ten 
Berge, and shifted the focus from "association" between two variables to "relational 
agreement" between observers. Stine (1989a) also demonstrated the utility of concepts 
of meaningfulness in assessing interobserver agreement. 

The Zegers-ten Berge theory as well as the extended theory of Stine (1989a) deals 
with association or agreement between only two variables or observers. This paper 
proposes a generalization of the Zegers-ten Berge theory to the case of multiple judges, 
with meaningfulness theory playing a central role. The typical application will be to 
data matrices in which two or more observers or judges make numerical ratings on each 
of a number of "targets." The proposed theory will be examined in relation to intra- 
class correlation, which also provides a theory and procedure for assessing interob- 
server agreement for many observers (Fagot, 1991; Shrout & Fleiss, 1979). 

Scale Type, Admissible Transformations, and Relational Agreement 

Table 1 lists the four metric scales considered by Zegers and ten Berge (1985) 
together with the admissible (defining) transformation for each (see Stine, 1989a, Table 
1, for other possible scales with defining transformations). For example, the ratio scale 
permits only multiplication by a positive constant (change of unit); the interval scale 
permits positive linear (affine) transformations (change of unit and zero point); the 
additive scale permits only translation (additive constant); and the absolute scale per- 
mits no transformation of the original scale. (We note that the name "additive" scale 
was used by Zegers and ten Berge, 1985; and followed by Stine, 1989a; but was earlier 
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TABLE 1 

Scales 

Scale Admissible (Defining) Transformation 

Absolute 9 '  = 9 

Additive 9 '  - 9 + o~ 

Ratio 9 ' =  [39 

Interval 9 '  = 139 + 

Note. 9 and 9 '  are representing functions; 

c~ is a real number  and 13 is a positive real number.  

called the "difference" scale by Suppes and Zinnes, 1963. It will be shown later that 
there is a formal link between the ratio and additive scales.) 

The basis for the central role of scale type in constructing a coefficient of interob- 
server agreement is precisely this difference among scales in admissible tranforms, and 
therefore, in the number and kind of arbitrary scale factors. For example, suppose the 
set of ordered pairs (1,16), (2,32), (3,48) denotes the ratings of two judges on three 
targets. There appears to be very poor agreement between the judges since the ratings 
for each target do not match. But if the ratings are for the weight of  objects with the first 
judge rating in pounds and the second in ounces, then the judges are in perfect agree- 
ment relative to a ratio scale. In other words, according to this theory, a sufficient 
condition for perfect agreement on a ratio scale is the proportionality of the judges' 
ratings. In general, perfect agreement signifies that the judges' ratings are related by an 
admissible transformation relative to scale type, and the coefficient of agreement should 
estimate the degree to which this relation holds. 

These ideas are embodied in Stine's concept of relational agreement (Stine, 1989a) 
that denotes agreement with respect to empirically meaningful relationships. In any 
application there will be both meaningful and meaningless disagreement. Thus, in the 
previous example, if ratings are made on a ratio scale, then proportionality of the 
judges' ratings is meaningless disagreement (reflecting differences in units permitted by 
a ratio scale), but additive disagreement is meaningful disagreement (since the origin is 
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fixed for a ratio scale). The idea is that a coefficient of relational agreement should vary 
with (be attenuated by) meaningful disagreement but be independent of meaningless 
disagreement. (Modern ideas about meaningful relations owe a great debt, of course, to 
Stevens, 1946, 1951, 1968; Stine, 1989b, provides a good introduction to the subject of 
meaningful inference--also, see Adams, Fagot, & Robinson, 1965; Luce, Krantz, 
Suppes, & Tversky, 1990, chap. 22; Narens, 1985; Roberts, 1979; and Suppes & 
Zinnes, I963). 

