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This paper focuses on the problem of local minima of the STRESS function. It turns out that 
unidimensional scaling is particularly prone to local minima, whereas full dimensional scaling with 
Euclidean distances has a local minimum that is global. For intermediate dimensionality with 
Euclidean distances it depends on the dissimilarities how severe the local minimum problem is. For 
city-block distances in any dimensionality many different local minima are found. A simulation 
experiment is presented that indicates under what conditions local minima can be expected. We 
introduce the tunneling method for global minimization, and adjust it for multidimensional scaling 
with general Minkowski distances. The tunneling method alternates a local search step, in which a 
local minimum is sought, with a tunneling step in which a different configuration is sought with the 
same STRESS as the previous local minimum. In this manner successively better local minima are 
obtained, and experimentation so far shows that the last one is often a global minimum. 

Key words: multidimensional scaling, iterative majorization, global optimization, tunneling 
method. 

1. Introduction 

The aim of multidimensional scaling (MDS) is to represent dissimilarities between 
objects by interpoint distances in a low-dimensional space. This basic idea of MDS goes 
back to Torgerson (1958), Shepard (1962) and Kruskal (1964a, 1964b). There are different 
ways to implement MDS, but we shall use Kruskal's raw STRESS 

o'(X) = ~ wi~(8,j - dij(X)) 2, (1) 
i<j 

where X is an n × p coordinate matrix of the n objects in p dimensions, ~ij is the 
dissimilarity between object i and object j, and wq are nonnegative fixed weights. The 
Minkowski distance between the coordinates in row i and row j is denoted by dij(X) = 

- -  x q ~ , l / q  (EP= 1 ~cis js J , with q -> 1 the Minkowski parameter. Special cases are the city-block 
distance for q = 1 (for an overview, see Arabie, 1991), the Eucl idean distance for q = 2, 
and the dominance  distance for q = ~. Different algorithms exist for minimizing (1) (or 
slight adaptations of it), like KYST of Kruskal, Young and Seery (1977). These algorithms 
are based on the method of steepest descent that makes use of the gradient of the STRESS 
function. This gradient is not defined if two points coincide, which happens regularly for 
q = 1. However, the majorization algorithm of de Leeuw and Heiser (1977), Heiser and 
de Leeuw (1977) and de Leeuw (1988) for the Euclidean distance case, and generalized by 
Groenen, Mathar, and Heiser (1995) to the Minkowski distance case handles zero dis- 
tances without problems. Moreover, it can be proved that the majorization algorithm 
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converges to a stationary point. Therefore, we base our study on the iterative majorization 
algorithm. One of the difficult problems with (1) is that it may have many different local 
minima. This problem of local minima is the main topic of this paper. The paper is 
organized as follows. First, we consider two special cases of (1) for which the local mini- 
mum problem is different. For unidimensional scaling, many local minima can be expected, 
whereas full-dimensional scaling with Euclidean distances only has a global minimum. 
Then we present the tunneling method for finding a decreasing series of local minima. 
Several adaptations of the tunneling method are discussed to make it suitable for MDS. 
Then, the tunneling method is implemented by an algorithm based on iterative majoriza- 
tion. We continue with a simulation experiment in which we investigate the seriousness of 
local minima for STRESS with city-block and Euclidean distances and various combina- 
tions o f p  and n. Finally, we study the behavior of the tunneling method with some case 
studies. Our present study is confined to the metric MDS STRESS function (1). In prin- 
ciple, we could have extended our research to nonmetric MDS, but it appeared that the 
local minimum problem for the metric case is already difficult enough. 

Before proceeding, two issues need attention. The first issue concerns the dependence 
of STRESS (1) on the normalization of 8ij. This is undesirable because we want the 
STRESS value to be invariant under a normalization factor of 8ij's in the same way as a 
correlation coefficient is independent of the variance of the two variables involved. Let us 
decompose STRESS into 

or(X) = E wij(Si/ - dij(X)) 2 = ~'~ wij8 2 + E wi~d/~(X) - 2 E wi/Sijdi/(X) 
i < j  i<j i < j i < j  

= ~ + n2(X) - 2p(X). (2) 

Now, at a stationary point X* it holds that 0 -< tr(X*)/~ 2 <- 1. The value of tr(X*)/~ 2 can 
be seen as the proportion of unexplained variation in the dissimilarities (see, e.g., Com- 
mandeur, 1992), which can be seen as follows. Stationarity of X* implies that for fixed X* 
and free/3 ~/3X*) must be stationary too. Since dij(X) is a positively homogenous function 
we h a v e  d i j ( ~ X * )  = /3dij(X*), so that tr(/3X*) = ~2 + ~21./2(X, ) _ 2/3p(X*). The/3* that 
minimizes o(/3X*) equals 2,P(X*)/~2(X*) (see, e.g., Mathar & Groenen, 1991)~ so that 
tr(/3*X*) = -02 - p2(X*)/~ (X*). Dividing both sides by "qa gives tr(/3*X*)/~ -- 1 - 
p2(X*)/(~2~E(x*)). It is not difficult to show that p2(X*)/('O~2(X*)) is the squared Tucker's 
(1951) congruence coefficient between the (order n(n - 1)/2) vectors of dissimilarities 
and distances, which is always between 0 and 1. A negative Tucker's coefficient does not 
arise due to the nonnegativity of distances and dissimilarities. In the sequel we use always 
tr(X)/~ 2 for the STRESS function. The relation of Tucker's congruence coefficient and the 
minimization of STRESS was studied earlier by de Leeuw (1977). 

The second preliminary issue is that we assume, without loss of generality, that the 
weight matrix W = {wij} is irreducible, that is, there exists no partitioning of objects into 
disjoint subsets, such that wij = 0 whenever objects i andj  are in different subsets. If the 
weight matrix is reducible, then the MDS problem can be decomposed in separate smaller 
multidimensional scaling problems, one for each subset. 

A number of results in this paper appeared, in greater detail, in Groenen (1993), 
which also contains discussions of related topics in MDS, such as combinatorial methods 
for unidimensional scaling, structured missing data designs in MDS, duster differences 
scaling, and the extension of the majorization method to Minkowski distances. The main 
differences with the work of Groenen (1993) on the problem of local minima are: the 
extension of tunneling to Minkowski distances, the use of tr(X)/'O 2 instead of o'(X), and the 
introduction of a pole width parameter in the tunneling function. 
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FIGURE 1. 
Illustration of two steps of the iterative majorization method. The auxiliary function tz(x, xo) is located above the 
original function q~(x) and touches at the supporting point Xo. The minimum of the auxiliary function tz(x, xo) is 

attained at xl, where ~(Xl) can never be larger than ~(xi, xo). These steps are repeated. 

2. Local Minima for STRESS 

In this section we introduce the principle of iterative majorization for minimizing a 
function. Next, the majorization algorithm SMACOF for MDS is discussed, which is 
needed to distinguish the two special cases of the STRESS function with respect to local 
minima, that is, unidimensional scaling (p = 1) and full-dimensional scaling (p = n - 1). 

