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ANALYSIS OF RESIDUALS FOR THE MULTINOMIAL 
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Using the item response model as developed on the multinomiat distribution, asymptotic 
variances are obtained for residuals associated with response patterns and first-, and second-order 
marginal frequencies of manifest variables. When the model does not fit well, an examination of 
these residuals may reveal the source of the poor fit. Finally, a limited-information test of fit for the 
model is developed by using residuals defined for the first-, and second-order marginals. Model 
evaluation based on residuals for these marginals is particularly useful when the response pattern 
frequencies are sparse. 
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1. Introduction 

In applications of the item response model, goodness of fit is typically assessed by 
using the the Pearson and likelihood ratio statistics, which have approximate chi-square 
distributions in large samples. This paper presents associated methods for the analysis of 
residuals in the two parameter item response model. A diagnostic developed here is an 
adjusted residual for a cell in the cross-classification of the responses to the manifest 
variables. For k manifest variables, the cross-classification has 2 k cells, and if the model fits 
poorly, the set of adjusted residuals can be used to attribute lack of fit to one or more of 
the associated response patterns. 

When the number of manifest variables is large, say greater than seven or eight, and 
the sample size is small to moderate, other approaches are needed, because the table of 
frequencies for the cross-classification of item responses becomes so sparse that the chi- 
square distribution is not a valid asymptotic approximation for traditional goodness-of-fit 
statistics. For this situation, the examination of residuals associated with the first-, and 
second-order marginal frequencies is proposed for assessing how well the model fits each 
variable or pair of variables. The first-, and second-order marginals are also used to 
develop a limited-information test of fit for the model, and this test is compared to a 
similar one found in Christoffersson (1975) and Muth6n (1978). 

Throughout this paper, the focus is on residual analysis as it may be carried out in 
association with traditional goodness-of-fit tests. A general review of assessing the fit of 
item-response models is given in Hambleton, Swaminathan, and Rogers (1991). 

Item Response Model 

The two-parameter item response model is presented in this section. According to this 
model, the probability of the response to a manifest variable, sometimes also referred to 
as an item, can be given by a logistic item response function: 
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zr(Yi = 1[/];, X = x) = (1 + exp(-/3i0 - /3 i lX) ) -  1 

where Y/represents the response to item i, 

/3i0 = intercept parameter  for item i, 
/ 3 i l  = slope parameter  for item i, 

~ = (/30i, /310, and 
x = value taken on by latent random variable X. 

Since 

it follows that 

7r(Y/= 0 l / ] / ,X  = x )  = 1.0 - 7r(Yi = l l t l ; , x  : x) ,  

• r(Yi =Yil[3~, x) = 7r(Yi = lltl;, x)Y'[1.O - 7r(Yi = 11/3;, X)] 1 - y i  

(1) 

i=1 

/3ol 
/3o2 

where /3  = /3o3 

,/30k 

/3il 
/312 

/313 

/31k. 

Finally, the probability of response pattern s, say, is obtained by taking the expected 
value of the conditional probability over the distribution of X in the population, and is 
sometimes called the marginal probability: 

7 r , ( / 3 )  = = Y s l / 3 )  =  r(Y - Y , I / $ ,  x)f(x) dx, (3) 

where f ( x )  is the density function of X in the population of respondents. The notation 
7rs(/3 ) is introduced here for use later where a compact notation is required. 

If V represents a T-dimensional multinomial random vector of frequencies associated 
with the response patterns, the distribution of V is given by 

L 
"rr(V = n) = n! 11 

s=l n,~ ! 
(4) 

where n = vector of observed frequencies, 

ns = element s of n, and 
n = total sample size = E L 1  n s. 

Probit model is a term sometimes associated with the normal distribution. Given the 
normal distribution for f (x) ,  and the logit function in Expression (1), Bartholomew (1987) 
refers to Expression (3) as a logit/probit model. A necessary condition for the identification 

(2) 
k 

• r(Y = yl~, x) = YI ~r(Yi = 11/3, x)r'[1 - ~'(Yi = l[/3, x)] 1-y', 

It is assumed that, conditional upon the latent variable, responses to the manifest 
variables are independent. Let Y represent a random vector of responses to the items, with 
element Y/, and let y represent a realized value of Y. Then 
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of the model is k -> 3. The maximum likelihood solution for parameter estimates based on 
(4), but with a probit function in place of (1), was first given by Bock and Lieberman 
(1970). Bock and Aitken (1981) refer to estimation based on the likelihood function that 
follows from (4) as the marginal maximum likelihood technique. Holland (1990) and 
Cressie and Holland (1983) also use the marginal maximum likelihood method in item 
response models. The model essentially gives a full-information factor analysis of dichot- 
omous variables; the presentation here, however, is confined to a single factor. See Takane 
and de Leeuw (1987) for a thorough treatment of the relationship between the item 
response model and dichotomous variable factor analysis. 

2. Residuals 

The adequacy of the model may be assessed with goodness-of-fit tests for the multi- 
nomial distribution that are based on traditional likelihood ratio and Pearson statistics. 
Lack of fit may be due to a misspecification in any aspect of the model given above. Two 
key features of the model are the item response curve given in (1) and conditional inde- 
pendence given in (2). The remainder of the paper is focused primarily on analysis of 
residuals for detecting lack of fit due to failure of conditional independence. While the 
logistic response curve has been used with enormous success in models for categorical 
variables, lack of fit may be due to an error in the specification of this curve. For inquiries 
where the choice of item response curve is an issue, the methodology given by Stout (1987) 
is recommended as a complement to the methodology developed here. 