Zegers-ten Berge Theory 

Zegers and ten Berge (1985) proposed a general formula for association coefficients 
between two variables for the metric scales listed in Table 1. They required that the 
association coefficient be invariant under admissible transformations of the scale and 
sensitive to nonadmissible transformations. Key to the development of the general 
formula was the concept of a u n i f o r m e d  v e r s i o n  of the variables that would satisfy the 
conditions of invariance under admissible transformations and sensitivity to nonadmis- 
sible transformations. A u n i f o r m i n g  t r a n s f o r m a t i o n  is a member of the class of admis- 
sible transformations for a given scale type. 

Let X i denote a rating on the i-th variable before transformation and Vi  the uni- 
formed version. Then the uniforming transformations are: 

Vi  = X i ,  (absolute scale) (la) 

V i = g i - .eYi, (additive scale) (lb) 

V i = S i / T i ,  (ratio scale) (lc) 

Vi  = ( X i  - , Y i ) / S i ,  (interval scale) (Id) 

where X" i and Si are the arithmetic mean and standard deviation of variable (judge) i, 
and Ti [(I/n) n X 2]!/2 = E t _ -  1 , where n is the number of ratings on each target t. With 
slight change in notation, (la), (Ib), (lc), and (ld) correspond to (2a), (2b), (2c), and 
(2d), respectively, in Zegers and ten Berge (1985). The additive transform (lb) centers 
the variable at zero, the multiplicative transformation (lc) rescales the variable to 
obtain a mean squared value of one, and the linear transform (ld) is the familiar 
"standardizing" Z transform (with zero mean and standard deviation of one). 

The idea behind the uniforming transformations is that after the appropriate uni- 
forming transform is applied to the Xi, then if the uniformed versions should match, 
there is perfect agreement among the judges; and the coefficient of association esti- 
mates the degree to which the uniformed versions agree (in numerical value). For 
example, if the set of ordered pairs (1,2), (2,4), and (3,6) denotes the (proportional) 
ratings of two judges for three targets on a ratio scale, then applying transform (lc), 
T 1 = 2.16, T 2 = 4.32, and the uniformed versions are (.463,.463), (.926,.926), and 
(1.389,1.389), indicating perfect agreement on a ratio scale. Although Zegers and ten 
Berge do not state their results formally in terms of meaningfulness theory, it is clear 
that the uniformed versions have the effect of insuring that the coefficients vary with 
meaningful disagreement but are independent of meaningless disagreement (relative to 
scale type). 

Based on a mean squared difference function of the uniformed versions, Zegers 
and ten Berge derived their general formula of association coefficients for metric scales 
( g i j )  between two uniformed versions V i and Vj (their Equation (8) with slight changes 
in notation): 
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n 

2 ~ Vit Vjt 
t = l  

gu = (2) 
n 

E v +E 
t = l  t = l  

Zegers (1986) then derived a general formula g~j (his Equation (5)) for the bivariate 
case, correcting (2) for chance agreement (see Fagot & Mazo, 1989). By substituting the 
appropriate uniforming transformation in the formula for gij and g~j, association coef- 
ficients were obtained for each of the scales listed in Table 1. 

For the bivariate case, the coefficients of Additivity and Linearity (Pearson r) did 
not require correction for chance agreement (Zegers & ten Berge, 1985, Equations (19) 
and (21), respectively). The coefficients of Identity (for absolute scales) and Propor- 
tionality (for ratio scales) corrected for chance agreement are given in Zegers (1986, 
Equations (6) and (7), respectively). 

Generalization of Zegers-ten Berge Theory 

The derivation of formulas for agreement coefficients for the case k > 2 involves 
four steps: (a) the generalization of (2) to g(k) ,  the general formula; (b) finding g c (k),  the 
value of g(k)  for chance agreement; (c) deriving the family  of agreement coefficients, 
corrected for chance agreement, from (a) and (b); and (d) derivation of the special 
formulas for each scale in Table 1, based on the family (general formula) of corrected 
coefficients of  agreement. I begin with a note on notation. 