Iterative majorization is a simple and attractive minimization method that generates 
a monotonically nonincreasing sequence of function values (see in the area of MDS, for 
example, de Leeuw & Heiser, 1977, 1980; de Leeuw, 1988; Meulman, 1986, 1992; Groenen, 
Mathar, & Heiser, 1995; Groenen, 1993; and Heiser, 1995). Here, this method is applied 
to minimize the objective function of the tunneling method. Iterative majorization is based 
upon replacing the original complicated function ~o(x) by an auxiliary function /~(x, y), 
which has to meet the following requirements. First, the auxiliary function/z(x, y) should 
be more simple to minimize than q~(x). Secondly, the original function should always be 
below the auxiliary function, that is, q~(x) -</z(x, y). Thirdly, the auxiliary function should 
touch the surface at the so-called supporting point y, that is, ¢(y) =/.~(y, y). If these three 
requirements are met, we call ~(x, y) a majorizing function of ¢(x). I~ t  the minimum of 
/~(x, y) over x be attained at x*, for x, y, x* in the corresponding domain X. The require- 
ments of the majorizing function imply the chain of inequalities 

q~(x*) --<-/x(x*, y) <--/z(y, y) = q~(y) (3) 

for all x, y E X. A graphical representation of these inequalities is presented in Figure 1 
for two successive iterations of iterative majorization of some function q~(x), where x is a 
scalar, and where the successive values of x are indicated by x0, xl, and x 2. 

The majorization algorithm is summarized by 
I. Y <-" Y0, where Y0 is a starting value. 
2. Find x + for which/~(x +, y) = minx/X(x , y). 
3.  I f  q~(y) - q~(x +) < e then stop (e being a small positive constant). 
4. y <-- x + and go to 2. 
By Step 2 the majorization algorithm yields a nonincreasing sequence of function values. 
If the function q~(x) is not bounded from below, or if there are not sufficient restrictions on 
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x, then the stop criterion of Step 3 may never be met. In the sequel, this situation does not 
arise, because the function that is minimized is bounded below by zero. A more relaxed 
version of the algorithm is obtained by demanding in Step 2 merely tha t / , (x  +, y) - ix(Y, 
y), instead of requiring that x + is the minimum of / , (x ,  y) over x. This weaker form of 
majorization does not change inequality (3), so that a reduction of function values is 
retained and allows us to combine majorizing functions. A sufficient condition for a sta- 
tionary point is that q~(x +) = ~(y) and x + = y. A necessary condition for a point x* to be 
a minimizer of ~(x) is that x* minimizes/,(x, x*) over x. So, if ~(x +) = q~(y) and x + = y, 
this necessary condition is satisfied by y. We distinguish two particularly useful special 
cases of majorization. The first one is majorization of a concave function, which we call 
l i n e a r  majorization. Any concave function q~(x) may, by the nature of concavity, be ma- 
jorized by the linear function tz(x, y) = x'b(y) + c(y) at any point y. The second group of 
functions is characterized by a uniformly bounded Hessian. In that case, the function q~(x) 
can be majorized by/ ,(x,  y) = x'A(y)x - x'b(y) + c(y), with A(y) positive semidefinite. A 
bounded Hessian ve~(x) implies that the curvature (that is, the second derivative) of the 
function q~(x) is always less than the curvature of some quadratic function, i.e., x'veq~(x)x --<- 
x'A(y)x. Therefore, we call this type of majorization q u a d r a t i c  majorization. The distinction 
between linear and quadratic majorization is due to de Leeuw (1993) who used the terms 
Type I and Type II majorization. 

Minimization by itetative majorization has several advantages. Using linear and qua- 
dratic majorization has the advantage that the majorizing function is at most quadratic in 
x. In turn, this property implies a one-step update without a line search, which is often 
necessary in steepest descent algorithms. Moreover, quadratic majorizating functions can 
use the relaxed update of de Leeuw and Heiser (1980), which usually results in an accel- 
eration (at best halving the number of iterations), while retaining convergence. Under  
certain circumstances, Groenen (1993) proved linear convergence rate of a quadratic 
majorization algorithm. An important practical advantage of using iterative majorization 
is its diagnostic value during program development: if the loss function increases, then 
there must be an error. 

These preliminaries give us enough material to introduce the majorizing function for 
the general Minkowski STRESS function, as given by Groenen, Mathar, and Heiser (1995) 
for 1 ----- q <-- 2, that is, 

p P 

rl2~o'(X) = 712 + TI2(X) - 2p(X) = rl 2 + ~ x'A,(T, X)xs - 2 ~  xjBs(A, X)x, 
s=l s = l  

p p 
-< "0 2 + ~ x ' & ( T ,  Y)x, - 2 ~  x 'B,(A,  Y)y, = rl2/z~(X, Y), (4) 

s = l  s = l  

where T is a matrix with tij = 1 and tii = 0 (needed later on), x s is column s of X, and 
matrices As(T, Y) = { a i y s } a n d  Bs(A, Y) = {bi j  s}  are defined by 

- w , t z j  [Yis - Y:s tq - 2/dq- 2(y) 

aijs = _ w i j t i j e / d  q.- 2(y) 

-- E k  #: iaiks 

b i j s = [ O  wi j~ i jb t i s -y j s lq -2 /dq- l (Y)  

E k ~ i b iks 

if/#= j and ivy, -Yj ,  t #: 0 

if i =/= j and Lvi, - y j ,  1 = 0 

i f / = j  

• i f / : ~ j  

i f / ~ j  

i f / = j  

and dgj (V) #: 0 and L~ - yj~ t 4 :0  

and d i i ( Y )  = 0 or [Yi~ - Yi~I = 0 (5) 
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for e a small positive constant. The majorizing function/~g(X, Y) is a quadratic function in 
X. The inequalities (3) can be proved using the H61der's inequality;/x~(X, Y) is minimized 
for every dimension s by the update 

x, + = A,(T, Y) -B , (A ,  Y)y,, (6) 

where As(T, Y)- is the Moore-Penrose inverse of As(T, Y). Note that in all practical cases 
As(T, Y) is of rank n - 1 with 1 in its null space. Therefore, we use the Moore-Penrose 
inverse As(T, Y)- = (As(T, Y) + 11')-1 _ n-211'. For the Euclidean distance, this update 
was given by de Leeuw and Heiser (1977), who called it the G u t t m a n  transform. We refer 
to algorithm (6) by the acronym SMACOF, which stands for Scaling by MAjorizing a 
COmplicated Function. 

Having presented the general majorizing algorithm for MDS, we now switch to the 
first special case of unidimensional scaling. For unid imens ional  scaling the Minkowski 
parameter q is irrelevant. It has been noted by, amongst others, de Leeuw and Heiser 
(1977), Delays (1978), and Hubert and Arabie (1986) that minimizing the STRESS func- 
tion with equal weights changes to a combinatorial problem whenp  = 1. Groenen (1993) 
extended this result to unequal weights. In the following, the complicated proof of 
Groenen is not reproduced, but an indication is given why unidimensional scaling is a 
combinatorial problem. 