To form residuals for the cells of the multinomial vector of response patterns, there 
are several possible approaches, including examining Ps - 1rs(/~) directly, where/~s = ns/n 
is element s of ~, the vector of sample proportions, ~ is an estimator for the parameter 
matrix, and ~rs(~l ) is the estimated expected proportion for cell s. For the multinomial 
model, it has been traditional to examine standardized residuals (Cochran, 1954). Let 

re = (7r,(~))1/2 (5) 

then nlArs is the standardized residual, n E s r 2 is equal to the Pearson chi-square good- 
ness-of-fit statistic. Under some circumstances, the set of these residuals may be useful for 
finding cells that are not well fit by the model. However, since the distribution of nl/2rs is 
not necessarily N(0, 1), it is sometimes difficult to assess the significance of the magnitude 
of the standardized residual. Therefore, it is useful to divide the statistic by its standard 
error: 

nlnr, 
Cr, ' 

yielding the adjusted residual (Haberman, 1973), which has an approximate N(0, 1) dis- 
tribution in large samples. 

Consider the vector-valued function of p and/3: 

h(p,/3) = D(~'(/3))- 1/2(p _ ~r(~)), (6) 

where ~r(~) = vector of multinomial probabilities as a function of ~, 
and D(~'(/3)) = diagonal matrix with element (s, s) equal to 7rs(~). 

The T dimensional vector of residuals, r, is obtained from the function h(p, /3) when p 
takes on the value p and/3 takes on the value ~1. For the general multinomial model, the 
asymptotic covariance matrix of r has been given by Haberman (1973) and Rao (1973). 
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Cochran (1955) also considered asymptotic variances for residuals. The following result 
applies this line of work on the multinomial model to the item response model. 

Result 1. Assuming the regularity conditions given by Birch (1964a), 
L 

nl/2r --* N(0, ~ r ) ,  (7) 
L 

where l~r = I - 7rm(1r') u2 - A(A'A)-IA ', ~ indicates convergence in Law 

A = D(w) -1/2 0~r(/3)/0 vec/3, evaluated at the true parameter values, 

vec/3 = (~12)with intercepts stacked on top of slopes, and 

rr 1/2 = vector with elements given by square root of true proportions. 

Result 1 follows directly from Haberman (1973) and Rao (1973). 
Expression (7) applies to the item response model presented above, with 7r(/3) given 

by expression (4) and an element of 0~r(13)/Ovec/3 given by 

O~hi [y~ -- (1 + exp (-/3o/ - 131ix)) =Ys, I~,x) dE(x), 

where Yis is element i of Ys- This integral must be evaluated by numerical quadrature. 
Define ~r  to be the covariance matrix of r, with estimator ~r  defined by 

~r = n - l ~ r  I ,~= ~(~),~ =~. 

The square root of the diagonal elements from ~r can be used as estimated standard errors 
for calculating the adjusted residuals, nl/Zr/6"r is the adjusted residual evaluated at the 
maximum likelihood estimates, ~'(t~) and ~. Anderson (1990) uses adjusted residuals for 
the one-parameter or Rasch item response model. The results here for the two-parameter 
model are more general. 

Example 1 
For an example of the use of adjusted residuals in assessing the adequacy of a model, 

data on sex role expectations is taken from a previous analysis by Duncan (1979). In the 
1953 Detroit Area Study, a sample of 257 mothers were asked the following question 
regarding sex role expectations: "Here are some things that might be done by a boy or a 
girl. Suppose the person were 13 years old. As I read each of these to you, I would like you 
to tell me if it should be done as a regular task by a boy, by a girl, or by both. 

(1) Shoveling walks 
(2) Washing the car 
(3) Dusting furniture 
(4) Making beds" (Duncan, 1979, p. 252). 

Responses of "boy" to Items 1 and 2 and "girl" to Items 3 and 4 were coded as "0" and are 
referred to as the traditional answers. Responses of "both", which Duncan refers to as the 
egalitarian answer, were coded as "1" for each item. Duncan deleted the "very few re- 
spondents" giving item cross-gender responses, for example, answers of "boy" to Items 3 
or 4, or "girl" to Items 1 or 2. 

For this data, the logit/probit model of Expressions (3) and (4) does not show a very 
good fit. The likelihood ratio statistic G 2 has a value of 25.7 on seven degrees of freedom, 
p < 0.01. Although the fit is poor, an examination of  the standardized residuals shown in 
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Table 1 

S tandardized  and Adjus ted  Res iduals  
for Sex  Role  D a t a  

Response 

P a t t e r n  

0000 

1000 

0100 

1100 

0010 

1010 

ns nCrs 

S tandard ized  Adjus ted  

Residual Residual  

86 91.18 -0.54 -2.80 

20 18.88 0.26 0.58 

12 11.25 0.23 0.44 

8 4.19 1.86 2.09 

7 5.53 0.63 1.45 

2 4.21 -1.08 -1.25 

0110 

1110 

0001 

I001 

0101 

1101 

0011 

1011 

0111 

1111 

4 3.80 0.10 0.12 

2 3.43 -0.77 -1.02 

24 23.09 0.19 0.46 

12 10.55 0.45 0.55 

8 8.21 -0.07 -0.09 

1 5.17 -1.83 -2.46 

21 13.24 2.13 3.00 

7 13.69 -1.81 -3.11 

8 14.92 -1.79 -3.19 

35 15.69 1.84 3.79 

Table 1 reveals only one large value, 2.13, which is associated with response pattern (0011). 
In his original analysis of this data, Duncan was looking for evidence to support a theory 
of ideological responding--namely, that some respondents would always give traditional 
answers, regardless of the situation, while others would always give egalitarian answers, 
regardless of the situation. Those who answered from a nonideological basis were called 
situational responders. 

The assumption of conditional independence in (2) implies that conditional on the 
latent variable X, the manifest variables are independent. Conditional independence sub- 
sumes an assumption of local independence, the principle that responding to any item 
should not influence responses to the other items. Sometimes specific features of items, 
such as similar wording, may induce violations of local independence. The essence of the 
response consistency model, as it has been called, is that there is a complete failure of local 
independence for two domains of the population. Within these domains, which are iden- 
tified with the response patterns 0000 and 1111, respondents give answers to some ques- 
tions by invoking an ideology, and once invoked, that ideology determines that any other 
questions on the same topic will be answered in exactly the same way, without regard to 
considerations about specific situations presented in the questions. If the answers to items 
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i and j are represented as Yi = Yi and I') = yj, then for an ideological responder, P(Yi = 
I~) = 1.0 for i 4: j. This probability is not consistent with the model given in (3) and (4). 