Let Xit denote the rating of  target t by judge i, and Vit the corresponding uni- 
formed version. Summation throughout will be t = 1 , . . .  , n and i, j = I , . . . ,  k. The 
summation Y. f<j denotes summation over the (k/2)(k  - 1) i , j  pairs. For example if k = 
3, then s~-'~mation is over the three i , j  pairs (1,2), (1,3), and (2,3) and E/k<j Et=ln S i t S j t  
= ~ n  

t = l  Xl tX2 t  + ~tn=lSltS3t + ]~n t= 1 S2tX3t" 
A generalization of (2) is 

k n 

2c E E v,, vj, 
i<j  t = l  

g ( k )  = , ( 3 t  
k n 

E E v g  
i = 1  t = l  

where c is a constant to be determined by appropriate constraint. The constant c is 
uniquely determined by constraining g(k) = 1 if Vit = Vjt, for all i, j ,  t (i.e., if for each 
target the uniformed versions match in numerical value). Then given this constraint, the 
numerator of (3) is 2c(k/2)(k  - 1) Y~ t V2,  the denominator of (3) is k E t V2, and hence, 
c = I/(k - 1). Substituting this value of c in (3), one gets 

k n 

2E Z vi, vj, 
i<j t= 1 

g(k)  = , (4) 
k n 

(k-1) Z E 
i = 1  t = l  
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which is the general formula for agreement coefficients for multiple judges (k -> 2). 
However,  this formula capitalizes on chance for some members of the family of coef- 
ficients, and hence, g(k) must be corrected for chance agreement. 

A well-known procedure for chance correction of an agreement coefficient, ex- 
pressed in terms of g(k) is 

g(k) - gc (k) 
g'(k) - (5) 

1 - g c ( k )  ' 

where g'(k) is the chance-corrected coefficient and g c(k) represents "chance agree- 
ment". The numerator of (5) may be interpreted as representing agreement in excess of 
what is to be expected by chance, and the denominator as the maximum possible 
excess. Hence, (5) represents the proportional excess beyond what is expected by 
chance. 

This form of correction has been used with Cohen's kappa (Cohen, 1950); Gutt- 
man's coefficient of  reproduction (Green, 1956); for correction in the overestimation of  
the multiple correlation coefficient (Fisher, 1924); and more importantly for our pur- 
poses, by Zegers (1986) in correcting the bivariate general formula of association co- 
efficients in (2) for chance agreement. 

Zegers (1986) treated chance expectation g c in the bivariate case as the expectation 
ofgij in (2) over all n! permutations of the scores on one variable for a given sample, 
with the other variable fixed (Kendall & Stuart, 1961, p. 474). Then for the bivariate 
case, treating V i as fixed and taking all possible permutations_over Vj, the expectation 
of the numerator is E[2 Y~t VitVjt] = 2 Y't V i t V j  = 2n ViVj, where I7 i and 17j are 
arithmetic means of the uniformed versions for i and j .  The denominator does not 
change over permutations of Vj. 

Extending the approach to the multivariate case, one gets El2 Z/k<j Zt n V i t  V j t  ] = 

2n Ef<j ViVj, and hence, the chance value gc(k) is 

k 

2n E TT'VJ 
i < j  

gc(k) = (6) 
k n 

(k- 1) E E 
i t 

Substituting go(k) from (6) and g(k) from (4) into (5), one gets the general coeffi- 
cient of agreement corrected for chance: 

2 VitVjt - n ~ Vi 
t i < j  

g'(k) = (7) 
k n k 

( k -  1) E E V 2 -  Zn E ei~gJ 
i t i < j  

Setting k = 2, one gets the Zegers general bivariate coefficient as a special case (Zegers, 
1986, Equation (5)). 

By substituting the appropriate uniforming transformations into (7), the agreement 
coefficient is obtained for each of the four scale types, using the symbols " I "  for 
identity, " P "  for proportionality, " A "  for additivity, and " L "  for linearity. 
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Substituting (la) into (7), one gets the coefficient of Identity (I) for absolute scales: 

2 £ £ xi,xj,-n £ X,& 
i < j  t i < j  

1 = , ( 8 a )  
k n k 

( k - l )  X X x z -  2n X .XvXj 
i t i < j  

k 

2 ~ S o  
i < j  

I = , (8b) 
k k 

( k -  1) ~ S 2 + ~ (X/ -. l~j) x 
i i < j  

where Xi and S 2 denote the sample mean and variance of observer i, and Sij the 
sample covariance of observers i and j ,  in all cases of the untransformed scores X. 