Forp  = 1 the distance between two points can be expressed as dij(x) = (X  i --  Xj) sign 
(x  i - xj),  where sign (xi  - xj) = 1 for xi > xj, sign (xi - xj)  = 0 for xi = xj, and sign (xi 
- xj) = - 1 for xi < xj, where x denotes the n × 1 column vector of coordinates. An 
important observation is that only the rankorder of x determines the sign (xi - xi).  In this 
case, STRESS can be expressed as 

or(x) = r/2 + x'Vx - 2 ~ W i j S i j ( X  i - -  X j )  sign (x  i - -  X j ) ,  (7) 
i<j  

where V is a matrix with off-diagonal elements vij = - w i j  and diagonal elements vii : 
- ~ j * i  viy. This shows that the cross-product term of STRESS, p(x), can be factored into 
a part that is linear in x and a part that depends only on the rankorder of the elements of 
x. Let ~ denote the rankorder of the vector x, thus x#,0) -< x~,(2 ) < . . .  -< x,( i)  < - . . .  <_ X~(n) 
with corresponding permutation matrix P, so that Px is the vector with the elements 
ordered nondecreasingly. 

Define t i = ~'j<i W ~(i)t~(j)~q~(i)~(j) and ui = Ej>i W qj(i)~(j')~t~(i)qJ(j), which are, respec- 
tively, the row sum up to the main diagonal and the row sum from the main diagonal of 
the matrix with elements W~(i)~(j)c~(i)~b(j ). Using this notation, (7) can be written as 

or(x) = ~1~ + x'Vx - 2 x ' e ' ( t  - u). (8) 

For a given rankorder ~, (8) is quadratic in x and has its minimum when x is equal to the 
Guttman transform V-P ' ( t  - u). The Guttman transform of the majorization approach 
only uses the rankorder information of the previous configuration, since P, t, and u only 
depend on the permutation of x. Therefore, SMACOF stops if the rankorder of x does not 
change, which usually happens in a few iterations. At this point, STRESS has a local 
minimum. Function (8) can also be expressed as 

or(x) = n~ + l} x - v - e ' ( t  - u)l[~ - lit 2 - ul lPv-p, ,  ( 9 )  

where the term t(~) = lit - u l l~v-v ,  is a function of the permutation only. Groenen (1993) 
proved that if t(~) has a local maximum with respect to adjacent pairwise interchanges 
(that is, any local change of ~, interchanging ~(i) and ~(i + 1), does not increase the value 
of t(~,)), then ~ x )  has a local minimum for x = V-P ' ( t  - u). Note that this is a stronger 
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formulation for a local minimum than we used for STRESS, since STRESS has a local 
minimum whenever the Guttman transform cannot change the order of x. For the maxi- 
mization of t(qJ) several combinatorial strategies are possible, of which, if all wij = 1, the 
dynamic programming approach of Hubert  and Arabie (1986) gives a global maximum for 
n not too large. Other combinatorial strategies are discussed and compared in Groenen 
(1993). 

A second special case of minimizing STRESS appears in full-dimensional scaling with 
Euclidean distances, where the dimensionality is at most p = n - 1. In full-dimensional 
scaling there is only one minimum that is a global one, which is a result due to de Leeuw 
(1993). Let the squared distance d2(X) be expressed as t r  X'AijX, where Aij  = ( e  i - e j ) ( e  i 

- ej)' and ei is column i of the identity matrix. Then tr X'Ai/X = tr AijXX' = tr AijH with 
H a symmetric positive semidefinite matrix of rank n - 1 and with H1 = 0. This notation 
allows us to express STRESS as 

or(H) = "q~ + n: (H)  - 2p(H) 

= ~ + ~ wi~ tr A~jH - 2 ~ w~j~y(tr AijH) 1/2. 
i<j i<j 

(10) 

The te rm •i<j wij tr Aijtt is a linear function in tt. The second term takes minus the square 
root of the same linear function of H, hence is a convex function in H. The sum of a linear 
and a convex function is convex, thus o-(I-I) is a convex function in H. H is restricted to be 
in the convex cone of symmetric positive semidefinite matrices of rank n - 1, with 1 in its 
null space. Thus minimizing STRESS over H is minimizing a convex function over a convex 
set, which has a local minimum that is global. An extension of this result to other  MDS loss 
functions can be found in Groenen, de Leeuw and Mathar (1996). Note that this result 
does not hold in case H is restricted to have p < n - 1, because the set of H restricted to 
have r ankp  < n - 1 is not convex. Although one would expect H to be of rank n - 1 at 
a minimum, this usually is not the case. In fact, numerical experiments suggest that, at the 
minimum, the rank of H does not exceed the number of positive eigenvalues in classical 
scaling. Critchley (1986) and Bailey and Gower (1990) proved this conjecture for S- 
STRESS, but a proof for STRESS is not known. 

In this section we have introduced iterative majorization to minimize complex func- 
tions, presented the SMACOF algorithm for MDS, shown that unidimensional scaling has 
many local minima and that full-dimensional scaling with Euclidean distances has one 
minimum. In the next section we introduce the tunneling method for finding better local 
minima in the general situation 1 -< p <-- n - 1. 

3. The Tunneling Method 

The tunneling method consists of an iterative two-step procedure: in the first step, a 
local minimum is sought, and in the second step, another configuration is determined with 
exactly the same STRESS. It can be described by the following analogy. Suppose we wish 
to find the lowest spo t in a selected area in the Alps. First, we pour some water and see 
where it stops: the local search. From this point, a global search is p~rformed by digging 
tunnels horizontally until we come out of the mountain. There we pour water again, find 
out where it stops, and dig tunnels again. If we stay underground for a long time while 
digging the tunnel, we simply conclude that the last spot was in fact the lowest place in the 
area, the candidate global minimum. 

The tunneling method for functions of more parameters is mainly due to Montalvo 
(1979), Gomez and Levy (1982), and Levy and Gomez (1985). Earlier, Vilkov, Zhidkov, 
and Shchedrin (1975) presented a one-parameter  tunneling function. An important and 
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attractive feature of the tunneling algorithm is that successive local minima always have 
lower or equal function values. The tunneling step is the crux of the tunneling method. It 
is performed by minimization of a particular function, called the tunneling function. To find 
another configuration with the same STRESS, this function must have several character- 
istics. Some of these characteristics are met by the tunneling function originally defined by 
Gomez and Levy: 

~r(x)  - o - (x*)  
%(X) = ii X _  X,112 , (11) 

where X* is the local minimum configuration. The first characteristic that (11) exhibits, is 
that it has zero points for configurations with STRESS equal to ~r(X*). Secondly, these 
zero points are not necessarily the lowest possible value of the tunneling function. Thirdly, 
the factor I[X* - X[[ 2, also called the pole of the tunneling function, is used to create 
elevated values of the tunneling function near the local minimum configuration X*, so that 
a zero point at X* is presumably excluded. Because the pole is a factor, it doesnot change 
the positions of the zero points different from X*. Note that ~-o(X) is not defined at the local 
minimum X*, so that any minimization algorithm should start from somewhere else. 

