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The RC(M) association model (Goodman, 1979, 1985, 1986, 1991) is useful for analyzing the 
relationship between the variables of a 2-way cross-classification. The models presented here are 
generalizations of the RC(M) association model for 3-way tables. The family of models proposed 
here, "3-mode association" models, use Tucker's 3-mode components model (Tucker, 1964, 1966; 
Kroonenberg, 1983) to represent either the three factor interaction or the combined effects of two 
and three factor interactions. An example from a study in developmental psychology (Kramer & 
Gottman, 1992) is provided to illustrate the usefulness of the proposed models. 
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1. Introduction 

Goodman's (1979, 1985, 1986, 1991) RC(M) association model has been very useful 
for modeling the relationship between discrete variables in a variety of different areas. For 
example, the RC(M) association model has been used to quantify the friendship and 
message sending among a group of individuals (Faust & Wasserman, 1993), to analyze 
mobility tables and fertility patterns (Xie, 1991, 1992; Xie & Pimental, 1992), to describe 
the religious switching of Black Americans (Sherkat, 1993), to scale social background and 
educational careers (Smith &Garnier, 1987), and to analyze the linkages between previous 
labor force experience and current labor force position (Clogg, Eliason & Wahl, 1990). 
Clogg (1982b) describes how the RC(M) association model can be used to examine the 
effects of question wording on response distributions, to assign a metric to ordinal vari- 
ables, and to estimate scale scores for Guttman-type response patterns. 

The RC(M) association model is a log multiplicative model that can be thought of as 
an extension of a loglinear model for 2-way tables. In the RC(M) association model, the 
association between two variables is represented by bilinear terms that consist of the 
products of category quantifications or "scale values" for the categories of each of the two 
variables and a measure of associatio0. Both the scale values and measures of association 
are estimated from the data, as well as the other parameters in the model. Multiple sets of 
scale values or "components" and measures of association can be estimated such that the 
interaction is represented by the sum of bilinear terms (i.e., a multidimensional represen- 
tation of the interaction). The RC(M) association model is similar to correspondence 
analysis and canonical correlation models of categorical data (for discussion of the rela- 
tignshi p between RC(M) association models, correspondence analysis and correlation 
models, see Goodman, 1985, 1986, 1991; van der Heijden & de Leeuw, 1985, 1989; van der 
Heijden, de Falguerolles, and de Leeuw, 1989). 

Various strategies and generalizations have been proposed to extend the RC(M) 

I thank Stanley Wasserman, Laurie Kramer, Ulf B6ckenholt, Larwence Hubert, Jeffrey Tanaka, and five 
anonymous reviewers for valuable comments. 

Requests for reprints should be sent to Carolyn Anderson, Department of Educational Psychology, Uni- 
versity of Illinois, 210 Education Building, 1310 S. Sixth Street, Champaign, IL 61820. Electronic address: 
cja@uiuc.edu 

0033-3123/96/0900-93135500.75/0 
© 1996 The Psychometric Society 

465 



466 PSYCHOMETRIKA 

association model to 3- and higher-way tables. These proposals either use bilinear terms 
(Becker, 1989; Becker & Clogg, 1989; Clogg, 1982a, 1982b; Gilula & Haberman, 1988; 
Goodman, 1979, 1981, 1986), trilinear terms (Mooijaart, 1992), or both bilinear and tri- 
linear terms (Choulakian, 1988a, 1988b) to represent the associations in a 3-way table. The 
models introduced in this paper are generalizations of the RC(M) association model that 
are intended for 3-way cross-classifications where a three factor interaction is present; 
therefore, only generalizations that include a representation of the three factor interaction 
are explicitly reviewed here. 

The proposals that use bilinear terms essentially approach the problem of analyzing 
multiway tables by rearranging the cells of the multiway table into a 2-way table such that 
it can be analyzed by the RC(M) association model (Goodman, 1986; Gilula & Haberman, 
1988; Clogg, 1982a, 1982b; Becker & Clogg, 1989). There are basically two ways of rear- 
ranging multiway tables. One way is to treat multiple variables as single polytomous 
variables. The variables of the multiway table are divided into two sets and the combina- 
tions of the categories of the variables in one set become the rows and the combinations 
of the categories of the variables in the other set become the columns of the 2-way, 
rearranged table. This "joint" approach is discussed by Gilula and Haberman for the 
situation where the variables are classified as either response or explanatory. Gilula and 
Haberman describe the use of linear restrictions on model parameters to test simpler 
models. A second way to use the RC(M) association model to analyze a 3-way (or higher- 
way) table is to fit RC(M) models to 2-way tables for each level of the third variable or  
combinations of the other variables; Goodman, 1986 (Clogg, 1982a; Becker & Clogg, 1989; 
Xie, 1992; Xie & Pimental, 1992). With this "conditional" approach, simpler models can 
be tested by imposing restrictions on the scale values and/or association parameters across 
tables (Becker & Clogg, 1989). 

The bilinear terms in the conditional and joint approaches represent the combined 
effects of the three factor association and either one or two of the two factor interactions 
(one 2-factor interaction in the conditional approach, and two 2-factor interactions in the 
joint approach). The bilinear terms in these models do not represent just the three factor 
interaction; therefore, these models are not hierarchical in the sense that they do not 
conform to the hierarchy principle as is typical of most loglinear modeling of categorical 
data (Bishop, Fienberg, & Holland, 1975). Whether this is desirable depends on the 
particular data set and application. For example, conditional models are useful when 
interest is focused on comparing the relationship between two variables across a third 
variable, and a joint approach can be useful when the variables fall naturally into one of 
two classes (e.g., response and explanatory). However, with respect to the joint approach, 
if there is a relatively complex interaction structure in the multiway table.(e.g., "strong" 
two factor partial associations, as well as a three factor interaction), the representation of 
the interactions given by the bilinear term may be complex and difficult to interpret. The 
variables in both the joint and conditional models are treated asymmetrically and partic- 
ular aspects of the data are emphasized over others. These models are not as useful for 
situations when a symmetric treatment of the variables is desired. 

The models introduced by Choulakian (1988a, 1988b) and Mooijaart (1992) provide 
a symmetric treatment of the variables. These models include trilinear terms to represent 
three factor interactions. In both of these models, the trilinear terms have the same form 
as the canonical decomposition model, CANDECOMP (Carroll & Chang, 1970; Kruskal, 
1984), which is equivalent to the parallel factors model, PARAFAC (Harshman & Lundy, 
1984; Kruskal, 1984). Choulakian's (1988a) model also includes bilinear terms for each of 
the two factor interactions, while Mooijaart's model includes unstructured interaction 
parameters for each of the two factor interactions. The unstructured interaction param- 
eters are analogous to the interaction parameters in loglinear models. With Choulakian's 
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(1988a) model, the category quantifications are restricted to be the same in the bilinear 
and trilinear terms; therefore, the model does not permit specific 2-way margins of the data 
to be fit perfectly, which is often appropriate and desirable with categorical data (e.g., 
when a margin is fixed by design). Mooijaart's model fits all of the two way margins and 
only decomposes the three factor interaction. 

