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Spanning nearly sixty years of research, statistical network analysis has passed through (at 
least) two generations of researchers and models. Beginning in the late 1930's, the first generation 
of research dealt with the distribution of various network statistics, under a variety of null models. 
The second generation, beginning in the 1970's and continuing into the 1980's, concerned models, 
usually for probabilities of relational ties among very small subsets of actors, in which' various 
simple substantive tendencies were parameterized. Much of this research, most of which utilized 
log linear models, first appeared in applied statistics publications. 

But recent developments in social network analysis promise to bring us into a third generation. The 
Markov random graphs of Frank and Strauss (1986) and especially the estimation strategy for these 
models developed by Strauss and Ikeda (1990; described in brief in Strauss, 1992), are very recent 
and promising contributions to this field. Here we describe a large class of models that can be used 
to investigate structure in social networks. These models include several generalizations of sto- 
chastic blockmodels, as well as models parameterizing global tendencies towards clustering and 
centralization, and individual differences in such tendencies. Approximate model fits are obtained 
using Strauss and Ikeda's (1990) estimation strategy. 

In this paper we describe and extend these models and demonstrate how they can be used to 
address a variety of substantive questions about structure in social networks. 
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1. In t roduc t ion - - -The  Evolu t ion  o f  Stat is t ical  M o d e l s  for  Social  Ne tworks  

Stat is t ical  mode l s  have b e e n  used  by resea rchers  to s tudy social  ne tworks  for  a lmost  
60 years ,  beg inn ing  with  the  work  o f  the  early soc iomet r ic ians  in the  late  1930's. The  goal  
of  these  mode l s  was (and  remains )  the  quant i ta t ive  examina t ion  of  the  s tochast ic  p rope r -  
t ies of  social  re la t ions  and the  ac tors  of  a par t icu la r  network.  Nons tochas t i c  mode l s  have 
cer ta in ly  been  cons ide red  by many,  bu t  such mode l s  do  not  have the  nice p rope r t i e s  of  
the i r  s tat is t ical  counte rpar t s ,  such as goodness-of-f i t  stat ist ics and  the  possibi l i ty  o f  pa ra -  
me t r i c  s ignif icance tests  o f  var ious  ne twork  s t ructura l  p roper t i e s .  

R e c e n t  d e v e l o p m e n t s  in social  ne twork  analysis  have now b rough t  us to  a new gen-  
e ra t ion  o f  models ,  namely  the  M a r k o v  r a n d o m  graphs  o f  F r a n k  and  Strauss  (1986) and  
especia l ly  the  e s t ima t ion  s t ra tegy for  these  mode l s  d e v e l o p e d  by Strauss  and  I k e d a  (1990), 
desc r ibed  in b r i e f  in Strauss (1992). These  mode l s  expand  cons iderab ly  the  class of  s truc-  
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tural models that can be investigated within the exponential family first proposed by 
Holland and Leinhardt (1981). Markov models, and their more general forms, which we 
labelp*, can be approximated by logistic regressions, thus giving the researcher easy access 
to a very large wealth of modeling tools. 

The review and extension of this research is the goal of this and our companion paper 
(Pattison & Wasserman 1995). 

We first give some notation which we will use throughout, and then turn to a brief 
recent history of statistical models for social networks. More thorough historical accounts 
can be found in chapters 13-16 of Wasserman and Faust (1994). 

2. Some Notation 

A social network is defined as a set of g social actors and a collection of r social 
relations that specify how these actors are relationally tied together. Of interest to us here 
will be networks with either r = 1 or 2 relations. Examples of social relations are "chooses 
as a friend" and "is a neighbor of", recorded for each pair of individuals in some set of 
actors. 

We let N denote a set of actors: A r = {1, 2 . . . .  , g}. Adichotomous social relation, ~g, 
is a set of ordered pairs recording relational ties between pairs of actors. If the ordered pair 
(i, j)  is in this set, then the first actor (i) in the pair has a relational tie to the second actor 
(j) in the pair; we write iXj, or more succinctly, i --> j. 

A social relation can be either directed (i's tie to j may differ from j 's  tie to i) or 
nondirected (there is, at most, one nondirected tie connecting i and j),  and can also be 
valued (the tie from i to j has a nondichotomous strength or value). The main statistical 
focus in the literature has been on models for single (or univariate), dichotomous, directed 
relations (represented as directed graphs). Since many of the models described here take on 
a different character when the relation under study is nondirected, we will (at times) 
describe the models and parameters which arise when the relation is not directed. 

Any social relation can be represented by a g × g sociomatrix, X, where the (i, j)  entry 
in the matrix (which we denote by X(i, j) or, sometimes, by Xij) is the value of the tie from 
actor i to actorj  on that relation. For a dichotomous relation, X is also the adjacency matrix 
of the directed graph representing the relation. For a valued relation, X(i, j) = c, the value 
of the tie f r o m i  t o j .  We typically assume that c E {0, 1, 2 , . . . ,  C - 1}. For a 
dichotomous relation, C = 2, so that 

{~ ifi-->j 
X(i, j)  = otherwise. 

Frequently of interest in network analysis are subsets of actors and all the ties that might 
exist among them. For example, for a dichotomous relation, a dyad is a pair of actors and 
all the ties between them, and can be in one of four states: null (no ties), asymmetric (one 
tie; two possibilities), and mutual (two ties). 

In the general, multirelational case, relational ties are recorded for r relations. We 
assume that these relations, ~1, %2, • . - ,  ~r, have associated sociomatrices X1, X2, • • •, Xr- 
And since these sociomatrices will be assumed to be random quantities, we will use 
lower-case bold-face characters (such as x) to denote realizations of these random quan- 
tities. Our focus here is on the univariate situation (r = 1), while extensions to the 
multivariate situation can be found in the companion paper (Pattison & Wasserman, 
1995). 

Important network statistics for dichotomous directed relations include the outdegree 
and indegree of an actor, that is, the number of ties sent and received (Ej X(i, j) and 
Ei X(i, j), respectively); the number of ties, L = ~,i,j X(i, j), and the number of recipro- 
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cated ties (that is, such that X(i,  j) = X( j ,  i) = 1; sometimes referred to as mutual dyads); 
and numbers of higher-level subgraphs, such as 2-out-stars (triples of nodes such that 
i --* j and i ~ k), 2-in-stars (triples of nodes such that j ~ i and k ~ i), 2-mixed-stars 
(triples of nodes such that i --~j and k ~ i), cyclic triads (triples such that i ---~ j,  j --~ k, 
k ~ i), and so on (there are many possibilities). We define 

M = ~ X(i ,  j ) X ( j ,  i) 
i<j 

as the number of mutual dyads, 

as the number of 2-out-stars, 

T =  

S = ~ X ( i , j ) X ( i , k )  
i~j~k 

X(i ,  j ) X ( j ,  k )X(k ,  i) 
i~j~k 

as the number of cyclic triads, all for a single relation. 
A (directed) path of length d from i to j is a sequence of nodes {i = i 1, i 2 . . . . .  

ia+l = J}, beginning with i and ending with j, such that 

X(ia, i2)X(i~, i3) . . .  X(ia, id + 1) = 1. 