Although not every respondent answering with a completely consistent response pat- 
tern does so on the basis of ideology, one piece of evidence in support of ideological 
responding would be a poor fit for the entirely consistent response patterns (0000 and 
1111) under some baseline model. Judging on the basis of the standardized residuals, there 
would seem to be little support for the contention that the poor fit of the logit/probit model 
could be attributed to the consistent response patterns. However, by examining the ad- 
justed residuals, it becomes apparent that the consistent response patterns are indeed 
poorly fit by the model. Pattern (1111), in fact, has the largest residual. It appears that 
using the logit/probit model of a single continuous latent variable as a baseline, egalitarian 
responders are under represented by the model, and consistent traditional responders are 
over represented. Although adjusted residuals were not available for Duncan to examine, 
he used a model with latent classes for consistent responders to obtain a good fit for the 
data. See also Tuch (1981). 

This example has shown that the traditional standardized residual may be completely 
inadequate for identifying response patterns that are poorly fit by the IRT. model. More- 
over, the large adjusted residuals were associated with response patterns in a manner 
suggested by a substantive theory that the responses of some individuals to attitudinal 
questions cannot be described by the model of Expressions (3) and (4) due to the influ- 
ences of ideology. It is noteworthy that several large residuals are present for patterns 
besides those for consistent responding. These other large residuals suggest that response 
consistency may not be the only model that is appropriate for the data. See Reiser and 
Schuessler (1990) for further discussion. Configural Frequency Analysis (von Eye, 1990) is 
essentially equivalent to the use of the residuals in this example. 

First- and Second-Order Marginal Frequencies 

When the number of manifest variables is large (greater than seven or eight), and the 
sample size is moderate, there are often so many cells in the vector V that have low 
expected values (even with a sample as large as, say, 3000), that the chi-square approxi- 
mation for the distribution of the likelihood ratio and Pearson goodness-of-fit statistics is 
not valid (Koehler, 1986; Reiser & VandenBerg, 1994; Tate & Hyer, 1973). In such a 
situation, it may be more reasonable to assess the fit of the model on the first- and 
second-order marginal frequencies (i.e., the univariate and bivariate distributions of the 
manifest variables), rather than the T cells of the entire vector ¥. The first- and second- 
order marginal frequencies of the manifest variables are almost always substantially larger 
than zero, even in small data sets; and when sparseness is present, tests that are a function 
of the marginals usually perform better than tests based on the full cross-classification 
(Agresti, Lipsitz & Lang, 1992; Agresti & Yang, 1987). In this discussion, the reference to 
marginal distributions indicates the distribution of manifest variable(s) with respect to the 
other manifest variables. The use of the term marginal in this section should not be 
confused with the usage in section t, where it referred to the distribution of the manifest 
variables relative to the latent variable. 

In the remainder of this section, adjusted residuals are developed for the first- and 
second-order marginal frequencies. Christoffersson (1975) and Muth6n (1978, 1988) give 
a method for estimation of parameters and a large sample test of fit using only the first- and 
second-order marginals. Results from the method given below will be compared to results 
obtained by their methods. 

Since Y is a vector of discrete variables, the first, and second-order marginal distri- 
butions for elements of Y can be obtained by ordinary summation. Under the model the 
first-order marginal proportion for variable i can be defined by 
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Pg([3) = P(Yi = 11/3) = Y,s%(~), 
S 

where Yis is element i of  response pattern s, and takes on the value 0 or 1; the true 
first-order marginal proportion is given by 

Pg = P(Yi = 1) = ~ y j s ,  
3 

where % is the true proportion for cell s. 
Under the model, the second-order marginal proportion for variables Yi and Yj can be 

defined as 

P0(1, 1[/]) = P(Yg = 1, ~ = 1[~) = ~ y~#j, cS(j6), 
$ 

and the true second-order marginal proportion is given by 

P0(1, 1) = P(Yi = 1, Yj = 1) = 

The summation across the response patterns to 

~, Yi#~s rr~. 
$ 

realize the marginal proportions 
represents a transformation of the joint proportions in the vector ~r. The summation can 
be implemented via multiplication by matrix M, which has elements consisting of 0's and 
l's. The number of rows in M is equal to l k ( k  + 1), which is the number of first- and 
second-order marginals, and the number of columns is 2 k, which is the number of cells in 
• r. Elements of M are determined from the response patterns associated with the cells of 
~,. In order to obtain the first-order marginals, elements of M are assigned values so that 
the proportions are summed for all cells where Yi has the value "1" in the associated 
response pattern. Similarly, to obtain the second-order marginals, elements of M are 
assigned values so that the proportions are summed for all cells where both Yi and)9 have 
the value "1". Specifically, f o r j  = 1, 2 . . . .  k; i = j , j  + 1 . . .  k; s = 1, 2 , . . .  T; and e = 
(j - 1)k + 0.5( j ) ( j  - 1) + i, element es of M is given by 

{ ~ if y~s = yy, = 1 
mes = otherwise. 

Define ~ as the k • k matrix of first- and second-order marginal proportions, with element 
Pij(1, 1) equal to a first-order marginal if i = j and a second-order marginal if i ¢ j .  Let 
ve ch (~ )  represent the diagonal and lower off diagonal elements of ~¥ stacked into a 
vector, then 

v e c h ( ~ )  = M1r. 

Since the matrix M consists of fixed O's and l's, the first- and second-order marginals in 
represent linear combinations of the multinomial proportions in ~'. 

There are a number of ways to define a residual for the first- or second-order mar- 
ginal. Some possibilities are 

e = P;j(1, 1) - P~j(1, 11~), e = 
Pii - Pij(1, 1Ii~) Pq - P/i(1, 1{/~) 

. . . . .  and e = -'PT, j(1, aI/J)"" &(1,110) - '  

where P0(1, 1]/~) = P(Yi = 1, Y; = lll~) = m~zr(l~), 

P , ; O ,  1) = P(Y, = 1, ~ = 1) = m ~ ,  
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and m~ is row £ of matrix M defined earlier. Although the definition given above in the 
middle has a similar form to the traditional standardized residual, the unstandardized 
residual, e = Pij(1, 1) - Ply(l, 1118), will be used because the presentation of results in 
subsequent sections will be simplified considerably by that choice. Although these results 
will be based on the unstandardized residual, the results are valid for the standardized 
residual as well. 