Substituting (lb) into (7), one gets the coefficient ofAdditivity (A) for additive 
scales: 

k n 

2 X X (Xu - X i  ) (Xf l  - & ) 
i < j  t 

A = , (9a) 
k n 

( k -  1) ~ ~ (xi, -R~)  2 
i t 

k 

2 ~ Sq 
i < j  

A = (9b) 
k 

( k -  1) £ s~ 
i 

Substituting (lc) into (7), one gets for the coefficient of Proportionality (P) for ratio 
scales: 

P = (lO) 

( + - l > - n  - - =  
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Substituting (ld) into (7), one gets the coefficient of Linearity (L) for interval 
scale s: 

k n 

2 Z Z z i t z j t  
i < j  t 

= 2, ( l l a )  
L ( k -  1) ~ ~ Zit 

i t 

and since ~i Et Z~ = nk, and rij = S t Z i tZj t /n ,  L = ~,ik<j rij/[(k/2)(k - I)], and 

L = gij, ( l lb )  

the arithmetic mean of the pairwise Pearson r. 
It is apparent from inspection of (lb), (Id), and (6) that chance agreement is zero 

for the coefficients of Additivity and Linearity since in both cases the means of the 
uniformed versions are zero. This means, of course, that the coefficients of Additivity 
and Linearity may also be derived by substituting (lb) and (ld), respectively, into (3), 
the uncorrected general coefficient. 

If k = 2 in the above formulas for I, A, P ,  and L, one gets the Zegers-ten Berge 
bivariate coefficients (designated e' ,  a, p ' ,  and r, respectively) as special cases. 

Ordering on Coefficients 

For the bivariate case, a partial ordering exists among the corrected coefficients: 
no ordering exists between the corrected coefficients of proportionality and additivity, 
but each exceeds or equals the coefficient of identity in absolute value. The Pearson r 
exceeds or equals all three corrected coefficients in absolute value (Zegers, 1986). 

For k > 2 the only ordering is I At - 1II, which is easily seen from inspection of 
(8b) and (9b). Fagot and Mazo (1989) point out that the ordering of the coefficients 
should depend on the number of arbitrary scale factors, a rule that works in the bivari- 
ate case. But for k > 2, the coefficients depend on the pairwise coefficients in a complex 
way, and in the presence of strong interaction with coefficients negative or near zero, 
a stable ordering on the coefficients will not occur. However, for high positive values 
the coefficients tend to have the same partial ordering as in the bivariate case: P and A 
greater than or equal to 1; no ordering on P and A; and L higher than all other coeffi- 
cients. 

Equivalence o f  Ratio and Additive Scales 

A formal connection between the ratio and additive scales should be noted. Narens 
(1981a, 1981b) and Alper (1985) showed that for the domain of real numbers, the 
additive scale and the ratio scale are isomorphic (equivalent): taking logs in the ratio 
case (similarity group) leads to the additive (difference) transformations (translation 
group). Thus the uniforming transformation for the additive scale (lb) is equivalent to 
Vi = Xi  - log Ti, where T is the parameter from (lc) for the ratio scale. However,  this 
formal link need not be interpreted to imply that the additive scale is empirically 
redundant. Clearly, the coefficient of relational agreement will differ for the two scales. 
Furthermore, there will be situations for which the additive scale is more natural; for 
example, in studies requiring subjects to give direct estimates of stimulus differences. 
In fact, choosing between ratio and difference representations, based on ratio and 
difference judgments, is an important ongoing problem in psychological measurement 
(Birnbaum, 1982). 
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Alternative Generalization 

The generalization g(k) given by (4) was derived from (2) by forming a ratio of sums 
(a sum of cross products divided by a sum of squares). An alternative form (suggested 
for consideration by the Editor) is a simple mean of the ratios. The relationship between 
these two forms needs to be examined. 