The shortest path between any pair of nodes is a geodesic, and the length of the geodesic(s) 
is the distance from i to j  (denoted by dq). This geodesic distance can be defined a bit more 
formally as 

dq = minimum value of k for which 

X(io, i l )X( i l ,  i2) . . . X(ik_ 1, ik) = 1, 

where i 0 = i and i k = j. The distance dij is undefined if there is no path from i toj .  A graph 
is "disconnected" if some distances are undefined; the graph is then said to have more than 
one component. In a digraph, if at least one node has no path to another node, the digraph 
is not strongly connected. 

If actors have been partitioned into a set of S blocks (or positions), we can define 8ij;r s 
as an indicator variable, equal to 1 if actor i is in the rth block and actor j is in the sth. 

There are many other simple graph statistics; some of these will be presented in later 
sections (see Tables 1 and 2 for nondirected relations and Tables 3 and 4 for directed 
relations). 

We will let O and ~ be symbols to represent logits--log odds ratios, comparing the 
probability of one outcome of a random variable to the probability of another outcome, in 
a logarithm scale. The O's will be logits based on Holland and Leinhardt's (1981) models, 
while the w's will be logits based on the p* models that we describe here. 

3. A Brief History 

The models that are considered in this paper express each relational tie as a stochastic 
function of actor or network structural properties. An important example of such a model 
is Holland and Leinhardt's (1977, 1981)Pl model. The pl  model includes parameters for 
tie density, the propensity for reciprocity of ties, and individuals' tendencies to express and 
receive ties. This model and its many generalizations make the strong assumption of dyadic 
independence, an assumption that has been criticized in the literature (see chapter 15 of 
Wasserman & Faust, 1994). Consequently, developments which relax the assumption are 
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of considerable importance. Frank and Strauss' (1986) research on Markov random graphs 
was the first such generalization, and has great potential. Markov graphs permit depen- 
dencies among any ties that share a node (for example, Xij and Xi~, or X/j and Xjk ). 

The important work of Strauss and Ikeda (1990) has made these models computa- 
tionally available. Strauss and Ikeda investigated apseudolikelihood estimation procedure, 
a generalization of maximum likelihood, that uses an approximate likelihood function 
which does not assume dyadic independence (see comments in Iacobucci & Wasserman 
1990; and chapters 15 and 16 of Wasserman & Faust 1994). Strauss and Ikeda derived a 
pseudolikelihood ~is a function of each data point (xij), conditional on the rest of the data. 
Any interdependencies in the data can be directly modeled by this statistical conditioning, 
so no assumptions need to be made that the data points are all independent. 

Strauss and Ikeda compared the performance of standard maximum likelihood (ML) 
estimates to their maximum pseudo-likelihood (MP) estimates both in a simulation study, 
and by analyzing the "like" relation measured on the monks in the monastery studied by 
Sampson (1968). In the simulations, they looked at the performance of the estimates in five 
replicated networks containing fifteen, twenty, or thirty actors. They found that MP and 
ML estimates performed equally well, as evaluated by a root mean squared error measure. 
The estimates had greater standard errors for the networks with fewer actors, but this 
would be true of any procedure--better precision usually occurs with larger data sets. 

Under all the conditions for which both ML and MP estimates could be estimated, the 
two performed similarly. One of the main advantages in the use of MP estimation is that 
there are conditions under which MP estimates exist, but ML estimates do not. In addition, 
the MP approach further expands the applicability of p l  because it can be used to fit 
models that do not assume dyadic independence, such as those described by Frank and 
Strauss (1986). 

Strauss and Ikeda's comparisons also address the issue of how well the maximum 
likelihood estimation ofpl  parameters performs even under conditions where the assump- 
tion of dyadic independence is known to be violated. The fact that the ML estimates are 
as good as MP estimates is good news. One can proceed to use the relatively simple 
methods without much concern that violation of the assumption of dyadic independence 
will greatly affect the results. The biggest advantage (to us) of the MP estimation technique 
is its ease of use--as we note below, logistic regression computational procedures can be 
used to fit these models, and hence, to give very good approximations of fitted p~-type 
models. 

Details of such models, which we will refer to here by p*, follow. 

4. Pl, P*, and Logit Models 

Before describing the models, p 1 and p*, we note that we will illustrate the methods 
described here on an example taken from Vickers and Chan (1981) and Vickers (1981). 
They obtained network data from 29 students in Grade 7 in a school in Melbourne, 
Victoria in Australia. They asked the students to nominate their classmates on a number 
of relations, including the following: 

• Who do you get on with in the class? 
• Who are your best friends in the class? 
• Who would you rather not be friends with? 
• Who would you prefer to work with? and 
• Who would you rather not work with? 

Each of these questions gives rise to a dichotomous relation, with measurements recorded 
in a 29 X 29 sociomatrix. We focus our attention here on the first relation ("Getting on 
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with"), and the fourth ("Work with"). Both of these relations are directed. We label the 
two, ~g, and ~w (for Get on With, and Work with). The two matrices for these relations 
are shown in Tables 11 and 12 found in the Appendix. 

We note that Actors 1 through 12 are boys, while Actors 13 through 29 are girls. We 
will use these data to illustrate the models described below. 

4.1. Pt 

We quickly reviewpl,  referring the reader to more complete treatments (Fienberg & 
Wasserman, 1981; Holland & Leinhardt, 1981; Reitz, 1982; Wasserman, 1987; Wasserman 
& Faust, 1994; Wasserman & Galaskiewicz, 1984) if needed. 

Consider the dyad Dij = (Xij, Xji), and the four possible states that this random 
quantity can be in: 

• (Xij, Xji ) = (0, 0)- -Nul l  dyad, 
• (Xij, Xji) = (1, 0)--Asymmetric dyad (i --->j), 
• (Xij, Xji) = (0, 1)--Asymmetric dyad (j  ---> i), 
• (Xi j ,  X j i  ) = (1 ,  1)--Mutual  dyad. 

We consider the substantive tendencies which might cause a particular dyad to be in one 
of these states (for example, mutual dyads might arise if both actors were quite popular). 
Such tendencies are then incorporated as additive effects into a model for the logarithms 
of the probabilities of the four dyadic states. 

We first create a new matrix, Y, from X, which aids the computations for the model. 
We define the entries of this g × g × 2 × 2 matrix as follows: 

yijkt = { lo if the dyad Dij takes on the values (Xij = k, Xji = l) 
otherwise. (1) 

Thus, the four entries in Y which are associated with the pair of actors i and j (the 2 x 2 
submatrix associated with the ith level of variable 1 and thej th  level of variable 2) code the 
state of the dyad Dij. To specify Pl,  we postulate the following log linear equations: 

log P(Yijoo = 1) = )tq 

log P(Yi~lo = 1) = ~ki] --[- 0 -J¢- ol i --~ [~j 

log P(Yiiol = 1) = )tij + 0 + aj +/3i 

log P(Yijll = 1) = )t~ + 20 + ~ + a t + /3  i +/3~ + p. (2) 

The parameters of this model are explained at length in Fienberg and Wasserman (1981), 
Wasserman (1987), or chapter 15 of Wasserman and Faust (1994). In brief, the a's reflect 
substantive tendencies toward expansiveness (they are "subject" effects), the/3's, attrac- 
tiveness or popularity ("partner" effects), 0 is an overall choice parameter, while p models 
tendencies toward reciprocation or mutuality. 