The model generalizations that are presented here differ from those proposed by 
Choulakian (1988a) and Mooijaart (1992) in two major ways. First, rather than having 
either none (Choulakian, 1988a) or all (Mooijaart, 1992) of the two factor interactions 
represented by unstructured interaction parameters, the new models consist of a family of 
models where either none, some, or all of the two factor interactions are represented by 
unstructured interaction parameters (i.e., none, some, or all of the 2-way margins are fit 
perfectly). The combined effects of the three factor interaction and any of the two factor 
interactions that are not represented by unstructured interaction parameters are decom- 
posed. In this respect, some of the models resemble the joint and conditional R C ( M )  
association models. In situations where joint or conditional models are appropriate, the 
corresponding new models may provide simpler representations of the data (which is the 
case for the example presented in Section 3). The new models require an explicit decision 
to be made regarding the effects that are to be decomposed. This allows for more flexibility 
in model building and can lead to a better match between the design of the experiment or 
study, substantive theory, and the model used to analyze the data. 

The second major difference between the new models and those of Mooijaart and 
Choulakian is that rather than the CANDECOMP decomposition, Tucker's 3-mode com- 
ponents model (Tucker, 1964, 1966; Kroonenberg, 1983) is used in the new models. While 
either Tucker's decomposition or CANDECOMP could be used, in some situations Tuck- 
er's 3-mode model leads to simpler and more interpretable representations. The data 
analyzed in section 3 is an example of one such situation. In this example, it is demon- 
strated how the two distinguishing features of the new models lead to a more parsimonious 
and accurate representation of the data than can be achieved with the other model gen- 
eralizations. 

2. Three-Mode Association Models 

The models proposed here are log multiplicative models that can be thought of as 
simplifications of saturated loglinear models for 3-way tables where the three factor in- 
teraction terms or some combination of the 2 and 3 factor interaction terms are decom- 
posed and approximated by Tucker's 3-mode principal components model. In section 2.1, 
the model generalization is presented in terms of a general framework. This framework is 
convenient, because the models reviewed in the introduction can also be expressed within 
this framework. In section 2.2, the interpretation of 3-mode association model parameters 
is presented, followed in section 2.3 by an explanation of the identification constraints 
imposed on model parameters and the computation of degrees of freedom. In section 2.4, 
the estimation of the models is briefly discussed. 

2.1. The Model  

Le t  Fijk equal the number of subjects (individuals, objects, et cetera) who fall into 
categories i, j ,  and k of variable A, B, and C, respectively, where i = 1 . . . . .  /, j = 1 . . . . .  
J, and k = 1 , . . . ,  K. To describe the new models, the saturated loglinear model for 3-way 
tables, 

AB . ABC ln(F0k ) = u + u~ + u~ + u c + u 0 + u~ c + u~k c + uijk (1) 
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Table 1. Basic models for 3-way tables 

Model u (2) u (2,3) Constraints 
( A B C )  uqaB t u i k -  AC + U~# ~itk" A~C ......... 12, 13, 14 

(AB  + A B C )  AC--  ~C . A S ~ . a B C  Uik t uik '~ij W '*ijt¢ 12, 13 
(AC + A B C )  AS - -  B C  . a C  t _ .  A B C  12, 14 t£ij "1- "l£~k u'ik T t~ij k 
( B C  + A B C )  u A B  + ~$AC . B C  ~ .  A B C  , q, ~k = #  T ~ q k  1 3 ,  14 

(AB  + A C  + A B C )  unG~k ~" An ~ ~ik" AC ~± ~ijk" a~C 12 
(AB  + B C  + A B C )  u~  c . A B  j _ ~ B C ~ A B C  • ~ i  ~ ~jk 7- =ijk 13 

A C  ~_ , B C  ~ . A B C  (AC + B C  + A B C )  u AB =~k ~ ~# 7- ~i# 14 
(AB  + A C  + B C  + A B C )  ~a8 ~ . A ~  ± . ~ c  ± . a ~ c  ~id  w ,,.ik T ~ j k  T ~ i j k  

B C . - B C B C  where u is a constant, u~/, u , ,  and u k are main effect terms, ~ , ~/g , and U;k are two 
factor interaction terms, an~l u~/j~ c is the three factor interaction term, is reexpr'essed here 
a s  

In (Fijk) = <a) (2) (23) "ijk + "ijk + ~ijk , (2) 

where u~lk ) = (u + u~/ + u~ + uC), U~.2k ) equals the sum of the two factor interactions that 
are not decomposed, and u~j 2'3) equals the sum of two and three factor interactions that are 
decomposed. The margins of the table corresponding to the effects included in u 0) and 
u (2) are fit perfectly. The combined two and three factor interactions are decomposed by 
Tucker's 3-mode decomposition model, 

R S T 
t (2,3) 
ijk "~- Z Z E ~)rst]'l'irlljs~k' (3) 

r=l s=l t=I 

where ~ir, Vjs, and r/k t are the scale values for categories i, j ,  and k of the variables A, B, 
and C on components r, s, and t, respectively, and Cbrst is the "intrinsic" association 
parameter. The interpretation of these parameters is described in section 2.2. 

For 3-way cross-classifications, the possible choices for u~ 2) and u~ 2'3) are given in 
Table 1. Each row corresponds to a different model. The entries in the first column are 
labels for the models and they indicate the effects represented by the decomposition. The 
numbers listed in the last column correspond to the equation numbers of centering con- 
straints that are necessary to identify the scale values when u~ 2'3) is decomposed by Tuck- 
er's 3-mode components model. These and other necessary identification constraints, as 
well as the degrees of freedom for these models are discussed in detail in section 2.3. 

The first model in the table, labeled ( A B C ) ,  is 

R S T 

BC ~ E E E ~rst]J~irVjs~ k'' ( 4 )  In ( F i j k )  : bl 4- U A 4- blj B. 4-  U C 4- U AB 4- U~k C 4- U jk  

r=l  s=l  t = l  

w h e r e R - -  ( I -  1 ) , S -  ( J -  1), and T-< (K - 1 ) . W h e n R  = ( I -  1 ) ,S  = ( J -  1), 
and T = (K - 1), model (4) is equivalent to the saturated loglinear model (1). A proof 
of this is outlined in the Appendix. Only the three factor interaction is represented by the 
sum over components of the product of the scale values and intrinsic association param- 
eters. Equation (4) is the same model as Mooijaart's (1992) model, except that the three 
factor interaction is decomposed by Tucker's 3-mode decomposition. In terms of the 
general framework used here, Mooijaart's model is the ( A B C )  model with u~.~ 3) = 

R 
~ ' r =  1 t ~ r ~ i r V j r T l k r  • With Tucker's 3-mode components model, different numbers of compo- 
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nents can be estimated for each mode (i.e., R, S, and T need not be equal), which is not 
possible with CANDECOMP. While CANDECOMP is simpler than Tucker's 3-mode 
decomposition, it does not necessarily follow that CANDECOMP will lead to a more 
parsimonious representation of the data. Depending on the structure in the data, having 
different numbers of components for different variables can lead to fewer parameters and 
a more parsimonious representation of the data. This advantage of Tucker's model is 
illustrated in the example presented in section 3. 