The complex task of finding the global minimum of the STRESS function has been 
replaced by a similarly complex problem, that is, finding the zero points of the tunneling 
function by minimization. Fortunately, the latter problem has the distinct advantage of 
having an additional feature for a desired local minimum of the tunneling function: it 
should have STRESS smaller than or equal to o-(X*). Clearly, if X* is a unique global 
minimum it will be impossible to find a zero point of ~-o(X). For the moment, however, we 
assume that X* is not a unique global minimum, so that zero points of the tunneling 
function do exist. 

The tunneling function (11) has some major defects, some of which are solely a 
consequence of certain properties of the STRESS function. Therefore, we need a redef- 
inition of the tunneling function that resolves these defects. The first problem involves 
changes of the tunneling function value when a configuration is rotated. This is inconsis- 
tent with the STRESS function, which is invariant under rotation. Therefore, the tunneling 
function has to be invariant under rotation too. The second problem involves the strength 
of the pole. If the pole is not strong enough, then the tunneling function has an undesired 
zero point at X*. For a slightly different tunneling function, Groenen (1993) showed 
analytically that some pole strength parameter must be included. A similar analytical result 
can be obtained for the third problem that we will call attraction to the horizon. It turns out 
that we must be careful not to end up with very large configurations that also yield 
tunneling function values close to zero, due to the denominator in (11). Finally, we want 
to be able to vary the area influenced by the pole, through so called pole width ~o. We now 
present a redefinition of the tunneling function that solves these problems and still exhibits 
the characteristics initially set out as desirable: 

~'l(X) = ~/~-2Xlcr(X) - ~r(X*)] A 1 + liD(X*) - D ( X )  

• • ffllD(X*)[[~) -b-(-~l~w- D(X)ll2w + ~o), 
(12) 

where liD(X*) - O(X)[[ 2 = Ei<j  w o ( d o ( X * )  - d0(X))  2. The function rl(X) satisfies all 
requirements: the zero points (that is, points with STRESS equal to o'(X*)) do not change 
after multiplication, a rotation of X yields the same tunneling function value as ri(X), the 
influence of the pole can be made strong enough by adjusting the pole strength parameter 
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FIGURE 2. 
A one-dimensional slice of the tunneling function ~a(X). 

A (0 < A < 1), for large configurations minimizing ~-I(X) amounts to minimizing ]G-(X) - 
~r(X*){ ~ because i + ~oIID(X*) - D(X)I{~, 2 tends to one so that attraction to the horizon is 
avoided, and the area for which the pole is active can be extended by choosing the pole 
width parameter o~ greater than one. A one-dimensional slice of zl(X) is given in Figure 2. 
A summary of all the properties of (12) is given in Table 1, where still an additional feature 
is shown for the tunneling function: the occurrence of multiple poles. If the tunneling 
function stops at X1 where o'(X1) > o'(X*) then we add an additional pole to the tunneling 
function in order to avoid the unwanted stationary point Xa. 

For minimizing the tunneling function we use two important methods: iterative ma- 
jorization and parametric programming, which keeps tunneling within the majorization 
framework of SMACOF. 

4. Minimizing the Tunneling Function 

In the previous section a tunneling function was developed that has desirable prop- 
erties. This section discusses a zero finding algorithm of this function. Since the zero points 
are also the global minima of the tunneling function, we can use a minimization algorithm 
to find a zero point. The minimization method used here is a combination of parametric 
programming and iterative majorization. First, we show that parametric programming 
remains valid if iterative majorization is applied. Then we decompose the tunneling func- 
tion into parts that can be majorized and present the general majorizing inequalities. These 
results are then combined to present an algorithm for the tunneling function with 
Minkowski distances with 1 -< q -< 2. 

The tunneling function TI(X) can be considered as a ratio of two functions of X and 
hence minimization of ~'I(X) can be seen as a fractional programming problem. A para- 
metric programming algorithm to minimize such a function was proposed by Dinkelbach 
(1967). Dinkelbach's algorithm requires at each iteration that the absolute minimum over 
X of an auxiliary function can be obtained. This requirement is too strong for our purpose; 
Groenen and Heiser (1991) proved that to find a stationary point it suffices to find a lower 
value of the auxiliary function, not necessarily the absolute minimum. This can be seen as 
follows. Let the tunneling function ~'I(X) with one pole be given by N(X)(oa + P(X))/P(X) 
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Tab le  1 

T h e  e l e m e n t s  o f  the  tunne l ing  func t ion  x l (X)  and  the i r  purpose .  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Purpose 

Zero point if STRESS is equal 
to local minimum STRESS. 
Zero points are the lowest 
tunneling function values. 
Avoid a zero point at X* by 
erecting a pole. 
Avoid a zero point at irrelevant 
transformations of X*. 
Ensure sufficiently strong pole (use 
pole strength parameter ~,, 0<~,<1). 
Avoid attraction to the horizon. 

Extend working range of the pole 
(for to > 1) 
Have multiple poles to avoid different 
Xe (optional) 

Element 

x(X)  = ~ ( X )  - c ( X * )  

x(x) = o(x)  - z(x*)l 

x(x) = (~(X) - (~(x*)l/P(X) 

2 
P(X) = D(X*) - D(X)II w 

x(X) = o(X) - o(X*)lX/p(x) 

x(X) = o(X) - (~(X*)lx(1 + 1/P(X)) 

x(X) = o (x )  - o(x*)lX(1 + (0/e(x)) 

q~l (X) = Io(X) - o (X*) I~ ' I '~=I ( I  4- O,)/ek(X)) l/r 

with N(X) = Io'(X) - o'(X*)l x, or, for ease of notation, "rl(X ) ---- M(X)/P(X), where M(X) 
= N(X)(to + P(X)), where we assume that P(X) > 0. Suppose that we can find an X for 
a given Y for which 

M(X) M(Y) 
~-I(X) = p ( x ~  < p (y)  - ~ I ( Y )  (13) 

holds. Multiplying both sides with P(X) and using P(X) > 0 gives the inequality 

M ( X ) -  M(Y)p(y~ P(X) <- 0 or F(q, X) = M(X) - qP(X) -< 0. (14) 

Thus, as long as we are able to find an X for which F(q, X) < 0 then we must have ~'I(X) 
< ~I(Y). Therefore, using iterative majorization on F(q, X) minimizes ~'I(X). 