The generalization for the alternative "mean of ratios" form gMR(k) is: 

gMR(k) = 

n 

i < j  n 2 2 

It can be shown that i fEt  ~ V 2 = Y.t n V 2 (constant for all i), then g(k) = gMR(k); 
that is, the two forms give identical generalizations if all judge sums of squares are equal 
(for the uniformed versions). 

The constancy of  Et n V 2 is necessarily satisfied for interval and ratio scales. For 
interval scales, V i = Z i ,  ~ V 2 = Et n Z 2 = n, and hence, for interval scales, the two 
forms are equivalent. The same conclusion holds for ratio scales: Vit = X i t / T i t ,  V 2  = 
nX2/E~  X 2, and E~ V 2 = (n Et n X2) /E~  X 2 = n. 

Therefore for the two most commonly used numerical scales--ratio and interval-- 
the "ratio of sums" generalization g(k) and the "mean of ratios" generalization gMR (k) 
are equivalent. 

The constancy of:Z~ V 2 is not, in general, satisfied for the additive scale (Vi  = xi)  
or the absolute scale (Vi = X i ) ,  and hence, estimates of A and I will differ for the two 
forms, although differences will be small for moderate inequalities in Et n V 2. 

Further justification for the generalization adopted in this paper (see (4)) is the link 
to intraclass correlation (developed in the next section), and the analogous definition of  
strength of effect, in the analysis of variance, as a ratio o f  sums (of squares). 

Generalized Agreement Coefficients and Intraclass Correlation 

The family of agreement coefficients developed for metric scales has interesting 
relationships to intraclass correlation. Of particular interest is the identity 

ICC(3,1) = A, (12) 

(see Appendix for ICC(3,1) formula and proof). The two coefficients in (12) are alge- 
braically identical in spite of the fact that they were derived from different assumptions. 
ICC(3,1) assumes an ANOVA model with judges a fixed factor and targets a random 
factor, whereas the coefficient of  Additivity as a descriptive estimator is neutral with 
respect to these assumptions. Such assumptions, however, become relevant when 
statistical inference with respect to A as well as to the other agreement coefficients is 
introduced. However,  one important consequence of (12) is to make explicit the fact 
that ICC(3,1) is a coefficient of relational agreement only for additive scales. ICC(3,1) 
is identical to Winer's "adjustment for anchor points" method of estimating ICC 
(Winer, 1971, pp. 289-293) that explicitly removes the main effect of  judges. Note that 
eliminating the main effect of judges removes only the additive effect of judges, and in 
the context of the meaningfulness approach, this step is justified only if the additivity 
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of judges' ratings is treated as meaningless disagreement--as required by the additive 
scale. 

L i m i t s  o f  C o e f f i c i e n t s  

It is easy to show that the upper limit of all agreement coefficients (I, P, A, L) and 
ICC(3,1), ICC(2,1) is + 1. Lahey, Downey, and Saal (1983) showed that the lower limit 
of ICC(3,1) is -1/(k - 1). If the only source of variability is interaction, then the lower 
limit of ICC(2,I) is given by - 1 / [ k  - 1 - ( k / n ) ] .  Then ICC(2,1) < 0 ifk > n / ( n  - I) and 
1CC(2,1) approaches minus infinity as n ~ -k(1 - k). But for n large, ICC(2,1) has 
approximately the lower limit of - 1 / ( k  - 1). 

The lower limit for I, P, A, and L is also - I / ( k  - 1). Of course, since A = 
ICC(3,1), then obviously the lower limit of A is - I / ( k  - 1), which occurs if the target 
mean square is zero (BMS = 0; see Appendix). 

Inspection of (8b) and (9b) shows that I = A if all judge means are equal. Hence 
I reaches a lower limit of - 1 / ( k  - 1) if both main effects are zero (i.e., all variability 
is error variability). 