The vector of unstandardized residuals for the first- and second-order marginals is 
defined by the following transformation: 

e = M( [~  - , r ( ~ ) ) .  ( 8 )  

Result 2. Assuming the regularity conditions given by Birch (1964a), 

L 
nl/Ze -+ N(O, lie),  

where 1~, = M I I , M ' ,  

l-l. = D(~') - ~'~r' - G(A'A) - 1G', 

0~(18) 
and G = 

0vec/3 " 

The validity of Result 2 can be shown by an application of the multivariate delta method 
(the method of statistical differentials). It can be seen from expression (8) that the ele- 
ments of e are linear combinations of the unstandardized residuals, u = ~ - ~'(18), 
associated with the multinomial proportions. The covariance matrix of e can be found by 
starting with the covariance matrix for u, which closely resembles (7). 

Define the following vector valued function of p and ~r(l~): 

h ( p ,  ~r(j~))  = p - xr(13 ) .  

Then u = h(~, ~r(~)), and by Theorem 14.6-2 of Bishop, Fienberg and Holland (1975), 

L ah 

The use of expression (9) requires the partial derivative of h(p, ~'(18)) with respect to 
p and an expression for X 0. Proceeding to obtain the necessary expressions, 

L 
na/2([~ - w) --->N(0, D(~r) - ~ '~ ' ) ,  (10) 

by Theorem 14.3.4 in Bishop, Fienberg and Holland, which gives 1£ 0. 
The partial derivative of h(p, 7r(i[3)) with respect to p follows from the chain rule: 

Oh 0or O vec ]3(p) 
- I  

Op O vec ~ Op 

/3 as a function of p is not known explicitly, but the existence of that function can be 
established by the Implicit Function Theorem. Using this approach, Birch (1964a) obtains 

o vec 18(p) 
(A'A) - 1A'D(~) - 1/2. 

0 p  

Then, with G = 0~'/0 vec ~, 
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ah 
- -  = I - G(A'A) - ~A'D(~) - ~/2 
j p  

when evaluated at p = ~-, the true value. 
Finally, applying these results to (9), 

L 
nl/2u --~ N(0, ,-Q,u), 

where 

£ 1  u = ( I  - G ( A ' A )  - 1 A ' D ( a r )  - 1 / 2 ) ( D ( T r )  - ~ T r ' ) ) ( D ( a r )  - 1 / 2 A G ' ( A ' A )  - 1  _ I ) .  

After multiplying, and using A'cr 1/2 = ~ 0~([3)/0 vec 13 = 0, the expression simplifies as 
follows: 

f~, = D(~r) - cry" - G (A 'A ) -1 G ' .  (11) 

Now returning to the residuals on the first- and second-order marginals, which are 
linear combinations of the elements in u, Result 2 follows from (11) and Result 6a.l(ii) of 
Rao (1973, p. 383). 

Define ~e to be the asymptotic covariance matrix of the first- and second-order 
residuals, with estimator ~e defined by 

~e = n - 1M(D('a') - 7r~r' - G(A'A) - 1G')M' [ ~ = ~(~),g =ti (12) 

n ~  e is consistent for l~ e. 
The rank of ~e will be needed in the next section in order to determine degrees of 

freedom for the distribution of a quadratic form, so the rank is discussed now. ~e can be 
factored as follows: 

MD(~') - 1/2(I - " / T l / 2 ( - ' i ' l " )  1 / 2  - -  A(A'A) - 1A')D('n') - 1/2M'. 

Under  the condition that all 1r s > 0, D('tr) 1/2 is a square, full-rank diagonal matrix, so the 
rank of ~e will be determined by the rank of (I - "h '1/2( ' /1") 1/2 - A(A'A)-IA ') and the rank 
of M. (I - ¢tl/2(rr') 1/2 - A(A'A)-IA ') is idempotent with rank equal to trace which is equal 

k to 2 - 2k - 1. M generally has full row rank equal to 2 k • (k + 1). Therefore the rank 
of ~e will in general be equal to min [2 k - 2k - 1, 2 k • (k + 1)]. Certain configurations 
of true proportions can reduce the rank. For example, for any i and j  where/30/=/30j and 
/ 3 1 i  = / 3 1 j  , the rank of ~e will be reduced by 2.0. 

As in the previous section, estimated standard errors for the residuals can be obtained 

by taking square roots of the diagonal elements of ~e. 

Example 2 
In this example, the responses of 917 German workers to eight questions regarding 

job satisfaction are analyzed. The items are from Krebs and Schuessler (1987), and have 
also been studied by Reiser and Schuessler (1990). The eight items and their means 
(proportion keyed responses) are as shown in Table 2. 

Fitting the logit/probit model described earlier gives a likelihood ratio statistic of 
G 2 = 150, on, ostensibly, 239 degrees of freedom. However, a large number of response 
patterns are unrepresented in the data set. Of  the 28 = 256 response patterns, 150 showed 
no cases and another 50 showed only one. Under  these circumstances, many expected cell 
frequencies will be very close to zero, and the tabulated significance level of G ~, as taken 
from a chi-square distribution, will not be valid. Simulation results from Reiser and Van- 
denBerg (1994) show that for eight variables and a sample size of around 1000, the G 2 
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Table 2 

Job Satisfaction Items 

No. Direction Item Mean KEY 

1 P 
2 N 
3 P 
4 N 
5 P 
6 N 
7 P 
8 N 

Satisfied .88 A 
Like more freedom .62 D 
Workers feel they belong .83 A 
Too little variety .82 D 
Job gives me a chance .69 A 
Little share in deciding .69 D 
Job means more than money .75 A 
Must be better places to work .25 D 

statistics has low power due to sparseness. One possible correction for this problem would 
be to combine small frequencies, which for this data yields 39 degrees of freedom. The 
adjustment of combining cells works well if there is only a small number of cells with low 
expected values. When there is a large number of small frequencies, as here, combining 
them is not satisfactory, because the data used for the test of fit does not even resemble the 
data used for estimation of the model unless there is a natural way to carry out the 
combinations (Agresti, 1990, p. 247). In this situation, both tests, on the original 256 
response patterns and on the combined frequencies, have very little validity for assessing 
the fit of the model. 