The second group of models, labeled (AB + ABC),  (AC + ABC),  and (BC + ABC),  
are models that decompose the combined effects of the three factor interaction and one 
two factor interaction. For example, (BC + ABC) is 

R S T 

In (F~ik) = u + uAi + u~ + u c + u~ B + u~ c + ~ ~ ~ Ckrs,~irvjs~k,, (5) 
r= l  s= l  t=l  

where R -< l, S <- (J  - 1), and T <- (K - 1 ) . W h e n R = l , S = ( J -  1 ) , a n d T =  ( K -  
1), equation 5 is equivalent to the saturated loglinear model (see Appendix). The models 
in the second group resemble the conditional RC(M) association models in that the 
combined effect of one of the two factor interactions and the three factor interaction is 
decomposed. In the conditional RC(M) models, a 2-way decomposition is used to repre- 
sent the combined effects. For example, when the relationship between variables B and C 
is studied conditional on variable A, the conditional RC(M) model leads to u~ 2'3) = 
~r ~r(i)Pjr(i)'Okr(i) • This conditional RC(M) model is more complex than the corresponding 
3-mode association model. In the conditional 2-way model, scale values are assigned to 
combinations of levels of two variables (e.g., Vjr(i ) for combinations of variables A and B, 
and ~qkr(i) for combinations of variables A and C) and the intrinsic association parameter 
depends on the level of the conditioning variable (e.g., ~br(i) is indexed by levels of variable 
A). Since the 3-mode association model uses a 3-way decomposition to represent the 
combined effects rather than a 2-way decomposition, scale values of the 3-mode model are 
estimated for the categories of each of the variables separately (e.g., vjr versus Vjr(i)). It is 
interesting to note that the conditional RC(M) association model where the scale values 
are restricted to be equal across the conditioning variable but the intrinsic association 
parameters are allowed to vary (e.g., U~ 3) = •r dPr(i)Vjr'Okr) is essentially equivalent to a 
3-mode association model in the second group of models in Table 1 where CANDECOMP 
is used rather than Tucker's 3-mode decomposition. 

The third group of models, labeled (AB + A C  + ABC),  (AB + BC + ABC),  and 
(AC + BC + ABC), are models where the combined effects of the three factor and two 
of the two factor interactions are represented by Tucker's 3-mode components model. For 
example, (AC + BC + ABC) is 

R S T 

.4 + u7 + u c + u~B + ~, ~ E d~rstlzt~vj~rlk,, (6) In (Fiik) = U + Ui 
r=l  s= l  t=l  

where R -- I, S -< J, and T -< (K - 1). Equation (6) differs from the two previous models 
in that this model is not equivalent to the saturated loglinear model. To guarantee that the 
fitted values given by equation 6 equal the observed values, R = I, S = J, and T = (K - 
1) (see Appendix); however, with this number of components, there are more parameters 
that need to be estimated than there are data points. Models in the third group resemble 
the joint RC(M) association model in that the combined effects of the three factor and two 
of the two factor effects are decomposed; however, the combined effects are represented 
in the joint RC(M) model by a 2-way decomposition (e.g., ub}3) = Xr ¢~r~irPjkr). AS with 
the conditional RC(M) model, separate scale values are not estimated for the categories 
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of each of the three variables. In the 3-mode association model, each variable is given 
equal, symmetric treatment in that separate scale values are assigned to the categories of 
each variable. 

The last model in the table, (AB + A C  + BC + ABC),  is 

R S T 

In (Fijk) = u + u{ + u 7 + u c + E Z E ~b~da,irVjs'Ok,. (7) 
r = l  s = l  t = l  

To guarantee that the fitted values equal the observed values, R = 1, S = J, and T = K; 
however, like (6), with this number of components, the number of parameters estimated 
is greater than the number of data points. This model resembles Choulakian's (1988a) 
model in that the combined effects of all three two factor interactions and the three factor 
interaction are decomposed. The models differ with respect to how the associatior~s are 
decomposed. Choulakian's model represents two factor interactions with bilinear terms 
and the three factor interaction by trilinear terms resembling CANDECOMP. The scale 
values for the categories of the variables are restricted to be the same in the bilinear and 
trilinear terms (i.e., in Choulakian's model, u~ 2'3) = ~'r (~rBIzirVjr + ~AC~irlTkr d- 
dpBCl)jr'Qkr q- ~rBC~irl~jr'tlkr)). This is in contrast to model 7 where the combined effects of 
the two and three factor interactions are simultaneously represented by one decomposi- 
tion, Tucker's 3-mode decomposition. 

2.2. Interpretation of  3-Mode Association Model Parameters 

Like loglinear models and RC(M) association models, there is a direct relationship 
between 3-mode association model parameters and odds ratios. This relationship provides 
a way to represent and describe partial associations in terms of the model parameters. 

Let  Oii,,jj,,k k, equal the ratio of odds ratios or the cross product ratio of a (2 × 2 × 
2) subtable, 

Fijk FiT'k Fi'jk' F i~,k, 
~)ir,jj',kk' = FiT,k,Fi,jkFiy,kFijl<, • 

(8) 

A three factor partial association implies that Oii,,jj,,k k, 5 ~ 1 for some i, i', j, j ' ,  k, and k' 
(or equivalently, that In (~)ii',jj',kk') ~: 0).  For all of the models listed in Table 1, the 
cross-product ratio in equation 8 is modeled by the scale values and intrinsic association 
parameters as follows, 

In (@irjj'.kk') = ~ ~ ~ ffr,,(/X~ -- /Xr~)(Vj, -- Vi,,)(r/k, -- 7/k',). (9) 
r $ t 

The parameter ¢~rst is a measure of the strength of the 3-way association among variables 
A, B, and C for a unit change on components r, s, and t. The scale values are quantifi- 
cations of the categories of the variables. These quantifications represent the contribution 
of the categories to the three factor association for particular components. All of the 
information regarding the 3-way partial association is conveyed by the scale values and the 
~b parameters. 