If the relation in question is not directed, then model (2) has a simpler form. For 
nondirected relations, there are only two dyad states, and only two types of parameters 
(see Wasserman & Faust, 1994). 

Perhaps a better way to present this model is to relax the restriction to dichotomous 
relations. We can assume that the relation is valued, and that every tie has a strength, with 
a score measured on an  integer scale from 0 to C - 1. If we define k as the value of  the 
tie from i t o j  and l as the value of the tie f romj  to i, then we can generalize Y so that its 
elements Yi]kl = 1, when Xij = k and Xji = l. The following model statement (from 
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Wasserman & Iacobucci, 1986; see also Anderson & Wasserman, 1995) generalizes the 
four statements of p 1: 

log P(Y~j,t = 1) = Aij + Oh + Ol + ae(k) + %(1) + [3j(k) + [3i(t) + Pkt. (3) 

Regardless of the nature of the relation, dyads are assumed to be statistically inde- 
pendent, so that the joint probabili~ distribution, and hence the likelihood function, is 
simply a product of dyadic probabilities. Models such as Pt  are referred to as dyadic 
independence models (for obvious reasons). 

Estimation (after placing necessary and logical constraints on model parameters), 
fitting, and testing are described in any of the above references. Simplifications arise if 
relations are ordinal, or if actors can be assumed to fall naturally into subgroups (so that 
actor-level parameters can be equated for all actors within a particular subgroup). Fitting 
is not particularly easy, and the asymptotic theory for testing is questionable (at best). 
These two problems (along with the desire for models that do allow dyads to be depen- 
dent) motivate the research into more complicated models that we now present. These 
models have the useful feature that they include dyadic independence models such as Pl  
as a special case. 

4.2. p*--Theory, Special Cases, Estimation 

In order to specify the exponential family of models p*, which contains Markov 
random graphs, as well asp1 as a special case (in a sense that we mention below), we need 
a bit more notation. From X, the sociomatrix for a single, dichotomous, directed relation, 
we define three new relations, with sociomatrices easily constructed from X. First, we 
define Xi~- as the sociomatrix for the relation formed from ~ where the tie from i to j is 
forced to be present: Xi~ ? = {Xkl , with Xij = l} .  Next, we define Xi7 as the sociomatrix for 
the relation formed from ~ where the tie from i to j  is forced to be absent (or to be at level 
0): Xi7 = {Xkt, with Xij = 0}. Lastly, we define X~ as the complement relation for the tie 
from i to j: X~ = {Xkt, with (k, l) 4: (i,j)}. The complement relation has no relational tie 
coded from i to j - - o n e  can view this single variable as missing. All told, these three new 
relations are needed to define p*. 

The original specification of these models was just for a single, dichotomous relation. 
Most of the early work focused on nondirected relations. Generalizations to valued rela- 
tions, and to more than one relation, were mentioned in passing (in concluding remarks) 
by Frank and Strauss (1986, see. 6) and by Strauss and Ikeda (1990, see. 5). We address all 
of these generalizations in this paper and in our companion paper, Pattison and Wasser- 
man (1995). 

4.2.1. Logit Models 

We now describe the general, log linear form ofp*,  which we will then present in its 
logit formulation. We begin with log linear models of the form 

exp  {O'z (x ) }  
Pr ( x  = x) = - K(O) ' ( 4 )  

where O is a vector of model parameters and z(x) is a vector of network statistics. These 
models are of exponential family form, in which the probability function depends on an 
exponential function of a linear combination of network statistics. Such models arise 
frequently, not only for studies of social networks, but also in spatial modeling, statistical 
mechanics, and even in test theory (Strauss, 1992). We refer to models of the form (4) with 
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the labelp*. One might need constraints on the elements of 0 to insure a set of uniquely- 
determined parameters (as we illustrate later with our examples). 

In model (4) for social networks, the O parameters are the weights of the linear 
combination, and are usually unknown, and hence, must be estimated. The function ~:, in 
the denominator of model (4), is a constant that insures that the probability distribution is 
indeed proper, summing to one over the sample space of the random variable X--all 
possible directed graphs. Examples of various statistics z are numerous, and (for a directed 
relation) include the number of mutual dyads, M, the number of ties, L, and the outdegree 
of the ith actor, xi+. A very wide range of such statistics can be found in Tables 1, 2, 3, 
and 4. 

A very simple example of model (4), which is quite similar to the simplest Bernoulli 
graph distribution as well as to a special case ofpa, is 

exp { OL } 
P r ( X = x ) =  K(0) ' (5) 

with a single parameter 0 and which depends on only the number of relational ties. 
The problem with distributions of this form is the normalizing constant. In order for 

probabilities to be computed, one must be able to calculate K, which is just too ditficult for 
most networks. This prevents easy maximum likelihood estimation of the model parame- 
ters (see Frank & Strauss, 1986) except in special circumstances. But, there are tricks, as 
Fienberg and Wasserman (1981) discovered forpl ,  and as we describe below, forp*. 

As described by Strauss and Ikeda (1990), one can turn this loglinear model into a 
logit model, using the dichotomous nature of the random variable X O. We first condition 
on the complement of Xij, and consider just the probability that the tie from i to j is 
present: 

Pr (X = xiT) 
Pr (Xij = IIx~) = Pr (X = x/f) + Pr (X = xij-) 

exp {O'z(xi7 )} 

= exp {O'z(xi; )} + exp {O'z(x;)} (6) 

which has the advantage of not depending on the normalizing constant. We next consider 
the odds ratio of the presence of a tie from i to j  to its absence, which simplifies model (6): 

Pr (X, i = llX~) exp {0'z(x;)} 

Pr ( X i j  = 0[X~j ) --  e x p  {0tZ(Xl} - )} 

= exp {0'[z(xi; ) - z(x,j- )]}. (7) 

From this, the log odds ratio, or logit, model has the rather simple expression: 

Pr llXTj) [ = O ' [Z(Xi ; ) -  Z(Xi;)]. (8) 
(X,i 

w , j = l o g  Prr(X~j 0lx )J 

If we define 6(xij ) = [z(xi~) - z(xi])], then the logit model (8) simplifies succinctly to ~rij 
= O'6(xij). The expression ~5(xij ) is the vector of network statistics that arises when the 
variable Xij changes from 1 to 0. This version of the model, in which a log odds ratio is 
equated to a linear function of the components of 6(xij), will be referred to as the logit p* 
model for a single, dichotomous relation. 

As one can see, to specify a logit p* model, one chooses a priori a collection of 
network statistics that is supposed to affect the log odds of a tie being present to absent. 
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The model itself depends on the hypothesized structural features of the network. For each 
hypothesized structural feature (such as transitivity), there is a corresponding network 
statistic (such as, T, the total number of transitive triads) and a corresponding "explanatory 
variable" in the logit model; the explanatory variable is the change in the network statistic 
when the tie from node i to node j changes from being present to absent. 

The model is easy to construct when the relation is dichotomous, so that logits are 
simple and well-defined. When the relation is valued, one must be careful about which 
logits to model--there will be C - 1 logits for a dichotomous relation that takes on integer 
values from 0 to C - 1. We discuss this at length in Pattison and Wasserman (1995). 