Because the frequencies for the response patterns are so sparse, it may be more useful 
to examine how well the model reproduces the first- and second-order marginal frequen- 
cies, which are almost always substantially larger than zero. These frequencies, as well as 
discrepancies between observed and expected values under the model are shown in Table 
3, parts (a) and (b). Most of the differences between observed and expected values are 
small, but some differences, with values around 10 and 13, appear to be large. By looking 
only at the frequencies, it is difficult to know how large differences should be in order to 
be considered too large. In order to assess the magnitudes of the differences, standardized 
residuals and adjusted residuals are shown in Table 3, parts (c) and (d). None of the 
standardized residuals shown in Table 3(c) are large; but when judged relative to their 
standard errors, so that each has an approximate N(0, 1) distribution as in Table 3(d), 
some of them are quite large. Among the several large adjusted residuals, -2.817, which 
corresponds to the second-order marginal frequency between variables two and seven, has 
the largest magnitude. The probability that a standard normal deviate exceeds 2.817 in 
absolute value is only 0.0048. Given that this residual was selected from the total of 36 
residuals in the table, one cannot conclusively state that the model of a single latent 
variable does not fit the data, because with simultaneous inference on several residuals, the 
large magnitudes may be due just to chance. However, it seems unlikely that the model 
adequately accounts for the association between several pairs of variables, and in the next 
section some methods are considered to assess the magnitude of the residuals jointly. It is 
notable that the adjusted residuals for the first-order marginals are quite small. Any large 
residuals associated with the first-order marginals would have been an indication that the 
item response curve (1) may have been misspecified. Since the first-order marginals are fit 
so well, there is no specific evidence among the residuals that lack of fit could be due to 
use of the two-parameter logistic item response curve. As mentioned previously, other 
methods may be more appropriate for inquiries as to the choice of item response curve. 
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Table 3 

Observed Frequencies and Residuals  

519 

1 2 

Matrix of Observed First-, and 

Second-Order Frequencies 

3 4 5 6 7 8 

1 107 

2 76 352 

3 39 90 155 

4 58 114 61 169 

5 71 163 79 109 

6 66 199 89 127 

7 58 111 71 86 

8 100 305 131 155 

(b) 

283 

169 344 

106 128 

249 291 

Matrix of Residuals for First-, and 

Second-Order Frequencies 

1 1.55 

2 4.53 1.40 

3 0.90 1.96 1.12 

4 0.121 -1.47 0.34 2.67 

5 4.37 1.41 0.56 0.88 

6 8.03 1 0 . 3 1  -0.88 6.87 

7 7.17 -13.61 10.62 4.49 

8 3.81 6:87 -2.29 1.73 

1.77 

3.78 1.59 

-3.53 1.29 

3.62 -4.21 

229 

200 689 

1.26 

5.20 0.30 

A multivariate procedure for assessing the magnitude of the residuals as a set is 
available in a QPLOT. Figure 1 shows such a plot, where each normalized (adjusted) 
residual is plotted against its normalized quantile. The large negative residual, -2.817, is 
not included in the figure, resulting in a display where a line drawn through the residuals 
would with slope roughly equal to 1.0. When the residuals fall along this 45 ° line, the 
pattern is usually interpreted as an indication of a moderate fit. However, if the large 
negative value were included, a line through the residuals would have a slope substantially 
greater than 1.0, so the Q P L O T  indicates a moderate to poor fit for the model. Strictly 
speaking, the QPLOT method assumes independently distributed residuals, an assumption 
which does not hold for the data in Figure 1. Although the plot seems useful here, a more 
rigorous method would be desirable. Such a method is given in the next section. Ludlow 
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T a b l e  3 ( c o n t . )  

O b s e r v e d  F r e q u e n c i e s  a n d  R e s i d u a l s  

(c) Standardized residual: r t l /2 /~- l /2(O - J~) 

1 0.146 

2 0.536 0.075 

3 0.145 0.209 0.087 

4 0.158 -0.140 0.044 0.209 

5 0.535 0.110 0.063 0.087 

6 0.933 0.750 0.093 0.630 

7 1.006 -1.218 1.367 0.497 

8 0.389 0.400 -0.199 0.137 

(d) 

0.107 

0.296 0.087 

0.335 0.116 

0.230 -0.245 

^ - -1  z Adjusted Residuals: a n 2 

0.086 

0.373 

1 1.724 

2 1.307 1.420 

3 0.262 0.457 1.684 

4 0.536 -0.414 0.111 1.501 

5 1.330 0.306 1.386 0.270 

6 2 .466  2 .217  0.218 1.980 

7 1.972 -2 .817  2 .446 1.292 

8 1.469 1.579 -0.662 0.547 

0.513 

0.887 1.399 

0.779 0.287 1.687 

0.934 -1.036 1.279 

0.014 

0.812 

(1986) gives a much more extensive treatment on graphical analysis of residuals in item 
response models. 

3. A Limited-Information Test of Fit 

We may define differences associated with the first-, and second-order marginals such 
that 

Pi = e i ( ~ )  + ~i, and 

P,j(1, 1) = Pij(1, 11/3) + ~ij. 

The error terms defined above may be placed into the vector 6, where 

= M(~ - ~'(~)), 
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QPLOT of Residuals 
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FIGURE 1. 

Plot of normalized residuals versus normalized quantiles. 

A more precise method to assess the residuals as a set would be to test the null 
hypothesis that 3, the vector of difference, is equal to the zero. The third main result of this 
paper gives a statistic that may be used for this test. 