There is also a direct relationship between conditional odds ratios, odds ratios com- 
puted for (2 × 2) sub-tables of two of the variables for a given level of the third variable, 
and the 3-mode association model parameters; however, the exact relationship depends on 
which interactions are included in u (2'3). For example, consider the (AB + BC + ABC) 
3-mode model given in (6). With this model, the odds ratios for the (2 × 2) subtables of 
variables A and B given level k of variable C equal 
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In (®.',.'(k)) = ~ ~] ff.*k(/Z,~ -- /~,,~)(Vjs -- V;~), (10) 
r s 

where q~*sk Et ~ r s t ' o k t "  The * = f~rsk parameter measures the strength of the relationship 
between variables A and B for a unit change on components r and s given level k of 
variable C. All of the information regarding the association between A and B conditional 
On C is conveyed by the association parameters and the scale values. 

The conditional odds ratio ~)jj',kk'(i) has a similar expression as (10); however, the 
odds ratio for the (2 × 2) subtable of variables A and C given level j of variable B, is 
slightly more complex: 

AC AC uaS ' + ~', E ~,'i,(P"ir - P.i',)('ok, - "Ok',), (11) In ( O j j ' , k k ' ( i ) )  = uAik C At- U i '  k '  - -  g i ' k  - -  * 

r t 

where ~b~. t = Es (~ r s t l " j s  • This conditional odds ratio is broken down into two parts: one part 
C C due to the 2-way interaction between variablesA and C (i.e., uik c + u~/, k, -- u~/, k -- Uik,C), 

and one part due to the 3-factor partial association (i.e., Er Et 4a~'t(tZir - P ' i ' r ) ( ' o k t  - -  " o k ' t ) ) .  

Provided that R, S, and T are small, 3-mode association models can provide relatively 
simple expressions of complex interactions defined in terms of conditional odds ratios and 
ratios of odds ratios. Plots of the scale values provide visual representations of the inter- 
actions, which can greatly facilitate the substantive interpretation of the association in the 
data (see Kroonenberg, 1983, for various ways to plot scale values from Tucker's 3-mode 
model). In the present context, the geometry and interpretation of plots of scale values is 
similar to that of plots of scale values from R C ( M )  association models (see Goodman, 
1986, 1991; Clogg, 1986), in particular, the relative distance between points provides 
information about the relationship between categories and the association between vari- 
ables where association is defined in terms of odds ratios. 

2.3. Identification Constraints and Degrees o f  Freedom 

Constraints on the u-terms, scale values, and ~b parameters of 3-mode association 
models are necessary to identify them. The constraints are arbitrary with respect to the fit 
of the model. To estimate the u-terms, the same constraints used for lo~linear models are 
imposed. Typically, these are either zero-sum constraints (i.e., ]~i ~ = ]~j U/p = ~k  uC = 0, and 
for any two factor interactions, ~;; t~/~ c = ]~k Ufjk c = 0) or fixing certain values to a constant (e.g., 

B s J 
U~I - -  _ C _ B C _  B C  _ 

- -  U 1 - -  U 1 - -  U l k  - -  U ] I  - -  0 ) .  

With the RC(M) association model for 2-way tables, centering constraints are nec- 
essary on the scale values for both of the variables; however, with 3-mode association 
models, the necessity of centering constraints on the scales values for variables depends on 
which two factor interactions are included in u (2). For the models listed in Table 1, the 
equation numbers of the required centering constraints refer to 

1 

~, tzirh~ = O, (12) 
i=I 

J 

vjsh 7 = 0, (13) 
j=l 

K 

~,  "ok, h c = O, (14) 
k=l 
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where h/A, h~, and h c are fixed and known weights. Marginal probabilities, uniform 
weights, and unit weights are among the possible choices for h~/, h~, and h c (for a 
discussion of these choices, see Becker & Clogg, 1989). Including the weights allows for the 
possibility of different measures of association (see Goodman, 1991). 

The scale values of variables not involved in the two factor interaction terms that are 
included in the model need to be centered (i.e., those terms included in u(2)). For example, 
in the (AB + AC + ABC) 3-mode association model, the terms u~ c are estimated and 
only the scale values for variable A, {tXir} for each r = 1 , . . . ,  R, need to be centered. 
Without constraint (12), any set of scale values tz* r = (P.'ir + x) where x is an arbitrary 
constant will lead to the same fitted values as I.l,ir, because 

R S T R S T R S T 

E E E ~rst]'Li~I)js~kl : E E E ¢~rstlJ~irlljs~kt -~ X E E E ¢~rstllJ sT~k '̀ 
r=l s=l t= l  r = t  s = [  t=l r = l  s=l t = l  

and the quantity X(ErR=I Ess=l Y~L1 ~brstUjs~Okt)--which is indexed by j and k- -can  be 
"absorbed'into u~ c, uf, u c and u. As another example, consider the (AB + ABC) model, 
which includes the terms u//~ c and u~ c. Since variableA is not involved in u~ c, and variable 
B is not involved in u//~ c, the scaleJvalues corresponding to variables A and B need to be 
centered (i.e., (12) and (13)). 

For all 3-mode association models, the scale values for all variables are constrained to 
be orthonormal, 

1 
E I'Lirl~ir 'hA = ~rr', ( 1 5 )  

i=l 

J 

E ~'i~vjs'h7 = 8s,', (16) 
j=l 

K 

E ~k,~k,'hf = 8/c, (17) 
k = l  

where 8rr', 6ss' and ~tt' are Kronecker deltas (e.g., 6rr, = 1 for r = r', and 0 for r ~: r'). 
Constraints analogous to (15), (16), and (17) are the ones typically imposed on scale values 
when the RC(M) association model is used to analyze the relationship between discrete 
variables (Goodman, 1985, 1986, 1991), as well as when Tucker's 3-mode model is used to 
analyze the relationship among continuous variables (Kroonenberg, 1983). For i = i', j = 
j ' ,  and k = k', constraints 15, 16, and 17, respectively, set the "scale" or unit of measure- 
ment for the category quantifications. 

There is a rotational indeterminacy with Tucker's 3-mode decomposition model 
(Tucker, 1964; Kroonenberg, 1983) such that even with the orthonormality constraints, 
independent, nonsingular linear transformations of the scale values will not change the fit 
of the model provided that the inverse transformation is also applied to the q5 parameters. 
For example, let UA~c be the (I × JK) matrix with elements u ~  '3), M be the (I × R) 
matrix with elements IXir, N be the (J  x S) matrix with elements vjs, E be the (K x T) 
matrix with elements ~kt, and ~P.4nc be the (R x ST) matrix with elements Ckrst, then 
Tucker's 3-mode components moclel for u ~  '3) can be written as 

UA,BC = MOA,~c(N ® E)' 
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where ® is the Kronecker (outer) product. Given any (R x R) matrix L such that LL' = 
L'L = I, 

M~A,sc(N ® E)' = MLL'~A,~c(N ® E)' = M*~,Bc(N ® E)' 

where M* = ML and ~ c  = L'~A,BC. To identify a unique set of scale values and 4~ 
parameters, the following constraints are imposed on the 4~st parameters: 

S T 

2 ~. 6r,,cb~',, "= 0 for r ~s r',  (lS) 
s = l  t = l  

R T 

~ ~b~,,4~,, = 0 for s ¢ s'; (19) 
r = l  t = l  

R S 

~ 4~rs,4~t, = 0 for t ~ t'. (20) 
r = l  s = l  

This particular set of constraints is referred to as the "principal components rotation," 
because, for example, for the 2-way symmetric matrix given by 

UAmc(DB ® Dc)U~,Bc = MAM',  

where DB is the (J x J) diagonal matrix with weights h~ on the diagonal, D c is the (K x 
K) diagonal matrix with weights hE' on the diagonal, and A is the (R x R) diagonal matrix 
with diagonal elements equal to zss= 1 ~f=l 4~rst. 