4.2.2. Dependence Graphs 

In the original specification of model p*, Frank and Strauss (1986) viewed it as a 
generalization of model Pl and all its relatives, designed to relax the restriction of the 
earlier models to independent dyads. Frank and Strauss first presented p* as a model 
incorporating a complicated dependence structure for nondirected relations, and then 
generalized this to directed relations. Even though Frank and Strauss (1986) presented the 
general specification of p*, they concentrated (as can be seen by the title of that paper) on 
the special case ofp* incorporating a Markov assumption. This special case is based on the 
theory for Markov random fields, applied to graphs (and hence, labeled Markov random 
graphs). As Frank and Strauss desired, one no longer had to assume that dyads were 
statistically independent. 

Markov graphs are generalizations of Markov random fields designed for spatial 
interaction models (Kindermann & Snell, 1980; Ripley, 1981; Speed, 1978; Strauss, 1977), 
and are based on the work of Ising (1925) for models of rectangular arrays of binary 
variables, or lattices (Wasserman, 1978). Any two sites on a lattice are neighbors if they are 
sufficiently close. One then postulates an Ising model for the entire set of lattice variables 
which has the same exponential family form as model (4) with parameters 0. 

There are a variety of ways of viewing p*. One important aspect or view of these 
models is the dependence structure they assume for the lines of the graph or arcs of the 
digraph. A dependence graph, in the context of a social network, indicates which relational 
ties (or subsets of relational ties) are conditionally independent. The dependence structure 
of a random directed graph is simply a graph whose nodes are all possible relational ties 
in the original relation and whose ties specify which ties in the relation are conditionally 
dependent, given the remaining relational ties. Two ties are conditionally dependent if the 
conditional probability that the ties both are present, given the other ties in the network, 
is not equal to the product of their marginal conditional probabilities. The dependence 
graph has lines connecting all pairs of conditionally dependent ties. There are many ways 
of specifying conditional dependence between a pair of ties, which lead to a variety of 
distinct dependence graphs. 

For example, the dependence digraph arising from Pl has lines connecting each 
relational tie to its dyadic pair (and no others). Other examples are described below. 

To fully appreciate this view of p*, one needs to consider the structure of the depen- 
dence graph and how a particular structure is reflected inp* model parameters. We do this 
formally, using the Hammersley-Clifford theorem (discussed by Besag, 1974) which estab- 
lishes that a random directed graph has a probability that depends only on the complete 
subgraphs of the dependence graph. (A complete subgraph of a graph is a subset of nodes 
in which every pair of nodes in the subset is linked by a line. Thus, a complete subgraph 
in the dependence graph corresponds to a set of ties in the original random directed graph, 
every pair of which is conditionally dependent, given the rest of the graph.) The theorem 
also establishes that sufficient statistics for a loglinear model for the random directed graph 
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are of the form II (i,j)~.A Xij, whereA is a complete subgraph of the dependence graph. The 
product here is computed across a set of edges in the original directed graph that are 
pairwise mutually conditionally dependent. The induced subgraph in the original directed 
graph corresponding to this set of edges is termed a sufficient subgra_ph for the loglinear 
model. (The subgraph induced byA is simply the collection of all edges inA and the nodes 
in the original graph to which they are incident.) This important result implies that one 
need only worry about complete subgraphs of the dependence graph. 

Frank and Strauss described several important examples of specific dependence struc- 
tures. 

1. The first is the case of a Bernoulli directed graph, in which all edges are condition- 
ally independent. The dependence graph of a Bernoulli graph comprises a collection 
of isolated nodes, each corresponding to an edge in the Bernoulli graph. 

2. A second is the case of dyad independence in which Xiy is conditionally dependent 
only on Xji, given the rest of the graph (Strauss & Ikeda, 1990). In this case, the 
complete subgraphs of the dependence graph are of the form {Xij} or {Xij, Xji}. 

3. A third type of dependence structure is one in which edges that have an actor in 
common are conditionally dependent (Frank & Strauss, 1986). From this, Frank and 
Strauss define a Markov directed graph as a random directed graph for which arcs in 
the dependence graph connect pairs of possible ties if and only if they have an actor 
in common, such as Xij and Xik , Xij and Xki , Xij and Xjk , o r  Xij and Xkj. It imme- 
diately follows that in a Markov graph, the complete subgraphs of the dependence 
graph are simply triads and k-stars. In a Markov digraph, the complete subgraphs of 
the dependence graph are mutual dyads, triads, and stars of order 3 or more. Frank 
and Strauss give the complete subgraphs (with 4 or fewer nodes) of the dependence 
graph of a Markov digraph. 

Frank and Strauss' use of Markov (di)graphs greatly simplifies the possible depen- 
dence structures that can arise, and leads naturally to a class of parametric models. Spe- 
cifically, loglinear models for graphs with Markov dependence can be seen to depend only 
on the complete set of triads and k-stars, and not on tetrads or other more complicated 
subgraphs (we note that such subgraph structures are defined in chapter 4 of Wasserman 
& Faust, 1994). Further simplifications of such models arise with assumptions of homo- 
geneity of model parameters, and assumptions that some parameters are zero. 

Occasionally, it may make sense to propose more complex dependence structures. 
Suppose, for instance, that there is a coloring on the nodes of a graph or directed graph 
(that is, each node in the graph is assigned exactly one color from a specified set of colors). 
The coloring may specify the status of network actors on some attribute such as family 
membership; in this case, the coloring would require as many colors as there are families 
(and we assume, in this simple example, that each actor is a member of exactly one family). 
We define a block random graph to be ap* random graph in which two possible ties (i, j) 
and (k, l) are conditionally dependent if and only if nodes i, j, k and l all have the same 
color; in other words, ties are conditionally dependent if they are incident to nodes of the 
same color. The corresponding dependence graph consists of a set of disconnected com- 
ponents, one for each color in the color set and each component is complete. The complete 
subgraphs of the dependence graph are thus the collection of these components and all of 
their subgraphs. Sufficient statistics for the corresponding log linear model parameters are 
products of observed ties, where the products are taken over subsets of ties linking indi- 
viduals of the same color. A block random graph would allow one to model interdepen- 
dencies among relational ties among family members. 
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4.2.3. Some  Models  

To generate a specific member of the logit p* family, one needs to specify the vector of 
network statistics z(x) and to determine the need for any constraints on the parameters 0. 

As shown by Frank and Strauss (1986), one Markov graph model for a nondirected 
relation depends on the number of cyclic triads and the numbers of k-stars in the graph 
representation of the relation. Such a model needs k-stars as high as k = (g - 1), and as 
low as k = 1 (the number of ties), so there are exactly (g - 1) + 1 = g components in 
z(x). One need not work with a more complicated model, assuming of course, that one 
wants homogeneity (parameters not depending on the individual actors). 

A simpler Markov graph model used by Frank and Strauss (1986) is referred to as the 
triad mode l  and depends only on the number of relational ties, L, the number of 2-stars, 
S, and the number of cyclic triads, T. A special case of this model is one-dimensional, and 
depends only on S, the number of 2-stars, and is referred to as the clustering model.  This 
latter model is the only model that Frank and Strauss estimate with maximum likelihood. 
For a directed relation, the model becomes more complicated, since there are different 
types of stars (for example, there are "in-stars" of order 2, for which both ties end at actor 
i, as well as "out-stars" of order 2, for which both ties originate at actor i; and of course, 
there are many different types of triad counts). 