Result 3. Under the null hypothesis H0: ~ = 0, and assuming the regularity conditions 
of Birch (1964a), the statistic 

X2w = e ' ~  e le  (13) 

has a limiting chi-square distribution. 
Since it has already been established that the limiting distribution of e is multivariate 

normal, and since ~e is converging stochastically to ~e, the limiting distribution of X2w as 
n --~ oo is the x2-distribution, by Theorem 2.4.5 of Anderson (1984). The degrees of 
freedom will be determined by the rank of ~e, which was given in the previous section as 
generally equal to min [½k • (k + 1), 2 k - 2k - 1]. In some cases, as discussed above, the 
degrees of freedom will be reduced. For k -< 4, ~e will be singular. The calculation of Xew 
requires an estimator for ~;e, which may be based on (12) as given in the previous section. 

In practice, there may be high multicollinearity between the linear combinations that 
produce the second-order marginals when some items have nearly identical parameters. In 
this case, it is advantageous to reformulate the model with equality restrictions on the 
appropriate parameters, and to reduce the dimension of ~;e. Multicollinearity may also be 
present among the linear combinations that produce the first-order marginals and the basis 
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vectors that represent the intercept parameters. In such a case, it is more practical to 
calculate X~ based on residuals for only the second-order marginals. Also, if only second- 
order marginals are used when k = 4, then ];e will be full rank. 

Example 2. Continued 

In this application, X2w, which represents the statistic calculated on the first- and 
second-order marginats, is equal to 61.64 on 36 degrees of freedom (p < 0.005), indicating 
a poor fit and a sharp discrepancy from the likelihood ratio test considered earlier. Given 
the poor fit and the residuals shown in Figure 1, it seems that the single factor model 
provides a poor representation of the relationship between several item pairs, particularly 
Item 2 and Item 7. The aspects of work satisfaction tapped by these item pairs require at 
least a second latent variable which, as suggested by item content, may be associated with 
self-fulfillment. 

The procedure described above represents full-information estimation of parameters 
with a limited-information test of fit. Christoffersson (1975) and Muth6n (1978) give 
methods where both estimation and the test of fit are based on limited information. Using 
the either the FADIV (Andersson, Christoffersson, Muth6n, 1974) or LISCOMP (Muth6n, 
1988) computer programs for limited-information estimation/limited-information test of 
fit, a chi-square value of 36.85 on 20 degrees of freedom is obtained for a one-factor model 
(0.01 < p < 0.05). Although the test in the preceding paragraph has a much lower 
p-value, the decision regarding the model would be the same for both tests at the a = 0.05 
level. Even though these two limited-information tests are both calculated on residuals 
associated with the first- and second-order ma'rginals, they are not equivalent and do not 
have the same degrees of freedom. It should be noted that while adding parameters to the 
model may change the value taken on by the statistic given in (13), doing so will not 
necessarily change the degrees of freedom for the distribution of the statistic under H 0. 

In most applications, these two tests can be expected to yield the same conclusion. 
However, in smaller samples with a large number of variables, the tests may often give 
different results. Simulations by Reiser and VandenBerg (1994) using limited-information 
estimation/limited-information test of fit show that as the model becomes larger, larger 
sample sizes are needed for the asymptotic chi-square approximation to be valid. Similar 
results are found in Muth6n and Kaplan (1992). Simulations now in progress using the 
method developed above--full information estimation/limited-information test of fit-- 
show that the asymptotic chi-square approximation for the test statistic performs well even 
with a large number of variables in smaller samples. 

Any significant differences in performance between the test developed above and the 
test from FADIV or LISCOMP could be due to the use of a different estimator for the 
covariance matrix of the residuals, and/or to the use of different information when calcu- 
lating parameter estimates. Since the estimator for the covariance matrix given here is 
based on the maximum likelihood estimator of ~', it may be more efficient in moderate size 
samples than the estimator given by Christoffersson (1975), which is based on the sample 
proportions. See Agresti (1990, p. 182.) This estimated covariance matrix for the residuals 
appears directly in the expression for the test statistic calculated on the marginals, so more 
efficiency in estimating the covariance matrix could bring about superior performance for 
the test statistic given in (13). Parameter estimates also influence the magnitude of the test 
statistic, primarily through the calculation of residuals. Since the full-information param- 
eter estimator presented here may have a smaller mean square error than the limited- 
information parameter estimator, the residual calculated from it would, in turn, have 
smaller mean square error. Less error in the estimation of the residual could also con- 
tribute to superior performance for the test given in (13). More research is needed on the 
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comparison of these two limited-information tests. Another estimator that could be con- 
sidered for the covariance matrix of the residuals has been given by Kiisters (1990). 

A comparison of results from the limited-information test to results on a full-infor- 
mation procedure, such as the likelihood ratio test, should also be considered. In many 
instances, the limited-information test developed in the previous section may produce the 
same conclusion as a full-information test. On the other hand, it may produce a different 
result, and if it does so, the difference could be attributed to one or more of the following 
reasons: sparseness in the joint frequencies (as seen in the preceding example), third- and 
higher-order effects that are not reflected in the first- and second-order marginals, or 
differential power of the tests. Sparseness in the joint frequencies tends to invalidate the 
chi-square approximation for the distribution of the full-information statistics. When the 
number of variables is small relative to the sample size, sparseness is not an issue in the 
discrepancies between results from the full-, and limited-information tests, so then only 
higher-order effects and differential power are relevant. Finally, if neither sparseness nor 
higher-order effects are present, the limited- and full-information tests may still not have 
the same power against a false null hypothesis. 

The performance of the limited-information test relative to the full-information test 
of the model will depend to a large degree on the collapsibility of the contingency table that 
corresponds to the joint distribution of the manifest variables. Loosely formulated, col- 
lapsibility invokes the notion that inferences regarding certain parameters may be per- 
formed without loss of information in smaller marginal tables. Although the phrase without 
loss o f  information seems to imply without loss of efficiency, existing definitions of collaps- 
ibility (Bishop, Feinberg, & Holland, 1975; Kreiner, 1987) focus on parameter values 
rather than efficiency of estimators. Thus, it seems that in this context, the phrase without 
loss o f  information should be interpreted to mean without change of information. 