In summary, identification constraints are imposed on the u-terms (zero-sum or fixing 
particular values to a constant), on the scale values (orthonormality, and for some models, 
centering constraints), and on the ~ parameters (principal components rotation). Given 
these constraints, the degrees of freedom for a model equals the total number of cells in 
the three-way table, minus the number of parameters in the model, plus the number of 
constraints needed to identify the parameters. Equivalently, the degrees of freedom can be 
computed by taking the number of degrees of freedom available for the u ~  3) terms in the 
saturated loglinear model, subtracting the number of scale values and ~b parameters used 
to model u ~  '3), and adding the number of identification constraints imposed on the scale 
values and 4, parameters. The degrees of freedom for the models listed in Table 1 are given 
in Table 2. 

2.4. Estimation 
For independent random variables from a Poisson or multinomial distribution, the 

maximum likelihood equations for u, m4/, u~, and u c, and for any 2-way interaction terms, 
u~/j B, ~/k c, and U~k c, included in the model are the same as those for the corresponding 
parameters in the loglinear model. For example, let fijk and Fijk be the observed and 
estimated expected cell frequencies, then the equation for m4/is (fi+ + - Pi+ +) = 0, where 
fi++ ---- ~j ~"kfijk, and/~i++ = ~.j ~'k Fijk. 

The maximum likelihood equations for lair, Pjs, Tlkt, and ~rst are 

~ k ( ~ 4 ) r , , V j s ~ q k , ) ( f i j , - - P i i k ) = O ,  (21, 

E ~. E E 6r.la,/Ok,](fqk -- P,jk) = O, ~22~ 
i k r t / 
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Table 2. Degrees of freedom for 3-mode models. 

Mode l  ....... Degree's' of  F r eedom ................. 

( A B C )  ......... (I  i ) ( J  " 1 ) ( K - 1 ) - R ( I : R - 1 )  

- S ( J -  S -  1) -- T ( K  - T - 1) - R S T  

(AB + ABC) K( I  - - l ) ( J  - 1 ) -  R(I - n - 1 )  ...... 
- S ( J -  S -  1 ) -  T ( K -  T ) -  RST 

(AC + ABC) J(I - 1)(K - 1) - a(I  - R -  1) 
- S ( J -  S ) -  T(K - T - 1 ) -  RST 

(Be  + ABe)  I ( J -  1)(K - 1) - R ( I -  R) 
- S ( J -  S -  1 ) -  T(K - T -  1) - RST 

(AS + AC + ABC) (I - 1 ) ( J K -  1 ) -  R ( I -  R -  1) 
- s ( J -  s) - T(K - T) - n S T  

(AB + B e  + ABC) (IK - 1 ) ( J -  1 ) -  R ( I -  R) 
-S(J- S- I)- T(K - T)- RST 

(AC + BC + ABC) (I J -  1 ) ( K -  1 ) -  R(I - R) 
- S ( J -  S ) -  T ( K -  T -  1 ) -  RST 

(AS + AC + B e  + ABe)  ( I J K -  I -  J -  K + 2 ) -  R ( I -  R) 
- S ( J -  S ) -  T ( K -  T ) -  RST 

E E E (IZirVj,*'rlkt)(fijk -- Fijk) = O. (24) 
i i k 

An iterative algorithm using Newton's univariate (elementary) method, which has also 
been used to fit the RC(M) association model (Becker, 1990; Clogg, 1982a; Goodman, 
1979, 1985) and generalizations of it (Choulakian, 1988a), was used here to estimate the 
3-mode association models presented in the next section. The major advantage of this 
method is that it is relatively easy to program and does not require inverting large matrices. 
Drawbacks of this method are that it does not yield estimates of standard errors and the 
convergence rate is slower than it is for (multivariate) Newton-Raphson procedure. If 
standard errors or faster convergence rates are desired, then another method such as 
(multivariate) Newton-Raphson or Fisher scoring can be used. An additional disadvantage 
of fitting the 3-mode association models using Newto%'s univariate algorithm is that it may 
converge on a local rather than a global maximum, To reduce the possibility that a local 
optimal solution is found, the algorithm can be run iteratively using different starting 
values. 

3. Example: Analysis of the Peer Play Data 

A 5-way cross-classification of the behaviors exhibited by thirty 3 to 5 year old first- 
born children playing with their best friends is analyzed here (Kramer & Gottman, 1992). 
The data, which are given in Table 3,. are arranged into a 3-way table by taking into 
consideration the 3-mode nature of the data. The three ways of the "peer play" data are 
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Frequencies of the play codes cross-classified by occasions, groups, and play qualities. 

Time 

-3 
mth 

-1 
mth 

÷i 
mth 

+3 
mth 

-t-5 
mth 

Group Play Qualities 
Gender Age Sibling 
female young low 
female young high 
female old low 
female old high 
male young low 
male young high 
male old high 
female young low 
female young high 
female old low 
female old high 
male young low 
male young high 
male old high 
female young low 
female young high 
female old tow 
female old high 
male young low 
male young high 
male old high 
female young low 
female young high 
female old low 
female old high 
male young low 
male young high 
male old high 
female young low 
female young high 
female old low 
female old high 
mMe young low 
male young high 
male old high 