Another special Markov directed graph model mentioned by Strauss and Ikeda 
(1990), is the model: 

Pr (X,~ = ltX~)I 
= l o g  Vrr (x , j  01x•)j = 0 "+" p(Xji ) -~ Ol i -~ ~j.  ( 9 )  

This special case ofp* is similar top1, and so we label itp~. There is also a version of this 
model for nondirected relations, similar to nondirectedpl (see chapter 15 of Wasserman 
& Faust, 1994), and one can easily add blockmodel-type parameters, as do Wasserman and 
Galaskiewicz (1984) and Wang and Wong (1987) to Pl. Nondirected p~ is equivalent to 
nondirectedp 1, since the relational ties are actually completely independent (in this special 
instance). 

We can put model (9) into the standardp* model form. First define the vector 0 as 
the (2g + 2)-dimensional parameter vector with components 

0 = (0 ,  Otl . . . .  , a a ,  ~ 1 ,  . - -  , /3g, p ) ' ,  

where one would constrain the a's and the /3's in some way (perhaps both sets of g 
parameters would sum to zero). With this choice of O, the vector of graph statistics is 

z(x) = (L,  x l  + . . . .  ,xg+ , x  + l . . . .  , x  + g , M ) ' ,  

so that the vector of changes in z(x) that arises when xij changes from a 1 to a 0 is 

~(xo) = (1, 0, . . . ,  0, 1, 0 . . . . .  0, 0, . . . ,  0, 1, 0 , . . . ,  0, xji)', 

where the l's fall in the first, (i + 1)st, and (g + 1 + j)th entries (corresponding to the 
O, a i, and [3j components of 0). 

Thus, it appears thatpl  arises as a logitp* model. The components of z(x) forp~ are 
the set of indegrees, the set of outdegrees, M, and L, which are also the sufficient statistics 
for the parameters of pl; however, and most importantly, this special case p~ does not 
assume dyadic independence (as we discuss at bit more at length, later in this section). One 
way to viewp~ is as an alternative method for estimation of the parameters of pl. 

One can takep~ and generalize it in ways not possible with the dyadic independence 
model Pl. Such models incorporate graph statistics into z(x) that depend on higher-order 
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graph properties; specifically, counts of the frequencies of the sufficient subgraphs. Adding 
counts of k-stars is one possibility--Frank and Strauss' triad model is an example. There 
are many other possibilities, which we discuss in brief below. One can postulate rather 
complicated "explanatory graph statistics" as components of z(x). 

4.2.4. Structural Parameters for Networks 

The class of logit models for directed graphs just described allows very considerable 
breadth in the formulation of candidate models for a particular relation. As a result, it is 
important to begin to describe what considerations might influence the choice of a model 
and to explicate some possible relationships among models. In this section, we review 
briefly some major themes of structural analysis for networks, and show how such themes 
might be reflected in certain types of loglinear models. Our account is not intended to be 
comprehensive but rather to illustrate how a wide range of questions about network 
structure can be formulated and explored within this framework. 

Structural themes. Wasserman and Faust (1994) review descriptive structural analy- 
ses of single network relations that have been prominent in the network literature. These 
analyses have dealt with at least three broad themes: 

1. The degree of clustering of nodes in a network as well as the presence of cohesive 
subsets; 

2. Patterns of connectivity and reachability in the network, and especially the distri- 
bution of centrality and prestige across the actors; and 

3. The similarity among network positions and the degree to which network structure 
can be summarized in a blockmodel. 

In several of these themes, it has been argued that questions about network structure 
should be assessed only after allowing for a variety of constraints that may be regarded as 
lower-level features of the data. 

In an early paper, for instance, Holland and Leinhardt (1973, 1979) observed that 
restrictions on the outdegree of each node imposed constraints on possible structural 
patterns that could be observed at a more global level. Similarly, Holland and Leinhardt 
(1975), Wasserman (1987), and Snijders (1991) have argued that multirelational questions 
and questions dealing with triads and other higher-order structures are best assessed only 
after taking account of the distribution of various nodal or dyadic network properties. 
Thus, we will consider models that assess the degree to which a network is clustered, or 
centralized, in the presence of certain lower-level properties of the network. 

A basic distinction applying to the parameters of logit models for structural features 
of a network is that between homogeneous and nonhomogeneous effects. An effect is 
defined to be homogeneous if it is assumed to be equal for all pairs of nodes i and j; for 
instance, the reciprocity effect in thep ~ model is assumed to be homogeneous, whereas the 
expansiveness and attractiveness effects are not. (Note that Frank and Strauss define a 
model to be homogeneous if all isomorphic graphs have the same probability. Thus, a 
model is homogeneous in the sense of Frank and Strauss if all of its parameters are 
homogeneous in the sense defined here.) 

Nonhomogeneous effects can be further distinguished according to whether they are 
assumed to vary freely for all pairs of nodes (i, j )  or to be subject to equality constraints 
within classes of the set of possible edges of the network. For instance, a stochastic 
blockmodel (first defined by Fienberg & Wasserman 1981; and elaborated upon by Was- 
serman & Galaskiewicz 1984; and Wang & Wong 1987) specifies that density effects for 
node pairs (i, j)  and (k, l) are equal whenever nodes i and k are in the same class, and j 
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Table 1: Homogeneous parameters and graph statistics for logit models for 
nondirected relations 

Label [ Parameter Graph statistic z(x) 

Homogeneous  effects 
Choice 
Clusterability 
2-stars 

k-stars 

k-paths 

Connectivity 

0 L = X++ 
r T = ~i,j .k X i i X i k X k i  
a S = ~i,~,k X i j X i k  
: 

vk Uk = E~,~,,j~,...,j~ X~j~ Xij~ . . .  X ~  

~ k Pk  = E~ , j ,  ,i~,...,j~ x ~ j ,  x j ,  j ,  . . . x j ~ _ , j ~  
: 

v N = minimum number of edges whose removal 
disconnects,,,,,t,he graph (edge connectivity) ................ 

Indices of  p rominence  homogene i ty  (centralization) 

¢: 
¢3 
¢4 

~5 
¢6 

Ca, = sum of lengths of geodesics (dq) 
Ca~ = variance of geodesic lengths (dij) 
CE = maximum geodesic length (eccentricity) 
Cc = variance of geodesic length sums (di+) 

(closeness centralization) 
Co = variance of Xi+'s (degree centralization) 
C8 = variance of numbers of geodesics 

containing i (betweeness centralization) 

Association with,,,fixed Y [ F 

Table 2: Actor-level parameters and graph statistics for logit models for 
nondirected relations 

Label [ Parameter Graph,stat!s, tic z(x) 

Subgroup-sp ecific/Block-level effects 
Block effects { (~ B~ = ~i,~ -¥ij~i~;,~, 

Node-specific/actor-level effects 
Differential choice 
Differential closeness 

Differential connectedness 

Differential betweeness 

¢~(i1 

Pi  

es(i) 

Xi+ = degree (degree centrality) 
di. = average geodesic distance 

(closeness centrality) 
N = minimum number of edges incident to i 

whose removal disconnects the graph 
Bi = number of geodesics containing i 
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and l are in the same class, of some a priori partition of the node set into classes or blocks. 
More generally, any partition of the set of edges may be used to define equality constraints 
for an effect in a logit model. 