If the only source of variability is error variance (interaction) and equal judge 
variability holds, then both P and L have the same lower limit of - l/(k - I). Equal 
variability for P requires that the Y.t n X 2 are equal for all i judges; and for L that all 
judge variances are equal. 

Table 2 shows three cases exhibiting lower limits for the coefficients, which are 
- 1 / ( k  - I) = - . 5 0  for three judges. For Case I the lower limit for A and ICC(3,1) is 
reached, but not for the other coefficients because the judge means are not equal. For 
Case II, the judge means are equal, so in addition I = - .50 but still not P and L because 
judge variability is unequal. For Case III, judge and target means are equal and so is 
judge variability, so now all coefficients except ICC(2,1) reach the theoretical lower 
limit o f - . 5 0 .  ICC(2,1) = - 1 / [ k  - I - k / n ]  = -1.00 for k = n = 3. For n = 10, k = 
3, ICC(2,1) = -.59. 

C o m p a r i s o n  o f  l C C ( 3 , 1 )  a n d  I C C ( 2 , 1 )  

It has been pointed out that ICC(3, I) = A, and hence, ICC(3,1) is a member of the 
family of coefficients of relational agreement defined by (7). ICC(2,I), on the other 
hand, can itself be viewed as a family of coefficients of relational agreement, provided 
the appropriate uniforming transformation is applied before computing ICC(2,1) (Fagot, 
1991); that is, a different estimate of ICC(2,1) can be computed for each possible scale 
type. Shrout and Fleiss (1979) point out that ICC(3,1) tends to be higher than ICC(2,1) 
and cite estimates of ICC(2,1) = .29 and ICC(3,1) = .71 for the data of their Table 2. 
When both indices are computed on the untransformed data, then the difference is 
attributable to the fact that ICC(3, I) treats additivity of ratings as meaningless disagree- 
ment (through removal of the main effect of judges) and ICC(2,1) treats additivity as 
meaningful disagreement among judges (attenuating the estimate). But ICC(3,1) is a 
coefficient of relational agreement only for additive scales, and if the two ICC coeffi- 
cients are to be compared as coefficients of relational agreement, then the uniforming 
transformation for additive scales (lb) should be applied before computing ICC(2, I). If 
this is done for the Table 2 data of Shrout and Fleiss (1979), then ICC(2,1) = .75, slightly 
higher than ICC(3,1), with b o t h  ICC estimates treating additivity as meaningless dis- 
agreement. 

The difference between ICC(2,1) and ICC(3,1) estimates for additive scales de- 
pends on the number of targets (n). With both ICC estimates computed on the uni- 
formed versions (lb), JMS = 0, and it can be shown that 
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TABLE 2 

Examples of Lower Limits on Coefficients 

I II IH 

Target X 1 X 2 X 3 Mean X 1 X 2 X 3 Mean X 1X2X 3 Mean 

1 1 5 9  5 8 2 5  5 1 2 3  2 

2 5 6 4  5 4 4 7  5 2 3  1 2 

3 3 4 8  5 3 9  3 5 3 1 2 2 

Mean 3 5 7 5 5 5 5 5 2 2 2 2 

Coefficient 

I -.20 -.50 -.50 

P -.37 -.49 -.50 

A -.50 -.50 -.50 

L -.40 -.45 -.50 

ICC(3,1) -.50 -.50 -.50 

ICC(2,1) -.33 -1.00 -1.00 

ICC(2,1) = 
(n)ICC(3,1) 

ICC(3,1) + (n - 1)" 

For the Shrout and Fleiss Table 2 data, the above formula gives ICC(2,1) = 
(6)(.71)/(.71 + 5.00) = .75, in agreement with the direct calculation. In general, for 
additive scales, IICC(2,1)1 -> IICC(3,1)I, the difference is controlled by n, and ICC(2,1) 
approaches ICC(3,1) as n approaches infinity. 
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Further Issues on Generalized Coefficients 

Sign o f  Coefficients 

In general, the sign of the coefficient for k > 2 should be interpreted in the same 
manner as a bivariate coefficient: A negative sign implies disagreement among judges, 
and a positive sign implies agreement among judges. When a bivariate coefficient 
reaches its lower limit of - 1 ,  it has a simple interpretationma perfect negative rela- 
tionship with high values of one variable paired with low values of the other variable. 
Obviously such a simple interpretation is not possible for more than two variables, but 
the following result shows that a similar interpretation can be made for negative coef- 
ficients when k > 2. 