sustain gossip positive excite amity fantasy unsustain poor -emotion fight prohibit 
15 7 4 3 1 4 21 2 3 4 5 
45 . 17 6 12 18 11 51 12 21 23 11 
49 10 11 17 10 5 37 8 7 8 8 
58 16 16 20 16 12 43 6 6 19 11 
51 13 10 14 18 9 77 19 13 17 14 
11 3 4 6 5 3 9 2 6 11 3 
33 6 14 15 7 6 29 1 1 2 8 
20 3 6 5 1 6 16 0 1 5 3 
47 10 8 5 14 7 36 10 9 13 10 
44 7 13 13 14 7 26 9 3 8 8 
52 13 15 16 12 7 37 4 4 6 10 
59 15 19 14 18 7 58 16 17 23 15 
12 0 0 2 4 3 14 2 6 8 3 
34 8 9 5 6 5 31 6 0 5 7 
19 5 8 5 8 0 23 4 9 13 6 
42 15 17 18 18 4 28 15 7 12 10 
43 8 10 15 15 8 40 9 4 7 11 
60 16 16 17 17 8 41 18 5 14 11 
72 11 14 34 17 12 53 8 10 21 14 
12 5 0 5 5 2 12 4 2 1 3 
32 8 9 10 12 7 14 4 3 3 7 
20 5 6 14 8 3 13 3 3 6 3 
46 10 11 10 18 8 39 11 9 13 10 
47 19 11 20 21 9 34 7 3 8 12 
55 18 9 22 17 14 43 7 4 9 12 
61 9 14 14 8 11 55 13 7 24 16 
11 5 2 7 2 2 13 2 1 2 2 
34 4 8 1 10 4 20 6 0 11 6 
21 3 6 5 5 5 20 6 5 3 6 
51 15 11 20 18 9 34 7 7 7 9 
44 12 9 8 16 9 48 10 8 13 8 
55 16 14 18 17 10 34 9 2 9 10 
64 16 14 24 14 11 61 17 8 16 17 
13 3 4 5 5 3 13 2 3 10 3 
29 4 3 8 5 5 20 1 1 3 4 

a classification of the children into groups (G), the type or quality of the play (P), and the 
time (T) when the behavior was observed. The group classification is based on three 
characteristics of the children that were deemed important. The three binary variables are 
age (i.e., Y for younger, O for older), gender (M for male, F for female), and the accep- 
tance of their sibling (H for high, L for low), which define 23 = 8 groups. The 11 qualities 
of play were chosen for substantive reasons. The play qualities are sustained communica- 
tion (sustain), coordinated or successful gossip (gossip), coordinated or positive play (pos- 
itive), excitement (excite), amity (amity), shared or successful fantasy (fantasy), unsus- 
tained communication (unsustain), uncoordinated or poor play (poor), negative emotion 
( -emot ion) ,  conflict (fight), and prohibitions (prohibit). The same children were observed 
on 5 different occasions, 2 before and 3 after the birth of their sibling, at approximately two 
month intervals. Besides repeated measures across occasions, repeated observations were 
made on each occasion. For more details, see Kramer and Gottman (1992). 

There were 30 children in the study, but 5 of them were not observed on the third 
occasion. Due to the pattern of missing data, there were no observations of older males in 
the low sibling acceptance group at 1 month after the sibling's birth. Only analyses of the 
(7 x 11 x 5) sub-table of observations on 25 children who were present on all 5 occasions 
are reported here. 

Since the observations are not independent, likelihood ratio statistics, G 2, are not 
asymptotically distributed as chi-squared random variables, but G 2 is still useful as an index 
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Table 4. Fit statistics of (GP + PT + GPT) 3-mode association models. 

Componen t s  
X 2 Group  P lay  T i m e  df G 2 G 2 / d f  

0 0 0 340 446.24 1.31 422.96 

1 1 1 320 339.26 1.05 320.24 

2 i 2 311 307.06 .99 282.26 
1 2 2 308 326.01 1.06 305.51 
2 2 1 306 309.85 1.01 293.41 

3 1 3 304 288.96 .95 264.21 

1 3 3 298 318.36 1.07 296.50 

3 3 1 294 290.70 .99 273.48 

2 2 2 300 293.57 .98 268.83 

2 2 3 296 287.01 .97 265.03 .... 

3 2 2 294 264.63 .90 244.46 

2 3 2 291 280.17 .96 257.62 

3 2 3 288 251.88 .87 235.79 

2 3 3 285 264.84 .93 239.24 

3 3 2 283 243.88 .86 225.33 

3 3 3 274 219.93 .80 201.81 

of fit. Both likelihood ratio statistics and the ratios of G 2 to the degrees of freedom (dr) 
are used here as indices of fit. In addition, the residuals from models that fit well in terms 
of fit statistics were analyzed to determine whether the models fail to fit the data in some 
systematic way. The residual analyses were also used to ascertain whether the sampling 
assumptions of independence and Poisson distributions are adequate. 

Preliminary analyses were performed using loglinear models. These analyses indicate 
that there is a 3-way interaction and give some indication of the relative importance of 
2-way interactions to fitting the data. Since the Group × Time (GT) margin is affected by 
the design of the study and the GT partial association, which is not substantively inter- 
esting, is fairly strong, the appropriate models are those that include u Gr terms. The 
Group × Play (GP), Play x Time (PT), and Group × Play x Time (GPT) associations 
are all substantively interesting and their effects are all included in u (2'3). While the PT 
association is interesting, it is relatively weak; thus including it in u (2'3) is expected to have 
a negligible effect on the estimated scale values of the 3-mode association model. The basic 
model chosen for the peer play data is (GP + PT  + GPT), 

R S T 

~T + E E • 6,~,l~,,vi~rtk, (25) In (Fqk) = u + u] + u[ + u• + Uik 
r = l  s = l  t = l  

for various values of R, S, and T. To identify the parameters in (25), zero-sum constraints 
are imposed on the u-terms, and the constraints given in (18), (19), and (20) are imposed 
on the Ckrst parameters. Unit weights are used in the orthonormality and centering con- 
straints imposed on the scale values (i.e., h G = h f -- h i  = 1). Since u GT is in the model, 
only the scale values for the play qualities are centered. 

The fit statistics for the (GP + PT + GPT) models are given in Table 4. Particular 
models will be referred to by the number of components estimated for groups, play 
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Table 5. Analysis of association for (GP + PT + GPT) 3-mode association models. 

Source Models Adj" ........ AG 2 AG2/Adf  Percent Cumulative 
{/z,,},{vjl}, {Ykl} 000 -- 111 20 106.98 5.35 24.0% 24.0% 
{#~2}, {~k2} III - 212 9 32.20 3.58 7.2% 31.1% 
{vj2} 212 - 222 II 13.51 1.23 3.0% 34.2% 
unexplained 222 300 293.57 .98 65.8% 100.0% 
total 000 340 446.24 1.31 

qualities, and occasions, respectively. These are listed in the first three columns of the 
table. For example, the third model in the table is denoted by "(GP + PT + GPT)-212" 
or just "212." The models are arranged from most restrictive (top) to least restrictive 
(bottom), and they are separated into blocks consisting of models with the same total 
number of components. The first model in the table, (GP + PT  + GPT)-O00, is equivalent 
to the (GT, P) loglinear model. On the basis of fit statistics, the 111 model appears to fit 
the data rather well, especially considering that this model contains relatively few param- 
eters. Since there is only one component per mode, this model is equivalent to a model 
using CANDECOMP to decompose u/(j~ 3). 