Nondirected relations. Tables 1 and 2 set out a collection of possible parameters for 
logit models for nondirected network relations. The parameters are distinguished in the 
table according to the homogeneity of their associated effects; in addition, they may be 
differentiated by the type of structural property that they are intended to represent and the 
nature of the conditional dependence among network relations that is presumed to un- 
derlie them. 

For instance, the parameters listed in Tables 1 and 2 reflect structural features such 
as: the degree to which a network is dense, and the degree to which denseness varies 
according to some prespecified relation Y or some btockmodel ~ ;  the degree to which the 
network displays clustering; the degree to which nodes in the network have degree of at 
least k, and the degree to which there is variation in nodal degrees; the degree of con- 
nectivity in the network and the level and variability of connectedness of node pairs; and 
the degree to which nodes in the network differ in their connectedness, closeness, and 
centrality in the network. 

Some of these parameters may be specified in logit models assuming edge indepen- 
dence (for instance, 0, 4~5, ~rs, and 3'i); some in logit models for Markov random graphs 
(such as ~', o-, and vk); and some implicitly assume more complex conditional dependencies 
(such as 'Irk, t,, 1,,i, t~l , q~2, ~3, t~4, t~6, ~b4(i), and ~b6(i)). For example, the k-path parameter 
rr k allows dependencies among all potential edges lying on paths of length k, in contrast 
to Markov random graphs which may be conceptualized as permitting dependencies only 
among edges on paths of length 2. 

Note that it is not always easy to specify the pattern of assumed dependencies: the 
connectivity parameter v, for instance, is associated with a pattern of dependencies among 
edges that might best be regarded as having arbitrary complexity. 

The choice of an hypothesized logit model for an observed network relation depends 
on several considerations, which we now outline. 

First, of course, the effects of primary interest (such as clustering, centralization, and 
so on) are likely to be dictated by theoretical concerns. Indeed, a large number of de- 
scriptive studies provide some preliminary support to the claim that clustering, central- 
ization, positional similarity, and so on, are often both theoretically and empirically im- 
portant network features, 

Second, assumptions about conditional dependence among possible edges of the 
network relation may be recognized by including parameters corresponding to sufficient 
subgraphs in a model. Thus, if Markov random graphs are assumed, then models might 
contain parameters for density, clustering and k-stars (for k = 2 , . . . ,  9 - 1), although, 
we might also fit models in which some of these parameters are set equal to zero and others 
set to be equal to each other across sets of possible edges. 

Third, as indicated earlier, it may sometimes be useful to control for lower-order 
effects by including their associated parameters in the logit model. For example, one could 
examine the degree to which a network exhibits clustering after variations among nodes in 
"expansiveness" have been taken into account. This might be a particularly useful strategy 
where the lower-order effects have been constrained by methodological restrictions (for 
instance, where the maximum number of nodes mentioned in response to a relational 
question is limited by design). 

Fourth, such effects can be hypothesized to be homogeneous (Table 1) or nonhomo- 
geneous (Table 2) and, in the latter case, be subject to equality constraints or not. Such 
generality allows one to focus on a sequence of nested models and a comparison of the fit 
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of these nested models. It may be noted here that we are allowing any effect of the model 
to be subject to equality constraints, not just density, as in stochastic blockmodels (see 
chapter 16 of Wasserman & Faust, 1994). 

For instance, a plausible model for a relation may specify the presence of two sub- 
groups having denser within-group than between-group ties, and a tendency for a central- 
ized structure within each group, but the degree of centralization might be hypothesized 
to be greater in one group than another. (Thus, in this two-block case, we might propose 
a logit model that includes four density parameters for within- and between-block rela- 
tions, and two centralization parameters, one for each subgroup.) Such parameters are 
listed in Table 2. 

Further, the equality constraints need not be restricted to having the form of a 
blockmodel; instead, any partition on the set of possible edges may define the equality 
constraints. An example arises in the case where information is available on a second 
network relation and where the presence of a relation of this second kind may be regarded 
as "affecting" the first relation. For instance, for the data presented in Tables 1 through 3, 
we might propose that the probability of a Work tie between nodes i andj varies according 
to whether i and j are linked by a "Get on With" tie. Such a model has two density 
parameters, one for node pairs (i, j )  that are linked by a "Get on With" tie, and one for 
node pairs not linked in this way. Such parameters are listed at the end of Table 1. 

Fifth, we need to consider possible dependencies among effects and insure that the 
logit model is identified. Consider, for instance, the nondirected version of the p ~ model, 
for which the vector z(x) of explanatory statistics consists of the total number of ties L, and 
the degree Xi+ of each node i. Since L = ~ Xi+, there is a linear dependence among the 
explanatory variables; hence, we need to impose an additional constraint (such as requiring 
that the parameters associated with the degrees sum to zero, E 3'/= 0), or that one of the 
parameters is fixed at zero (71 = 0, for example). Some other notable dependencies among 
parameters in Table 2 are that block density effects sum to the overall density effect (and 
that any differential block effects sum to the overall corresponding effect), that star effects 
are dependent on differential choice, overall density, and so forth. Caution is clearly 
necessary here. 

Directed relations. Some parameters of interest for logit models for directed rela- 
tions are set out in Table 3 (homogeneous effects and effects subject to equality con- 
straints) and Table 4 (node-specific effects). As the tables make clear, there are a large 
number of effects of possible interest when modeling a directed graph, including central- 
ization, clusterability, prestige, connectivity, transitivity, reciprocity, and block effects. 
Many of the listed node-specific effects are derived from indices of centralization and 
prestige, reflecting the prominence of these notions in the network literature (see chapter 
5 of Wasserman & Faust, 1994; see also Faust & Wasserman, 1992; Koehly & Wasserman, 
1994). 

Several of the effects also reflect the frequency of various forms of triads in a directed 
relation. For instance, the cyclicity parameter ~'c reflects the frequency of cyclic triads in 
the relation. One possible approach, similar in spirit to that described by Holland and 
Leinhardt (1975, 1978), is to define parameters corresponding to the 16 distinct types of 
triad (the triad isomorphism classes) in a directed relation (see also chapter 14 of Was- 
serman & Faust, 1994). One can then assess the fit of a number of models of interest, 
especially the class described by Johnsen (1985, 1986). More complete and complex as- 
sociation parameters are also possible, such as those focussing on conformity, exchange 
and complementarity (see Wasserman, 1987). 
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Table 3: Homogeneous parameters and graph statistics for logit models for 
directed relations 

Label [ Parameter Graph statistic z(x) 

Homogeneous effects 
Choice 
Reciprocity 
Transitivity 
Intransitivity 
Cyclicity 
2-in-stars 
2-out-stars 
2-mixed-stars 

k-in-stars 
k-out-stars 

3-paths 

k-paths 
Connectivity 

0 

P 
TT 
7-/ 
7" C 

0.1 

0" 2 

0"3 

l)kO 

7r 3 

7r k 

1./ 

L --~ X + +  

M = ~ XisXji 
Tr = Z~,j,k X~jXjkX~k 
Tr = E~,j,k XijXjk(1 - X~k) 
Tc = Ei,~,k X~jXjkXk~ 
S1 = ~ i , j , k  X j i X k i  

$2 = ~i,.iJ, Xi~Xik 
$3 = E~,j,k XsiXlk 

P3 = F.,S,k,, XijXjk Xkt 

Pk = Ei,ix,j~,...,j~ Xij, X j , h ' "  X.ik_,.ih 
N = minimum number of edges whose removal 

disconnects the digraph (edge connectivity) 

Indices of prominence homogenei ty  (centra l izat ion/prest ige)  

¢2 
¢3 
¢4 

¢6 

¢7 

Cs 

Association with fixed Y [ F 
Block effects [ (~. 