1/2 Ins tead  of  opera t ing  on ~'I(X), we ope ra te  on T 1 (X) which has the same zero points  
and the same stationary points, but is easier to handle in the majorizing framework. The 
derivation of one iteration for minimizing ~-~/2(X) consists of the following steps. For  each 
majorizing function we only give the terms that are dependent of X. 
1. Use the fractional programming formulation to obtain F(q, X). 
2. Majorize the terms of F(q, X), that is, M(X) = N(X)I/2(H~= 1 (Pk(X) + ~)l/r)l/2 and 

--(I-[~c=l Pk(X)l/r) 1/2. 
3. Majorize M(X) by the product of two functions. This yields a term with N(X) and a 

term with II~= 1 (PIe(X) + o~) 1/r. 
3a. Majorize N(X) = [or(X) - Or(X*)l x by majorizing the root of a nonnegative function. 

This yields a term with [or(X) - Or(X*)[. 
3b. Simply assume that Or(X) > or(X*) SO that [or(X) - Or(X*)[ = or(X) - or(X*) and 

check this assumption for every update. If the assumption is violated, then the 
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tunneling step stops because we have found a configuration with the same or a lower 
STRESS different from X*, which is the main purpose of the tunneling step: 

3c. Use the regular majorizing inequalities of (4) to majorize or(X). 
4. Majorize 1-I~= 1 (Pk(X) + oJ) 1/r by majorizing the product of several functions. This 

yields terms with Pk(X). 
4a. Majorize Pk(X) using exactly the same majorizing inequality as in SMACOF, where 

the place of 6i is taken by d.~(Xk). 
5. Majorize --(l'I~k=l (Pk(X)I/2) ~/r) by majorizing minus the product of functions. The 

majorizing function has terms Pk(X) and -Pk(X) 1/2. 
5a. Majorizing Pk(X) is identical to Step 4a. 
5b. Majorize -Pk(X) 1/2 with the Cauchy-Schwarz inequality. This yields terms with 

di/(X) and terms with -di/(X). 
5c. Majorize d/j(X) by quadratic majorization (see Heiser, 1991), which yields a ma- 

jorizing function with d2(X). 
5d. Majorize d2(X) with H61der's inequality (which underlies SMACOF), which yields 

a quadratic function in X. 
5e. Majorize -dij(X) with H61der's inequality (which underlies SMACOF), which 

yields a linear function in X. 
We continue with presenting the majorizing inequalities, some of which are new. 

Since they are general majorizing inequalities, their application reaches beyond the min- 
imization of the tunneling function and can readily be used for majorization of other 
functions as well. For notational convenience we represent a function by the scalar x. 

To majorize the product of two functions (used in step 3), we use the basic inequality 

Xl X2/2 
- ~-2! -> 0, (15) 

which is always true foryl,  Y2 > 0, because any square of a real argument is nonnegative. 
Rewriting this inequality gives 

(16) 

which is a form of quadratic majorization. Furthermore, the inequality becomes a strict 
equality when x 1 equals Yl and x 2 equals Y2. Majorization in Step 5c can also be explained 
by (16) if we substitute di/(X) for Xl and 1 for x2. The positivity assumption can be too 
strong in Step 5c, where dij(Y) = 0 can happen so that the right part of (16) becomes 
undefined. For such cases we use the suggestion of Heiser (1991) who replaces Yl by a 
small positive constant e. Although strictly speaking the majorization requirement of 
touching the original function at Y is lost, this hardly poses a problem if e is chosen small 
enough. This adaptation is used implicitly whenever needed. 

In Step 3a the root of a positive value is majorized. Observe that the function f(x) = 
x x is concave for x -> 0 and 0 < ~ < 1 due to its negative second derivative, so that linear 
majorization can be applied. The inequality 

x ~ -< (1 - ;t) + Ax (17) 

is used which becomes an equality ifx = 1 (Hardy, Littlewood, & P61ya, 1952). Replacing 
x by x/y yields the linear majorization inequality 

x a - (1 - A)y ~ + Ay ~- ix. (18) 



P A T R I C K  J.  F. G R O E N E N  A N D  W l L L E M  J.  H E I S E R  539 

To majorize the product of many functions (Step 4) the inequality for the geometric 
mean and the arithmetic mean, 

r 

I-[ Xlk/~ <- Xg, (19) 
k = l  

can be used; see, for example, Hardy et al. (1952). This inequality assumes x k >- 0 and 
equality occurs when all xk are unity or zero. For r equal to 2, (19) reduces to (16). 
Replacing xk by xk/yk and multiplying both sides by II~:= 1 y~/r yields the linear majorizing 
inequality 

r i  r x~/r < 1 y~/r Xk 
k = l  - -  r I-I • (20) 

k=l 

In Step 5 we have to majorize minus a product of r functions. The geometric-arith- 
metic mean inequality (19) is used again to find a majorization inequality that is quadratic 
in xk. The basic chain of inequalities is 

(1) (1) 
o<--l--[x~/r+ 1-- X'X-- 2--  x ' l + ( r - 1 )  

k = l  

- rkl~= x ~ / r < - ( 1 - ~ ) x ' x - ( 2 - ~ ) x ' l + ( r - 1 ) ,  (21) 

which is a strict equality if x equals 1. Replacing xk by x~/yk and multiplying both sides by 
[ I  r . 1/r  k=l Yk gives the quadratic majorizing inequality 

- 1-I Xlk/" <- y ~ I ,  1 - -  
k = l  k = l  

with equality if xk = Yk for all k. 

( ) y-5- 2 -  - - + ( r - i )  , 
k = l  Yk 

(22) 

In Steps 5b and 5d we need to majorize minus the root of the sums of squares which 
can be linearly majorized by the Cauchy-Schwarz inequality 

r r r 

_ ( ~  x~)1/2 <_ _ ( ~  y~) -1/2 ~ XkYk, (23) 
k = l  k = l  k = l  

where equality occurs if xg = yg for all k. 
Combining all these majorizing inequalities is a major administrative task, which is 

summarized here. Combining the majorizing inequalities for steps 2 to 5, multiplying both 
sides by e = 2N(Y) -1/2 Hi= 1 [1 + Pk(Y)] -1/(2r), and by using q = r]/2(Y) we get 
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eF(q,  X) < 

AN(Y) - I/xTi~- 2 ~, wi~[d~(X) - 28~jd~j(X)] 
i < j  

r 

+ r ~ (to + Pk(Y))-1 wij[d~(X) - 2d~i(X~)d~j(X)] (24) 
i<y 

+ 2 1 - ~ Pk-'(Y) ~ w~j[d~.(X) - 2d/j(X~)d~j(X)] 
k=l i < j  

+ 2 -  ~ Pk- I(Y) 
k = l  

~,  wij[d~(X)d~j(X*k)/dij(Y) - 2d/y(Y)d~j(X)] + c. 
i < j  

Let a = AN(y)-I /X~ 2,/3 k = 1/r (to + Pk(Y)) -1, ~bk = 2(1 - l/r) p~-l(y), and qb k = (2 - 
1/r) Y~=I p~-l(y). If  we majorize additionally d2(X) and -dij(X) (Steps 5d and 5e), then 
eF(q, X) is majorized by 

P 

eF(q,  X) --< ~ [x'As(T, Y)xs - 2x'Bs(U, Y)Ys] + c, (25) 
s=l 

where tij = ~ + Erk-1 [[3~ + ~b k + ~bkdij(X*k)/dij(Y)] and uij = ctSij + Y~=I [(/3k + 
~bk)dij(X~) + ~bkdij(¥)]. The right side of (25) is quadratic in X, so that an update can be 
obtained in one step. Setting the gradient with respect to Xs equal to zero yields 

v ~ [x 'AAT,  V)xs - 2x;BAU, Y)yd + c = 2AAT, Y)xs - 2BAU, Y)y, = 0, (26) 
s = l  

which implies that As(T, Y)x s = Bs(U, Y)Ys, so that the update for decreasing ~-l(X) is given 
by 

xs = A s ( T ,  Y )  - B,(U, Y)y,, (27) 

where As(T, Y)- is the Moore-Penrose inverse. Iterating (27) decreases ~-I(X) until a 
stationary X is obtained. 