The next block of models (i.e., 212, 122, 221) consists of models that are slightly more 
complex than 111, but they are all relatively simple. These models and those that have only 
one component for one of the variables and two or more components for the other two 
variables can be interpreted as a restricted CANDECOMP model (ten Berge, de Leeuw, 
& Kroonenberg, 1987). Model 212, which has 2 components for groups and occasions and 
one component for play qualities, is the "best" model among those in the third block. It has 
the most degrees of freedom, the smallest G 2, the smallest X 2, and the smallest G2/df. This 
model also yields the largest improvement in fit relative to 111 (i.e., (G~m) - G~212))/ 
(df011) - df(212)) = 3.58), as well as, the smallest decrement in fit relative to more 
complex models. 

Model comparisons between models in the set consisting of 000, 111,212 and 222 are 
summarized in an analysi s of association table, Table 5. The data that are "unexplained" 
by 222 (i.e., the lack-of-fit of the 222 model) is "small" relative to the degrees of freedom 
for this model (i.e., AG2/Adf = .98). The second component for the play qualities, { 192} , 
accounts for only 3% of the association, a relatively small amount. The second components 
for groups and occasions, {txi2} and {~k2}, account for 7.2%, and appear to be important 
since AGZ/Adf = 3.58 is relatively large. The three components {/,i,}, {D1}, and {~kl} 
account for 24.0% of the association, and are also important since AG'/Adf  = 5.35 is quite 
large. Based on this analysis, 212 is the "best" model. 

In choosing the "best" model for the data, the interpretability of the data in terms of 
the estimated parameters of the models and the results of residual analyses were also 
considered. The scale values from the models were plotted and examined, and the resid- 
uals were analyzed. The 111 and 212 were selected as the two "best" models. On the basis 
of parsimony and interpretability, 111 is better than 212; however, 212 is only slightly more 
complex than 111 and there is evidence from the residual analyses that the 111 model is 
a little too simple. Therefore, the 212 model was deemed to be the best for this data set. 
It is worth noting that if an unrestricted or standard CANDECOMP decomposition had 
been used to represent the association rather than Tucker's 3-mode model, then two 
components for each of the three modes would have been required, which is a more 
complex model than the 212 association model that uses Tucker's 3-mode model. 

The interpretation of the association in the peer play data based on the 212 model is 
presented here. Since there is only one component for play qualities and given the iden- 
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FIGURE 1. 
Estimated play quality scale values. 

tification constraints on the Ckrst parameters, the Ckrst parameters form a diagonal 2-way 
matrix. The estimated values are ~bll 1 = 4.345 a n d  ~)212 = 2.497. Since ~bll 1 is approxi- 
mately two times larger than ~b21z, the first components, {tZil} and {r)k~}, are about twice 
as "important" as the second components, {tzi2} and {r)k2}, with respect to accounting for 
the combined effect of the GT, PT, and GPT associations. 

The scale values for the play qualities are plotted in Figure 1. The "bad" or immature 
qualities (e.g., negative emotion, fight, and poor or uncoordinated play) have negative 
scale values and the "good" or mature qualities (e.g., excitement, coordinated play, fan- 
tasy, sustained communication, and successful gossip) have positive scale values. 

The estimated scale values for groups and occasions are plotted in the same space in 
Figure 2. To take into account the differential contribution of each of the components with 
respect to explaining the interactions in the data, the scale values are multiplied by 
((brlr) lie. With this scaling, the inner product between vectors connecting the origin to the 
points corresponding to groups and occasions equal the estimated "scores" of the groups 
on the occasions (i.e., ~bi*l* ~ = Y'r ~)rlrl~irTIkr) • Although not presented here, the scale values 
for occasions can be plotted against time to examine the "components of change." 

With respect to groups, the first component primarily contrasts the older and younger 
children. The older boys have the largest positive value while the younger boys who exhibit 
high acceptance (MYH) have the largest negative values. The second component primarily 
contrasts the younger girls who show low acceptance (FYL) from the other younger 
children (FYH, MYH, and MYL) and the older boys who show high acceptance (MOH). 
Excluding the younger girls who show low acceptance (FYL), the points corresponding to 
the younger children (FYH, MYL and MYH) have similar scale values on both compo- 
nents. The play qualities exhibited by these Children are more similar to each other than 
they are to the play qualities exhibited by children in the other groups. Except for the 
young females who show high sibling acceptance (FYH), the vectors connecting the origin 
to the points corresponding to the other groups of females (FYL, FOL and FOH) point 
in the same general direction. These girls exhibit a similar pattern of play qualities on each 
occasion. Since the point corresponding to FOH is the closest to the origin, the point for 
FOL is the next closest, and the point for FYL is the furthest, the pattern of interaction 
is the least pronounced or the weakest for the children in FOH, is next weakest for FOL, 
and is the strongest for FYL. 

With respect to occasions, the scale values for the first component are all positive, and 
are ordered such that the scale value for the first session ( - 3  months) is the largest, the 
one for the second session ( -1  month) is the next to largest, and the scale values for the 
last three sessions (+ 1, +3, +5 months), which are quite similar in value, are the smallest. 
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FIGURE 2. 
Joint plot of the estimated group and occasion scale values. Note: F = female, M = male, Y = younger, O = 

older, L = lower sibling acceptance, H = higher acceptance. 

The second component primarily contrasts the behavior of the children after the first 
session. The vector corresponding to the first occasion points in essentially the same 
direction as the first component (the horizontal axis) and is the longest vector, which 
implies that the strongest interactions in the data occur at the first session. The points 
corresponding to + t and +5 months are relatively close to each other, which implies that 
the pattern and strength of associations in the data are similar on these two occasions. The 
scale values on the second component for +1 and +5 months are the largest positive 
values on the second component,  while the scale value for +3 months is the largest 
negative value. Substantively, this pattern is interpreted as indicating that at the third 
month after the siblings' births, children's behavior tends to "regress" and is more similar 
to what is was like the month immediately preceding the birth of their sibling. 

To further aid the interpretation of the relationship between.~lay qualities, groups, 
and occasions, the estimated scores for groups on each occasion, dPil k = ~r ¢~rlrtl"irrlkr, are 
plotted in Figure 3. These scores can be examined to look for patterns across groups and/or 
time, differences between groups on given occasions, and to examine the changes within 
groups over time. In Figure 3, note that the scores for the older children (dark symbols) 
tend to be larger than the scores for the younger children (open symbols). 
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E s t i m a t e d  g r o u p  scores  a t  each  occasion.  Note :  F = female ,  M = male ,  Y = younger ,  O = older ,  L = lower  

s ibl ing acceptance ,  H = h igher  acceptance,  []  = MYL,  and  ~ = F Y H .  

In summary, the younger children tend to exhibit more of the "bad" qualities than the 
older children, the older boys in the high acceptance group exhibit more of the "good" 
qualities than children in any of the other groups, and the strength of this relationship 
decreases over time (i.e., the children are more similar to each other at the end of the study 
than they were at the beginning). The second components for groups and occasions 
qualifies this basic interpretation by adding a description of the differences between the 
groups after the first session. 