Collapsibility can be defined in terms of odds-ratios. The 2 k table of manifest variables 
• 1 ( k  can be considered as a set of 2 × 2 × Q tables, where Q = 2 k-2 There would be ik  • - 

1) such tables, one for each pair of manifest variables. Let the variables in this three 
dimensional table be labeled as Y/, Yj, and C r C t represents a compound variable obtained 
by a cross-classification of the manifest variables excluding Yi and Yj. 

Define the odds ratio conditional on C t as 

{P(Y~2IY,,, C,)/P(Yj, IY~,, C,)} 
OR're = {P(Yj21Y 2, C,)/P(YjllY,2, C,)} '  

and define the marginal odds ratio as 

{P(Yj2 I Y, , )/P(Yj, I Yil )} 
ORij" = {P(Yj: IY,2)/P(Yjl IY,2)} 

The 2 x 2 × Q table for variables Yi and Yj is collapsible if 

ORiff = % = ORij., 

where aij indicates a constant pertaining to the table for variables Y/, Yj and Ct. The 2 k 
table of manifest variables is collapsible to the set of second-order marginals if each 2 × 
2 × Q table is collapsible in the manner just defined. Note that this definition of collaps- 
ibility is not equivalent to the one given by Bishop, Feinberg, and Holland (1975). 

Collapsibility to second-order marginals should be a sufficient condition for the test of 
H 0 : 6  = 0 on the marginals to be obtained from the same information as the full- 
information test. It would not be a necessary condition for both tests to give the same 
result, however, because if the model of (3) and (4) does not fit the joint frequencies and 
if collapsibility does not hold, the model could still be rejected by the test on the marginal 
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frequencies. Whether or not H0:6  = 0 is rejected under this condition is an empirical 
question that will depend in each case on the extent to which the presence of both 
higher-order effects in the joint frequencies and confounding result in marginal frequen- 
cies that do not satisfy the conditional independence stated in (2). To the extent that any 
higher-order association effects that do not correspond to the model are not well repre- 
sented in the marginals, there may be an increased Type II error rate for the test on the 
marginals as interpreted as a test of fit for the model. In this sense, the test on the 
second-order marginals is weaker than the full-information test. 

In a case where the model of (3) and (4) is an incorrect representation of the rela- 
tionships among variables, and the inadequacy of the model is detectable only in the 
high-order interactions among the ¥ variables, there should be a large discrepancy be- 
tween the results (i.e., the p-values) from the full-information and limited-information 
tests. The model would normally be rejected by the full-information test, but if the number 
of variables is large, the full-information test will suffer from the effects of sparseness, and 
the result may have no validity. In this latter situation, a comparison of the full- and 
limited-information test results would not be useful; but a comparison of limited-infor- 
mation to full-information parameter estimates may be informative for the following 
reason: If the model is not correct, and the table of manifest variables is not collapsible to 
the second-order marginals, the relationships in the joint frequencies may be distorted in 
the table of marginal frequencies. In this circumstance, parameter estimates based on the 
collapsed table will not necessarily be equivalent to full-information estimates based on the 
joint frequencies. Therefore, large discrepancies between full- and limited-information 
parameter estimates should be viewed as a warning that third- or higher-order effects may 
be present and that the power of the limited-information test may not be adequate. 

When neither sparseness nor higher-order effects are present, there is still a question 
of the power of the statistical test on the marginals versus the power of the test on the joint 
proportions. Results from Birch (1964b) based on Theorem 3 of Lehman (1959, p. 136) 
establish that under the condition of no third- or higher-order interactions, some tests 
based on the second-order marginal are uniformly most powerful. Although the test de- 
veloped in section 3 uses first- as well as second-order marginals, simulations now in 
progress support the applicability of Birch's result; that is, the limited-information test 
appears to be more powerful than the full-information test if interactions higher than the 
second-order are not present. Thus, even under the condition of collapsibility for the table 
of manifest variables as discussed above, there would not be an equivalence between the 
full- and limited-information tests. 

4. Discussion and Conclusions 

For assessing the adequacy of a latent variable model, an examination of the adjusted 
residuals associated with the response patterns may be very useful if the number of 
manifest variables is small. These residuals can be used in conjunction with the chi-square 
goodness-of-fit tests. 

Because of the sample sizes typically encountered in empirical studies, the adequacy 
of the model is difficult to assess with traditional fit statistics when the number of manifest 
variables is larger than, say, seven or eight. Because the frequencies associated with the 
response patterns become so low, the chi-square approximation for traditional goodness- 
of-fit tests is not valid, and the residuals associated with the response patterns are also less 
useful. Because of the low frequencies, the variances of the standardized residuals are all 
near 1.0, and the adjusted residuals are nearly identical to the standardized residuals. 
Under this condition, large values for the residuals are often found for cells with an 
expected value near zero and an observed value of 1.0. The main problem is the low 
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frequencies, but even if the expected value of the count is large, it can be difficult to 
interpret the meaning of a poor fit to a complicated response pattern such as (11001001). 

When the number of variables is large relative to the sample size, it is therefore more 
useful to examine residuals calculated for the second-order marginal frequencies (or pro- 
portions), as demonstrated in example two. These residuals can be combined into a single 
statistic for testing goodness of fit, and they may be examined individually or in subsets for 
the purposes of interpreting departures from the model and developing modifications to 
the model, such as including another latent variable. Applying the statistic given in (13) to 
subsets of first- and second-order marginals would be useful for testing the model to 
specific manifest variables. For example, the model could be tested for a single manifest 
variable by selecting all second-order marginals that involve that item. If there were eight 
manifest variables, this test for one variable would involve seven second-order marginals, 
and if the first-order marginal was included, the test would have eight degrees of freedom. 
The results of such a test could be used to determine if a particular variable should be 
dropped in order to obtain a set of items for which the model would provide a good 
description of the inter-item associations. 