5. Fine Tuning of the Tunneling Algorithm 

The tunneling method needs a pole strength parameter and a pole width parameter. 
However, we do not know a priori which pole strength and pole width is best. To see how 
the tunneling algorithm performs under various choices of pole strength and pole width, 
we do a small experiment where these factors are varied systematically. From this tuning 
experiment, we can get a feeling for usable values of these parameters. 

The tuning experiment has three factors: two different datasets of dissimilarities, 
various values of the pole strength parameter A and different values of the pole width to. 
The tunneling algorithm is started from a local minimum configuration that is known to be 
higher than the global minimum. To be more precise, for each combination of A and tothe 
same starting configuration is used, which is the sum of the local minimum and a small 
random perturbation that remains the same over this experiment. To rate the efficiency of the 
tunneling algorithm we compare the number of iterations needed to end the tunneling step. If 
it takes more than 1000 iterations we stop the tunneling step and regard it as having failed. 
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FIGURE 3. 

Number of iterations needed to finish the tunneling step for different values of the pole strength parameter 1/;t 
mad different normalizations of the dissimilarities rl 2. For every combination the tunneling step was stopped if 
1000 iterations was exceeded. The dissimilarities in plot a. stem from the Mani collection, those in plot b. from 
a regular two-dimensional grid of 9 points. 

The first example consists of data that originate from Robinson (1951), and were also 
analyzed by Hubert and Arabie (1986); the data come from the Mani collection of 8 
archaeological deposits. The second data set consists of distances between 9 points in a 
regular two dimensional grid. We are focusing on the tunneling step that moves away from 
the local minimum configuration with STRESS .01220370 for the Mani collection (global 
minimum STRESS .00654532), and a local minimum with STRESS .05670459 for the 
regular grid data (global minimum STRESS 0). The pole strength parameter was varied in 
18 steps from 1/1.5, 1/2, 1/2.5 . . . . .  1/10. The pole width was varied from .5, 1, 2, 3, 4, 5, 6, 
7, and 8. A three-dimensional graph of the results of both data sets is shown in Figure 3. 
In the plot the number of iterations needed to stop the tunneling step are given against 
different values of 1/)~ and to. We see that a large pole width and a large pole strength 
parameter increases the number of iterations needed to finish the tunneling step. For the 
Mani collection a pole strength value larger than 1/5 and a pole width larger than 4 results 
in many iterations in the tunneling step or even failure. In the grid example we see that a 
small pole strength and pole width performs not very good. These examples suggest the use 
of a moderate pole strength parameter, like 1/3, and a pole width of about n/4. 

6. An Experiment on Local Minima 

In this section we report a simulation experiment on the seriousness of the local 
minimum problem for dissimilarity matrices, using a known underlying configuration, for 
different dimensionalityp, number of objects n, amounts of perturbation, and for Euclid- 
ean distances and city-block distances. Our hypothesis for Euclidean distances is that as p 
gets larger (with respect to n) less local minima occur. This hypothesis is based on the fact 
that for p = 1 many local minima occur, and for p = n - 1 no local minima occur. We 
also expect that the number of local minima grows as the amount of error imposed on the 
dissimilarities increases. For city-block distances we expect many local minima (Heiser, 
1989; Hubert, Arabie, & Hesson-Mclnnis, 1992). 

The simulation experiment was performed as follows. For the Euclidean distance, we 
generated a random configuration matrix for each combination of the following three 
factors: 
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1. size of n, that is, 5, 10, 20, and 40, 
2. different values for the dimensionalityp, that is, 1, 2, 3, 5, and 10, 
3. different amount of error on the distance matrix, that is, 0%, 50%, 100%, and 250%. 

The distance matrix of the random configuration matrix was perturbed by error and used 
as a dissimilarity matrix, where the amount of error varies according to the levels of Factor 
3 above. We call such a dissimilarity matrix a gauge in the sequel. For each gauge, the 
SMACOF algorithm is started a hundred times from random n × p start configurations. 
We simply registered for each gauge which configuration yielded the lowest STRESS, and 
how often a local search ended in this candidate global minimum. In this way, we get an 
idea of the region of attraction of the candidate global minimum. Clearly, if no error is 
imposed the lowest local minimum has zero STRESS and hence is the global minimum. 
For city-block distances we used the same procedure for generating gauges, except that n 
was either 5 or 10. 

We used multiplicative error from a log-normal distribution as proposed by Wagenaar 
and Padmos (1971) to perturb the distance matrix to obtain a gauge. Thus, true distances 
are generated and subsequently multiplied by errors of a log-normal distribution, which 
are positive so that no negative dissimilarities in our gauge occur. Other error distributions 
(like the normal distribution with zero mean as used by De Soete, Hubert & Arabie, 1988) 
can have the disadvantage of possibly introducing negative dissimilarities. Although the 
algorithm could be adapted to deal with negative dissimilarities (see Heiser, 1991), we do 
not wish to introduce this latent factor in our simulation study. The construction of the 
gauges can be summarized as follows. Given the dimensionality p and the number of 
objects n, a configuration matrix is constructed with uniformly distributed random coor- 
dinates in the interval [0, 1). The a% error gauge is formed by multiplying each dissimi- 
larity by e ae/lO0, where e is standard normally distributed error (mean 0, variance 1). 

To find the number of different local minima we need to compare the local minimum 
configurations with each other. The comparison is complicated by the freedom of rotation. 
To decide whether two configurations are different, we compare two matrices of distances 
with the Tucker's congruence coefficient 

~i  <j wijdij(X1)dij(X2) 
2 1/2 (Ei<j wijdij(X,)) (~i<j wi~d/~(X2)) I/2 

(28) 

rather than the coordinates. Here, we regard two configurations equal if (28) is larger than 
1 - 1 0  - 7 .  