This result is that if target means are equal, then a systematic directional relation- 
ship does exist for negative coefficients, namely that each judge variable is a perfect 
linear function, with negative slope, o f  the mean ratings o f  all other (k - 1)judges: 

r(Xi, ]~rem) = - I  ('eY.1 = X.2 . . . . .  X.n and i = 1, . . .  , k), (13) 

where r is the Pearson bivariate linear correlation coefficient, "~rcm is the mean rating 
of all judges excluding X i , and "Y.t is the mean of the t-th target. 

For example, for Case I, Table 2, the mean ratings for the second and third judges 
are 7, 5, and 6 for Targets 1, 2, and 3, respectively. Hence, (X~, iYrem) = (1,7), (5,5), 
(3,6), and for these three data points, r(X1, ,eYrern) = - - I .  Similarly, r(X2, ,eYre m) ----- - - I  
and r(g  3 , -~ rem)  = --  1. As Case I of Table 2 shows, only coefficient A reaches a lower 
limit when target means are equal, although coefficients P and L are substantially 
negative. Thus, the directional interpretation of (13) holds even when I, P,  and L do not 
reach a lower limit. Of course, the negative linear relationship of (13) will be approx- 
imate to the degree that inequalities in target means occur. 

What (13) does accomplish is to make clear a sense in which negative coefficients 
for I, P ,  A, and L may be interpreted as directional, and not simply representing 
unsystematic disagreement among judges. 

Disagreement Among Judges 

The issue of disagreement among judges is complex. If interaction is large, a 
pattern of both positive and negative pairwise coefficients will occur, in which case the 
overall coefficient is relatively meaningless, both for this theory as well as for intraclass 
correlation. The situation is similar to ANOVA when attempting to interpret results in 
the presence of a significant interaction, which generally leads to further analysis of 
interaction effects. This suggests similar analyses of patterns of disagreement among 
judges. For example, hypothetical data from Hays (1988; problem #16, p. 541) was 
used to compute L = . 15 (k = 8, n = 5), with fifteen of the pairwise coefficients 
negative and thirteen positive. Further analysis showed that the judges could be clas- 
sified into two clusters, I and II, with I = (X l , X2, X3, Xs) and II = (X4, Xs,  X6, X7). 
The linear coefficient for each cluster separately was large and positive, LI = .83 and 
Ln = .71, with fifteen of the sixteen pairwise coefficients of linearity between judges in 
different clusters (e.g., r14) negative. Hence, the analysis uncovered two clusters of 
judges, with strong judge agreement within each cluster and strong disagreement be- 
tween clusters. 

Choice o f  Coefficient 
To appreciate the consequences of using an "inappropriate" coefficient, consider 

the use of the coefficient of Linearity if the scale is ratio, additive, or absolute. By 
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applying transform (ld), the coefficient L is an inflated estimate of P because (ld) treats 
additivity as meaningless disagreement; L is an inflated estimate of A because (ld) 
treats proportionality as meaningless disagreement; and L is an inflated estimate of I 
because (ld) treats both additivity and proportionality as meaningless disagreement. 
For example, for the Table 2 data of Shrout and Fleiss (1979), I = .25, A = .72, and 
P = . 65. But L = .76, illustrating the inflation of the coefficient by erroneously treating 
additivity and/or proportionality as meaningless disagreement. 