Based on the discussion in the previous section, it is appropriate to rely on the first-, 
and second-order marginals for assessing the model if there is no additional information 
contained in the higher-order marginals or cross-classifications. Since variables entered 
into an IRT analysis are chosen on the expectation that all items are indicators of the same 
latent variable, it would be unusual to find interactions above the second-order among such 
pre-selected variables. Results from an empirical study by Salomaa (1990) support this 
view. Salomaa's results are from simulation studies carried out with data sets obtained by 
generating responses for categorical manifest variables from the model of one or more 
continuous latent variable. The models and parameter values used in generating the data 
were taken from studies that applied latent variable models to real data. Then using the 
generated data, a hierarchical logit model with only first-, and second-order effects was fit 
to each data set, and in virtually all cases, the logit model provided a very good fit. Since 
the first-, and second-order marginal frequencies are sufficient statistics for the model of 
first- and second-order effects, Salomaa's results indicate that the first-, and second-order 
marginals contain essentially all of the information regarding parameter estimates and 
goodness of fit in data that corresponds to the model of a continuous latent variable. 

It should be noted that Salomaa's results do not imply that the first- and second-order 
marginals are sufficient statistics (in the mathematical sense of Fisher's definition) for the 
model of a continuous latent variable, nor do the results imply that if some other model 
is correct, instead of the continuous latent variable model, that the first- and second-order 
marginals still contain essentially all relevant information. The significance of the results 
for applications of the item response model is that in commonly encountered data, the 
first- and second-order marginals represent virtually the same information as the joint 
frequencies. Therefore, methods which use the limited information in the first- and sec- 
ond-order marginals will usually give the same results as methods which use the full 
information in the joint frequencies. Some exceptions to this rule have been discussed in 
this paper. The limited-information test may actually be more powerful, if no higher-order 
interactions are present, and it is certainly more useful under conditions of sparseness in 
the joint frequencies. 

Summary of Recommended Methodology 
The methodology for analyzing residuals in applications of the item response model 

is summarized in the following recommendations, which are based on results from this 
paper and from Reiser and VandenBerg (1994). 
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Sparseness Not Present 

When sparseness is not present, the test of fit for the item response model can be 
carried out by using both the full-information and limited-information methods. If the 
sample size is small relative to the number of variables, the limited-information test given 
in this paper performs more closely t a  the stated Type I error rate than other alternatives. 
Possible results are as follows: 

1. The full-information and limited-information tests both indicate that H 0 cannot be 
rejected. In this case, the redundancy in the conclusions is reassuring, and the usual 
precautions regarding the possibility of a Type II error still apply. 

2. Both the full-information and limited-information tests indicate that H0 should be 
rejected. Again, the redundancy is reassuring, and the usual precautions about the 
possibility of a Type I error still apply. Adjusted residuals calculated on the re- 
sponse patterns can be used as a guide for detecting where the model fits poorly. 
Also, the statistic given in section 3 may be used to test a subset of items by 
selecting second-order marginals associated with specific items. If there is doubt 
about the choice of the function used to represent the item response curve, re- 
searchers may want to proceed with methodology from Stout (1987). 

3. The limited-information test indicates the opposite conclusion from the full-infor- 
mation test. The researcher must choose which test he or she feels is more appro- 
priate for the application under consideration. In order to understand the discrep- 
ancy between the tests, adjusted residuals could be calculated for both the response 
pattern frequencies and the second-order marginal frequencies. It is more likely 
that the limited-information test would be the one to indicate that H 0 should be 
rejected, since it is more powerful under the condition of no third-, or higher-order 
interactions. If the full-information test indicates reject H 0, but the limited-infor- 
mation test shows the opposite, a large discrepancy in the p-values may be a 
reflection of the presence of third-, or higher-order interactions in the joint fre- 
quencies of the manifest variables. 

Sparseness Present 

If sparseness is present in the data, and if the chi-square distribution is used to obtain 
p-values for the traditional goodness-of-fit tests based on the likelihood ratio and Pearson 
statistics, then the p-values may not be valid. If sparseness is severe, the chi-square dis- 
tribution should not be used to obtain p-values for the traditional statistics. A normal 
approximation may be appropriate under conditions of sparseness, but this avenue has not 
been investigated for item response models. 

Because of the problems mentioned above, the presence of sparseness necessitates 
placing more reliance on the limited-information test. Sparse cell frequencies imply that 
the sample size is small relative to the number of manifest variables, and the limited- 
information test given in this paper will perform more closely to the stated Type I error 
rate than other available alternatives. The test has two possible outcomes: 

1. The limited-information test indicates reject H 0. The usual level of caution about 
the probability of a Type I error should be kept in mind. Adjusted residuals 
calculated on the second-order marginals will be useful as a guide for detecting 
where the model fits poorly. The fit for individual items may be assessed by using 
the statistic given in section 3 with a subset of second-order marginals. 

2. The limited-information test indicates do not reject H 0. In the majority of cases, it 
can be assumed that the model gives an adequate representation of both the joint 
and marginal frequencies. However, in addition to the usual precautions regarding 
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Type  II  er rors ,  the  possibi l i ty  tha t  the  s e c o n d - o r d e r  marg ina l  f requencies  do  not  
r ep re sen t  the  s ame  in fo rma t ion  as the  jo in t  f requenc ies  should  also be  taken  into  
account .  T o  check on this possibil i ty,  it may  be  useful  to  c o m p a r e  fu l l - in format ion  
p a r a m e t e r  es t imates  to  the l imi t ed - in fo rma t ion  p a r a m e t e r  es t imates .  La rge  dis- 
c repancies  in the  compar i son  would  indica te  the  p re sence  of  e i the r  confound ing  or  
h ighe r -o rde r  in te rac t ions  in the  jo in t  f requencies ;  if such d iscrepancies  a re  found,  
the  resul t  of  the  l imi t ed - in fo rma t ion  test  should  be  i n t e rp re t ed  with caut ion,  be-  
cause  the test  would  have low power  for  de tec t ing  depa r tu re s  f rom the  m o d e l  tha t  
a re  a p p a r e n t  among  h ighe r -o rde r  in terac t ions  but  which are  not  well r e p r e s e n t e d  
in the  s econd -o rde r  marginals .  
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