The results of the experiment are presented in Tables 2 and 3. We have to interpret 
these tables with some care, since the experiment is limited in size, compares only two 
datasets, and may depend on the accuracy chosen. The most striking fact from Table 2 is 
that for most combinations all 100 random start configurations ended in the candidate 
global minimum. Apparently, the SMACOF algorithm is quite capable in reaching the 
global minimum. Also, we find many different local minima forp  = 1 and only one forp  = 
10. This experiment lends support to the hypothesis that the local minimum problem is 
more severe for small dimensionality (p = 2, or p = 3) than for a larger dimensionality. 
As expected for the full-dimensional combinations o f p  and n (n = 5, p = 5; n = 5, p = 
10; n = 10, p = 10) with Euclidean distances all searches led to the same minimum. For 
Euclidean distances there is a slight indication that the number of local minima increases 
as the error increases. For city-block distances many local minima occur over all combi- 
nations. It seems that the more objects there are, the more severe the local minimum 
problem. As the error increases, the number of local minima seem to decrease. 
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Results  of  a simulation study on the number  of  local minima in MDS with 

Euclidean distances. Reported are the number  of  different local minima found 

after 100 random starts, and, in parentheses, the number  of  starts that ended in 

the lowest  local minimum. 

Dimen- Number Error level 
sionality ofob, iects 0 % 50 % , 100 % 250% 

1 5 36 (29) 10 (19) 4 (37) 1 (100) 
10 67 (32) 92 (2) 75 (2) 16 (7) 
20 65 (32) 100 (1) 95 (1) 86 (3) 
40 77 (16) 76 (5) 100 (1) 100 (1) 

2 5 1 (100) 1 (100) 1 (100) 1 (100) 
10 7 (62) 1 (100) 1 (100) 1 (100) 
20 4 (92) 4 (78) 5 (66) 1 (100) 
40 7 (93) 7 (90) 26 (45) 18 (3) 

3 5 2 (67) 1 (100) 1 (100) 1 (100) 
10 1 (100) 1 (100) 1 (100) 1 (100) 
20 1 (100) 1 (100) 1 (100) 1 (100) 
40 1 (100) 8 (38) 5 (63) 2 (56) 

5 5 1 (100) 1 (100) 1 (100) 1 (100) 
10 1 (100) 1 (100) 1 (100) 1 (100) 
20 1 (100) 1 (100) 1 (100) 2 (99) 
40 1 (100) 4 (67) 1 (100) 1 (100) 

10 5 1 (100) 1 (100) 1 (100) 1 (100) 
10 1 (100) 1 (100) 1 (100) 1 (100) 
20 1 (100) 1 (100) 1 (100) 1 (100) 
40 1 (100) 1 (100) 1 (100) 1 (100) 

7. Performance of the Tunneling Method 

In order to evaluate the tunneling method we consider four case studies: one artificial 
data set, and three empirical da ta  sets. The tunneling method is compared against the 
multiple random start approach, or, in short, multistart. Multistart is a simple and widely 
used method to find a global minimum. It repeatedly starts with a random configuration, 
and retains the best out of  k trials. Moreover, multistart is guaranteed to find a global 
minimum, albeit after infinitely many random starts, which is its weakness. Furthermore, 
multistart gives an indication of the region of attraction of a (global) minimum, which is the 
space from which all searches lead to the same minimum. 

Case 1 

The first small artificial example, studied extensi;eely by de Leeuw (1988), concerns a 
4 × 4 dissimilarity matrix, with all dissimilarities equal to l/X/6. De Leeuw reports three 
stationary two-dimensional configurations Xb X2, and X3: X 1 has four points equally 
spaced on a line with o-(X1) = 0.16666667, X2 has three points in the corners of an 
equilateral triangle and a point in the centroid with cr(Xe) = .06698730, and X3 has four 
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Table 3 

Results of  the simulation study on the number of local minima in MDS with 

city-block distances. Reported are the number of different local minima found 

after 100 random starts, and, in parentheses, the number of starts that ended in 

the lowest local minimum. 

Dimen- Number Error level 
sionality of objects 0 % .... 50 % 100 % 250% 

1 5 28 (31) 12 (16) 6 (30) 2 (92) 
10 76 (16) 89 (1) 47 (17) 20 (11) 

2 5 71 (1) 31 (15) 21 (23) 3 (71) 
10 99 (1) 100 (1) 87 (2) 81 (I) 

3 5 66 (1) 19 (32) 5 (70) 3 (77) 
10 100 (1) 99 (1) 100 (1) 59 (1) 

5 5 72 (1) 5 (94) 6 (16) 3 (98) 
10 100 (1) 100 (1) 100 (1) 31 (20) 

10 5 17 (17) 4 (97) 2 (99) 1 (100) 

points in the corners of a square with tr(X3) = .02859548. Other stationary points, which 
are in fact saddle points, can be obtained by imposing objects on top of each other, so that 
they have zero distance. 

We start the tunneling algorithm from X1, which is a stationary point for unidimen- 
sional scaling and a saddle point in two dimensions. The first objective for the tunneling 
algorithm is to find another configuration with a STRESS of 0.16666667, or lower. The 
tunneling algorithm was initialized with a starting configuration that is a sum of the 
unidimensional scaling solution and a random matrix. The latter is necessary, because we 
have to start tunneling from a different point than X 1 (since "rl(Xl) is undefined) and because 
we have to increase the rank of the solution from one to two. The pole strength parameter h 
was set to 1/3. After 45 iterations a solution was found with STRESS 0.12337749, which is lower 
than a(X1). A local search ended after 30 iterations in the square configuration X3, which is a 
global minimum of this example. Repeating the tunneling step results in finding a different 
square, which is a permutation (and/or rotation) of the square X1. 

Case 2 

Here the performance of the tunneling method is studied for the data gathered by 
Funk, Horowitz, Lipshitz, and Young (1974), also analyzed in Heiser (1991). They studied 
the perceived differences among thirteen ethnic subgroups of the American culture; 49 
students had to rate the difference between all pairs of ethnic subgroups on a nine-point 
rating scale (1 = very similar, 9 = very different). The data consist of the average dissim- 
ilarity among those 49 respondents. 

Multistart with 1000 random starts yielded about 850 different local minima. The 
histogram in Figure 4 shows the distribution of the STRESS of the local minima. The 
distribution is bimodal with the lowest STRESS value .06025. Starting from the worst local 
minimum with STRESS 0.08603658 and with )t = 1/3 and to = 10, the tunneling algorithm 
found a candidate global minimum with STRESS 0.06130282 in nine steps, which is larger 
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FIGURE 4. 
Histogram of the number of local minima of the Funk data. 
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than the one found by multistart. With ~, = 1/3 and ~o = 13 the tunneling method ended 
with a candidate global minimum with STRESS 0.06065357976. With )~ = 1/3 and o~ = 2 
the tunneling method ended with a candidate global minimum with STRESS 0.08146279. 
We found that the tunneling method finds better local minima easily in the early stages. 
However, in the final stage the tunneling step takes more time or may even fail. Occa- 
sionally, the tunneling step is finished rapidly, leading to a slightly better local minimum. 
For such cases it seems that the local search ended too early, which is repaired by the next 
tunneling step. This example with many local minima shows that the tunneling method 
behaves quite differently for various values of the pole width. Here, the tunneling method 
is able to find a local minimum close, but not equal to  the global minimum. 