The choice of a coefficient of agreement based solely on scale type assumes that 
the "arbitrary assignments" determined by scale type are free to vary among judges 
(e.g., that judges are free to select their own units on a ratio scale). But if the arbitrary 
assignments (anchors) of a rating scale are set by the experimenter, then for perfect 
agreement, the ratings of all judges must be identical for all targets, and the coefficient 
of Identity is the appropriate coefficient. For example, consider a psychophysics task 
in which subjects make magnitude estimates (a) with modulus fixed by the experimenter 
(same for all subjects) and (b) no modulus. 

For case (a) the same unit is assigned by the experimenter to all subjects, the 
ratings must be identical for all subjects, there is no meaningless disagreement, and 
hence the coefficient of Identity is the appropriate choice. For case (b), however, since 
subjects select their own unit, proportionality of ratings is meaningless disagreement, 
and P is the appropriate coefficient. 

Summary 

This article has presented a theory for assessing relational agreement for multiple 
judges based on the premise that the agreement coefficient depends on scale type, 
defined by the class of admissible transformations, and denotes agreement with respect 
to empirically meaningful relations. The relationship of the theory to intraclass corre- 
lation was examined, and it was shown that ICC(3,1) = A and hence that ICC(3,1) is a 
member of the proposed family of agreement coefficients. 

Directions for future research could include extension of the theory to other scale 
types considered by Stine (1989a, Table 1). Stine (1989a) points out that there are other 
possible definitions of meaningful relations (see Narens, 1985, chap. 2.14), and such 
alternative definitions could be studied in relation to the assessment of agreement. 
Further study of the sampling properties of coefficients of agreement is needed (Zegers 
& ten Berge, 1985). And, finally, further investigation of the issue of judge disagree- 
ment, particularly involving patterns of positive and negative pairwise coefficients, is of 
major importance (see Lahey, Downey, & Saal, 1983). 

Appendix: Proof that ICC(3,1) = A 

Intraclass correlation Case 3: Two-way ANOVA model with random factor of 
targets and fixed factor of judges (Shrout & Fleiss, I979). 

B M S - E M S  
ICC(3,1) = BMS + (k - 1)EMS' (AI) 

where k = number of judges, n = number of targets, BMS = target mean square, and 
EMS = judge by target interaction mean square. 

First it is shown that 
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xg + Z xi, xj, 
i<j  

BMS = 
k ( n -  1) 

(A2) 

where xit = Xi t  - .e~ i for raw scores X. Sum of  squares targets is SSB = 
k ~ t  ('e('.t -- "e~) 2, and since-~.t  - X = (I /k)  ~'i Xit, then SSB = ( l /k)  Et (El Xit) 2. 
I t  c a n  b e  s h o w n  t h a t  (E i Xit) 2 : ~'i Xi2t -t- 2 ~i<j XitXjt  a n d  ~'t (~ i  xit)  2 : ~'i ~'t X2 
+ 2 ~'i<j ~'t XitXjt • Hence,  SSB = (1/k)[Zi Zt x~t + 2 ~i<j-'~t XitXjt.], and dividing 
by degrees of  freedom (n - 1), BMS = SSB/(n - I) is given by A2. 

Next  it is shown that 

i<j  

n 

Z XitXjt 
t 

EMS = (A3) 
k ( n -  I) 

Since interaction constants (~it) are equal for raw scores and deviation scores,  one 
h a s  ~it = xit - .~.t - .~i. q- .~, a n d  s ince  ~?i = 0 a n d  ~? = 0, t h e n  ~it = xit - .~ t, a n d  

~i  ~'t ~/2 _ ~ i  ~ t  xi~ -t- k ~ t  .~2 _ 2 ~i  "~t -~ tx i , ,  w h i c h  simplifies to ~i E t  5'~ = 

[(k - 1)/k] Ei Y~t x/~ - (2/k) ~i<j ~'t XitXjt, "and dividing EiZ t .~2 by interaction 
degrees of  f reedom (n - l ) (k  - I) ,  one gets (A3). Finally, substituting (A2) and (A3) 
into A(1) one gets ICC(3,1) = A. 
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