Ca~ = sum of lengths of geodesics (dij) 
Ca2 = variance of geodesic lengths (dlj) 
CE = maximum geodesic length (eccentricity) 
Cc = variance of geodesic length sums (di+) 

(closeness centralization) 
Co = variance of Xi+'s (degree centralization) 
CB = variance of numbers of geodesics 

containing i (betweeness centralization) 
Pp = variance of geodesic length sums (d+i) 

(proximity group prestige) 
PD = variance of X+i's (degree group prestige) 

G = E~,s X~jY~s 

Interpretation of parameters. Parameters corresponding to each of the effects listed in 
these tables may be interpreted in terms of their contribution to the "likelihood" of 
occurrence of networks with the relevant feature of interest. For instance, a large positive 
value of a parameter corresponding to an index of clusterability means that clusterable 
networks are more likely to occur (ceteris paribus). Further, this tendency can be assessed 
statistically, at least approximately, by comparing the fit of two models, one with the 
parameter and one without. 

Perhaps the most interesting models here are those that begin with the graph statistics 
of p] ,  and add counts of k-stars across all actors, or only for those actors in the same 
blockmodel class. Latter models with such parameters are referred to as Markov block- 
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Table 4: Actor-level parameters and graph statistics for logit models for 
directed relations 

Label I Parameter Graph statistic z(x) 

Node-specif ic/actor- level  effects 
Differential expansiveness 
Differential attractiveness 
Differential closeness 

Differential closeness 

Differential betweeness 
Differential connectedness 

¢,(i) 

vi 

Xi+ = outdegree (degree centrality) 
X+i = indegree (degree prestige) 
dl. = average geodesic distance from 

(closeness centrality) 
d.i = average geodesic distance to 

(proximity prestige) 
Bi = number of geodesics containing i 
N = minimum number of edges incident to i 

whose removal disconnects the digraph 

models by Strauss and Ikeda. All in all, there is a real wealth of models here, far more than 
is possible within the Pl framework. 

We note that many other effects of possible interest may be used in this general 
framework; just some of the possibilities are mentioned in the tables. The particular effects 
of interest (and their interpretation) depend on the content of the relation X and the 
questions of interest. Many of the widely used indices of structure in a network are closely 
related to the graph statistics listed in the table (see Wasserman & Faust, 1994). These 
indices include those for centralization, clusterability, prestige, connectivity, transitivity, 
and reciprocity. 

4.2.5. Estimation 

Estimation of the parameters of pl, or of any model that assumes dyadic indepen- 
dence, is not particularly difficult. The likelihood function, being the product of the prob- 
abilities for each dyad, is easy to write down. Such is not the case for dyadic dependence 
models, such as p*. As noted earlier, the likelihood function for the parameters 0 of p* 
depends on the complicated normalizing constant K(0), which makes maximum likelihood 
estimation difficult. Indeed, work with this paradigm was limited until Strauss and Ikeda 
(1990) realized that new, approximate estimation techniques could be used to estimate 0 
and the probabilities of relational ties. 

Frank and Strauss (1986) discussed inference for Markov graphs, but their discussion 
was limited. They stated: 

Standard likelihood techniques for the Markov models are not immediately applicable 
because of the complicated functional dependence of the normalizing constant on the 
parameters. If the number of [actors] is less than, say, six, it is feasible to evaluate [the 
normalizing constant, K] by direct enumeration; otherwise, fitting the model to data 
can be a difficult problem. (p. 836) 

They gave a few possible approaches, but the only promising approach is via logistic 
regressions. This idea was described in brief by Frank and Strauss, but it was not until 
Strauss and Ikeda (1990) that the theory behind this approximation was discussed in detail. 
It then became possible to fit these models, albeit approximately. 
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The likelihood function for the general form of p*, model (4), is 

exp {0'z(x)} 
L(O) ~(O) ' 

where the dependence on the normalizing constant can easily be seen. An approximate 
estimation approach, proposed by Strauss (1986) and Strauss and Ikeda (1990), utilizes 
tools made popular in models for rectangular lattices; specifically, we define the pseudo- 
likelihood function to be 

PL(O) = I-[ Pr (Xij = l[X~.) x'j Pr (Xij : 01X~j) (1 -xij) (10) 
i÷j 

and a maximum pseudolikelihood estimator to be the value of 0 that maximizes (10). MP 
estimators are much easier to calculate that ML estimators. MP estimators differ from ML 
estimators for all but the simplest models (those for which the conditional probabilities are 
indeed independent of the complement relation). Basically, this "pseudo-" approach as- 
sumes conditional independence of the relational ties. 

The theorem given below, taken from Strauss and Ikeda (1990), who also gave a 
proof, gives the very important result that estimation of 0 can be accomplished via logistic 
regression using any standard logistic regression model-fitting routine. 

Theorem. Consider a given logit p*, as specified in (8). Maximizing the pseudolike- 
lihood given in (10) is equivalent to maximizing the likelihood function for the fit of 
logistic regression to the model (8) for independent observations {xij}. Such logistic 
regressions can be fit using iteratively reweighted Gauss-Newton computational tech- 
niques, as implemented by any logistic regression model package. 

The proof of the theorem uses the fact that the derivatives of the pseudolikelihood, 
set equal to zero, are identical to those obtained from a logistic regression, with the 
relational variables as data values. Thus, fittingp* can be done by using the logitp* form 
and assuming that the relational variables are actually statistically independent. The idea 
for this theorem was first suggested by Frank and Strauss (1986) for estimation of the 
parameters in the triad model. 

We have used the statistical software package (SPSS) to fitp* models, while Strauss 
and Ikeda used BMDP. There is nothing special about the choice of a package. One treats 
the g(g - 1) observed binary relational quantities as the measurements on the logit 
response variable, and then codes a set of explanatory variables, corresponding to the 
variables specified by z(x) in the logit p* formulation (defined here as 8(xij), the change 
in the z(x) vector of network statistics that arises when the variable xij changes from 1 to 
0). An example of such a vector was given earlier, for p~. We illustrate this with several 
examples shortly. We have written a little C program that takes a sociomatrix x and 
produces the vector of measurements on the response variable and the matrix of explan- 
atory variables (both of which have g(g - 1) rows for a directed relation, and g(g - 1)/2 
for a nondirected relation), which can then be fed to a statistical package. 