Case 3 

Here the performance of the tunneling method for city-block distances is studied. The 
data used are reported by Green, Carmone, and Smith (1989, Appendix B, p. 382 ff.). 38 
students judged each pair out of 10 different cola brands on their similarity on a nine point 
rating scale (1 = not similar at all, 9 = very similar). The dissimilarities were accumulated 
over the subjects and are reported in Groenen, Mathar, and Heiser (1995). 

Multistart with 100 random starts yielded 100 different local minima, which confirms 
the severe local minimum problem for city-block distances. The worst local minimum 
found by multistart has STRESS 0.21343222, and the best has STRESS 0.04042472. Start- 
ing the tunneling method with ~o = 10 and )~ = 1/3 from the worst local minimum yielded 
a candidate global minimum at 0.14688168 in 9 tunneling steps. Redoing the tunneling 
method with w increased to 100 yielded a candidate global minimum STRESS of 
0.07095518 in 5 tunneling steps, whereas o~ = 1000 led to a STRESS of 0.03531523 in 6 
tunneling steps. This result shows that the tunneling method is able to outperform mul- 
tistart, but its success depends on the pole width parameter o~. Apparently, for MDS with 
city-block distances the local minimum problem is very severe. 

Case 4 

The second example with a real data set consists of citations between journals in the 
psychometric literature. Mapping of citation matrices has been applied by, amongst others, 
Weeks and Bentler (1982) and Tijssen (1992). The basic idea is that articles in a scientific 
journal in a specific field tend to cite articles in other journals in the same field. In this way 
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a map can be obtained to find groups of journals that are cognitively linked. The citation 
matrix between 28 journals is given in Table 4. Since the entries in Table 4 are similarity 
measures we need to transform them into dissimilarities. We use the gravity model 

d2(X ) = m i_,+ m +j (29) 
t~ij 

with ni] the number of citations between journal i and j, and mi+ the sum of the citations 
to journal i. Equation (29) models the gravitational force between large masses in physics, 
like moon and earth, to their distance. Thus, the force nij between two journals is inversely 
related to the square of their distance, given their masses mi+ and m+j. These masses 
correct for the total number of citations of a journal. Clearly, if a journal is cited very often 
the probability of another journal citing the first one is larger. This model has been used 
in a similar context by Zielman (1991), Groenen (1993) and Heiser and Groenen (1994). 
Model (29) translates easily into the framework of STRESS as 

{{mi+m+j'~,/2 )2 
o'2(X) = ~. w,~tl - -  / - d,/(X) (30) 

i<j \ \ nij / 

Setting 8iy = (rni+m+j/niy) 1/2 translates the gravity model back to STRESS. If nij is zero, 
8iy is not defined and wij is set to zero, otherwise wij is set to one. Table 4 gives the number 
of citations in journal i to journalj which may differ from the number of citations in journal 
j to journal i. Here, we are interested in the symmetric part of the data only, so Table 4 is 
symmetrized before applying the gravity model. Self-citations nil were excluded, since they 
do not contribute to the structure of citations among journals. 

To assess the local minimum problem for the citation data we did multistart with 100 
random starts and compared their solutions. We obtained 11 different local minima of 
which the lowest (or = .13532209) attracted 9% and the worst (or = .14316019) attracted 
1%. The nine best local minima are given in Figure 5 and the lowest local minimum in 
Figure 6. To compare the local minima, Psychometrika is placed in the origin, "Perc Mot 
Sk" positive on the first axis and zero on the second axis, and "Appl Psyc M" free on the 
first axis and positive on the second axis. In all solutions, the statistical journals are located 
on the left hand side, whereas the more psychologically oriented journals are located on 
the right-hand side, with Psychometrika in between. Vertically, there is an important 
difference between journals in the field of educational measurement near the top, and the 
area of mathematical psychology at the bottom. The differences between the local minima are 
small and mostly concern interchanging the order within the groups {e,f, k}, {s, h} and {j, 2}. 

The tunneling algorithm was started from the worst local minimum and yielded after 
one tunneling step Figure 5b. Further tunneling did not yield the best configuration found 
by multistart. The reason for the turmeling method to fail could be that the difference in 
STRESS values is too small, so that the tunneling function is not steep enough for leading 
the configuration towards the candidate global minimum. 

8. Conclusions and Discussion 

This paper has presented several results on the local minimum problem for MDS. 
Four cases can be distinguished: (a) unidimensional scaling for which the local minimum 
problem is particularly severe, (b) full-dimensional scaling with Euclidean distances which 
has no local minimum problem, (c) MDS with dimensionality from 2 to n - 2 using 
Euclidean distances for which our wamerical experiment suggests that the number of local 
minima decreases with increasing dimensionality, and (d) MDS with city-block distances 
for which many local minima were found. Next, the tunneling method was introduced, 
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FIGURE 5. 

i. C 2 = .13615614 (10%) 

The nine best local minima out of eleven obtained with multistart on the citation data. In parentheses the 
percentage of starts ending in that local minimum is given. 

which aims at finding an ever decreasing series of  local minima. The method iterates 
between a local search and a tunneling step in which a configuration is sought with equal 
or less STRESS than the previous local minimum. The proposed tunneling function was 
adapted partly to make it suitable for MDS and partly to make it bet ter  behaved. Several 
problems have been solved so that the tunneling function does not lead to trivial solutions. 
The function can handle more than one pole, which is needed to avoid unwanted station- 
ary points in the tunneling function. Furthermore,  we presented a minimization algorithm 
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FIGURE 6. 
The candidate global minimum of the citation data. This scatter plot is the same as Figure 5a. 
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for the tunneling function based on iterative majorization and we extended the parametric 
programming algorithm to majorization. Several new majorization inequalities were 
found. A tuning study showed that a pole strength parameter of 1/2 or 1/3 and the pole 
width parameter of n/4 yields satisfactory results. 

In four case studies tunneling was compared with multistart. It turns out that tunnel- 
ing performs adequately in most cases. However, sometimes the tunneling method is not 
able to find a better minimum than multistart. We remark that the tunneling method is 
able to find better local minima systematically. Therefore, it is a serious contender of 
multistart for finding a global minimum. However, the method is not guaranteed to find a 
global minimum and may stop too early. The effectiveness and speed of the tunneling 
method is greatly influenced by the pole width parameter and the pole strength parameter. 
For some combinations, we obtain good results, for others the method is slow or fails. It 
seems that the performance of the tunneling method is related to the dataset itself; if the 
region of attraction of a global minimum is large, then the tunneling method finds the 
global minimum relatively easily. 

In this paper we have limited ourselves to metric MDS. Without any complication the 
tunneling method could be adapted for nonmetric MDS, where a step is included for 
finding optimal disparities. However, this changes the minimization problem of STRESS 
and influences the occurrence of local minima. Therefore, a separate study for local 
minima in nonmetric MDS is needed, where the performance of the tunneling method 
needs to be reconsidered. 
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