4. Conclusion 

While any single generalization of the RC(M) association model to 3-way tables will 
not suffice in all situations, the models introduced here expand the set of generalizations. 
The family of models proposed here are both similar to and different from previously 
proposed model generalizations. Some of the previously proposed model generalizations 
are also reasonable models for modeling the peer play data. While not reported here, these 
other models were also fit to the peer play data; however, all of them lead to a more 
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complex representation of the data than did the 3-mode association model. The 3-mode 
association modeling of the data yielded the most parsimonious representation of the 
associations among the variables. 

A criticism of all generalizations of the RC(M) association model to 3-way tables is 
how can a 4- or higher-way table be analyzed. In many situations, multivariate tables can 
naturally be arranged into a lower-way table by the appropriate crossing of some of the 
variables. In the example presented here, the three variables that consisted of attributes of 
the subjects were treated as a single polytomous variable, which was crossed with the other 
two variables to yield a 3-way table. When such a strategy is not sufficient, further model 
generalizations are possible by using extensions of Tucker's 3-mode components model, 
such as the N-mode component model proposed by Kapteyn, Neudecker, and Wansbeek 
(1986), to model the 4- or higher-way associations. 

Appendix: Equivalence of 3-Mode Association Models and 
the Saturated Loglinear Model 

The saturated loglinear model for 3-way tables given in (1) is equivalent to the 
(ABC), (BC + ABC), (AC + ABC),  and (AB + ABC) 3-mode association models, but 
it is not equivalent to the other four 3-mode association models where values of R, S, and 
T are chosen to guarantee that the models fit the data perfectly. Proofs are given here for 
the (BC + ABC) model given in equation 5, which is equivalent to the saturated loglinear 
model, and for the (AC + BC + ABC) model given in (6), which is not equivalent to the 
saturated loglinear model. Proofs for all other models follow those presented here. It is 
assumed that I <- JK, J <- IK, and K <- I J, which is a reasonable condition for most 
applications. 

Let M, N, and E be the (I x R), (J x S), and (K × T) matrices with elements t~ir , 
Vjs, and Tlkt, respectively, and let DA, DB, and D c be the (I × I), ~J × J), and (K × K) 
diagonal matrices with diagonal elements equal to the weights he, hT, and hk c, respectively. 
Note that M'DAM = IR, N'DsN = Is, and E'DcE = IT, because of the orthonormality 
identification constraints on the scale values. Matrices containing elements equal to u~{g 33 
and $rst will be denoted by the symbols U and ~ ,  respectively, and subscripts given to U 
and ~ will indicate how the elements are arranged into a 2-way matrix. For example, UA,BC 
is an (I X JK) matrix where the rows correspond to categories of variable A and the 
columns correspond to combinations of levels of variables B and C, and ¢#A,BC is an (R X 
ST) matrix where the rows correspond to the components for variable A and the columns 
correspond to combinations of components for variables B and C. 

To show that a 3-mode association model is equivalent to the saturated loglinear 
model, it needs to shown that u~ 2'3) = •rR=l ES=I Y~L1 ¢~rstl£irVjs~Okt (i.e., equation 3) holds 
for some R, S, and T, and that given these values of R, S, and T, the degrees of freedom 
for the 3-mode association model equals zero. In terms of matrices, equation 3 can be 
written in three equivalent ways, 

Un,nc = MOA,Bc(N ® E)',  

UB.AC ~-" NOB,Ac(M ® E)',  

UC, A8 = E@C.AB(M ® N)', 

where ® is Kronecker (outer) product. 
With Tucker's 3-mode components model, a complete decomposition of an (I x J x 

K) 3-way table is always guaranteed for R = I, S = J, and T = K (Tucker, 1966; 
Kroonenberg, 1983); however, for all of the 3-mode association models, except for the 
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(AB  + A C  + BC + A B C )  model given in (7), a complete decomposition of the 3-way 
table of u~.~ 3) is guaranteed for fewer than R = I, S = J, and T = K. To show this and to 
find the values of R, S, and T that guarantee a complete decomposition of the u~.~3)'s, 
consider the following 2-way, symmetric matrix, 

UA,Bc(D8 ® Dc)U,~.Bc = MOA,Bc(N ® E)'(DB ® Dc)(N ® E)@.~,Bc M'  

= M@A,scdP'A,BcM ' 

= MAAM'.  

Given the identification constraints on the ¢hrst parameters, (18), (19), and (20), AA = 
¢PA,SCdP:4,BC is a diagonal matrix; therefore, the eigenvectors M of the matrix UAwC(DB ® 
Dc)U.~,Bc scaled such that M'DAM = IR contain the scale values I.l~ir. Likewise, the scale 
values Vjs and ~kt can be found by finding the eigenvectors of UB,AC(DA ® Dc)Ub,AC = 
NABN', and UC,AB(DA ® DB)U~,AB = EAcE' ,  respectively. Given t-%, vjs, and ~kt, the ¢~rst 
parameters are obtained by computing 

1 J K 
t~rst : 2 E E '1(2'3)°' 1) -- I.,AI,,BI~C ~ijk I~ir js Jlkttt i ttj tt k. 

i=1 j-~l k=l 

The resulting values of I~ir, ~'s, "Okt, and ~brst give a complete decomposition of the 3-way 
matrix of u~.~ '3) values. 

For model (BC + ABC) ,  u~ 2'3) = u~k c + u~iy~ c. Given the identification constraints 
on the u-terms (i.e., zero-sum or setting a value equal to zero), UA,BC has as many as I 
linearly independent rows (i.e., AA contains as many as I nonzero eigenvalues), UB,AC has 
at most ( J -  1) linearly independent rows (i.e., AB contains at most ( J  - 1) nonzero 
eigenvalues), and UC,AB has at most (K - 1) linearly independent rows (i.e., A c contains 
at most (K - 1) nonzero eigenvalues). This implies that a complete decomposition is 
guaranteed for R = I, S = ( J  - 1), T = (K - 1). With this number of components, the 
degrees of freedom for model (BC + ABC)  equals zero and this model is equivalent to the 
saturated loglinear model. 

For model ( A C  + BC + ABC) ,  u~.~ 3) = u~/j B + u~ c + u~ij~ c. The matrices UA~ c and 
UC,AB have full row rank (i.e., AA contains as many as I nonzero eigenvalues, and Ac 
contains as many as K nonzero eigenvalues), while the matrix UB,AC has at most ( J  - 1) 
linearly independent rows (i,e., AB contains at most ( J  - 1) nonzero eigenvalues). To 
guarantee a complete decomposition, R = I, S = ( J  - 1), and T = K, which leads to 
negative degrees of freedom; therefore, the ( A C  + BC + A B C )  model is not equivalent 
to the saturated loglinear model. 
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