It is important to note that one does not always have to use iteratively reweighted least 
squares techniques to fit logistic regressions. For some models, the observed data can be 
rearranged into a multidimensional contingency table in such a way that the response 
variable and the explanatory variables are margins of the table. In such cases, as described 
by Fienberg (1980, chap. 6) and Agresti (1990, chap. 5), the logistic regressions (actually, 
the logit models) are equivalent to loglinear models containing both the interaction of all 
the explanatory variables simultaneously, and selected interactions of the explanatory 
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Table 5: Logit models with homogeneous parameters 

Model 
1 Choice 
2 Mutuality + Choice 
3 Transitivity + Choice + Mutuality 
4 Cyclicity + Choice + Mutuality 
5 2-Out-Stars + Choice + Mutuality 
6 2-In-Stars + Choice + Mutuality 
7 2-Mixed-Stars + Choice + Mutuality 
8 Degree-centralization + Choice 

+ Mutuality 
9 Degree-prestige + Choice + Mutuality 

10 Transitivity and Cyclicity + Choice 
+ Mutuality 

11 All 2-Stars + Choice + Mutuality 
12 All 2-Stars + Transitivity 

and Cyclicity + Choice + Mutuality 
13 All 2-Stars, Transitivity and 

Cyclicity, Centralization and Prestige 
+ Choice + Mutuality 

Number Likelihood Sum of 
of ratio Absolute 

Parameters Statistic Residuals 
1 1114.8 400.6 
2 977.8 334.6 
3 809.9 268.5 
3 976.2 333.8 
3 858.7 287.1 
3 949.7 323.2 
3 970.3 331.1 

3 962.8 328.2 
3 976.8 334.1 

4 725.1 233.5 
5 786.6 256.8 

7 689.3 220.1 

9 681.6 217.5 

variables with the response. Thus, parameters can be estimated a bit more easily with 
iterative proportional fitting. Such is the case with pl, as well as with p~. 

5. Example--"Get on with" Relation 

We now consider the fit of a variety of p* models, for the "Get on with" relation for 
the Year 7 students shown in Table 11. We also use the "Work with" relation (to study the 
association between these two relations), shown in Table 12. There are g = 29 actors, 
which can be partitioned a priori into boys and girls. This categorization based on gender 
will be used in our analyses (in order to get block effects). 

We first note that the example studied here is for illustrative purposes only. We have 
fitted a large number of models to this relation simply to demonstrate the flexibility of this 
approach. One would not do this in practice. Model fitting should not be done with no 
substantive forethought. 

The set of models and some fit statistics (likelihood ratio statistics and the sum of 
absolute residuals) are reported in Tables 5 through 10. The tables give fits of some logit 
models to the "Get on with" relation. 

The models in Table 5 are homogeneous models, specifying that tie probabilities 
depend only on z(x) statistics such as the total number of ties, the number of mutual ties, 
the number of transitive or cyclic triads, and the numbers of each of the three types of 
2-stars which occur for a directed relation (in-stars, out-stars and mixed-stars). These 
models include the directed versions of Frank and Strauss' triad and clustering models. 
Table 3, discussed earlier, displays a list of some possible parameters. 

The models in Table 5 all contain an overall choice parameter (0), and, in view of the 
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Table 6: Parameter estimates for Models 13 and 30 

Model 
13 

30 

Effect 
Choice 
Mutuality 
Transitivity 
Cyclicity 
2-in-stars 
2-out-stars 
2-mixed-stars 
Degree-centralization 
Degree-prestige 
Mutuality 
Transitivity 
Choice (boy-boy) 
Choice (boy-girl) 
Choice (girl-boy) 
Choice (girl-girl) 

Parameter estimate 
-1.18 
1.98 
0.26 

-0.20 
-0.01 
-0.15 
-0.08 
1.29 

-0.49 
1.33 
0.13 

-2.22 
-2.95 
-4.35 
-3.19 

Table 7: Logit models in which within-block effects differ from between- 
block effects (blocks are based on gender) 

Model 
14 Choice + Mutuality + Transitivity 

+ Mutuality-Within-Blocks 
15 Choice + Mutuality + Transitivity 

+ Choice-Within-Blocks 
16 Choice + Mutuality + Transitivity 

+ Transitivity-Within-Blocks 

Number Likelihood Sum of 
of ratio Absolute 

Parameters Statistic Residuals 

4 798.8 263.9 

4 791.6 262.6 

4 801.2 265.5 

substantially better fit of Model 2 compared to Model 1, all except Model 2 contain a 
reciprocity parameter (p). Models 4 through 9 add, one at a time, various additional 
parameters to Model 2, and show, amongst other things, that adding a transitivity param- 
eter leads to a relatively large improvement in fit. Model 10 adds a cyclicity parameter to 
Model 3 and establishes that the cyclicity effect is substantially stronger in the presence of 
a transitivity effect. Models 11 and 12 add parameters for the three types of 2-stars to 
Models 3 and 10, respectively; Model 13 adds the degree-centralization and degree-pres- 
tige parameters to Model 12. The addition of 2-stars leads to a modest improvement in fit, 
while the degree-prestige and degree-centralization parameters lead to no appreciable 
increase in fit. 

The parameter estimates for Model 13 are listed in Table 6. One can see that there 
is certainly a tendency for relational ties that increase mutuality, degree-centralization, and 
transitivity to increase the log odds, and hence to be more likely to be present. Ties that 
increase the other statistics are less likely to be present. 
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Table 8: p{ and Generalizations 

Model 
17 p7 
18 p~ + Choice-within-blocks 
19 p~ + Transitivity 
20 p* 1 + Cyclicity 
21 p~ + Degree-centralization 
22 p~ + Degree-prestige 
23 p~ + Transitivity + Choice-within-blocks 
24 p~ + Transitivity + Cyclicity 
25 p~ + Transitivity + Cyclicity 

+ Degree-prestige + Degree-centralization 
26 p~ + G 
27 p~ + Transitivity + G 
28 p~ + Transitivity + Cyclicity 

+ Degree-centralization + Degree-prestige 
+ G + Choice-within-blocks 

Number Likelihood Sum of 
of ratio Absolute 

Parameters Statistic Residuals 
58 683.7 218.5 
59 644.7 204.5 
59 661.0 210.5 
60 675.9 216.1 
59 683.6 218.3 
59 668.0 210.1 
60 639.5 202.9 
60 661.0 210.5 

62 644.7 202.2 
59 602.5 189.0 
60 595.3 186.8 

64 572.7 177.0 

It is apparent from the fit of these models that in order to adequately summarize the 
structural tendencies in these data, one would probably want to include at least choice, 
mutuality, and transitivity parameters in a logit model for the data, and possibly cyclicity, 
2-out-star, and 2-in-star parameters as well. 

Table 7 summarizes the fit of some models that permit differential within-block and 
between-block effects for choice, mutuality, and transitivity. Since blocks are based on 
gender in this example, these models therefore permit different choice, mutuality and 
transitivity effects for within-gender (boy-boy and girl-girl) and between-gender (boy-girl 

• Table 9: Logit models with differential block-density effects (generalizations 
of Wang and Wong blockmodels) 

Model 
29 Mutuality + Differential choice 
30 Mutuality + Transitivity + Differential choice 
31 Mutuality + Transitivity + Differential choice 

+ Cyclicity + All 2-stars 
+ Degree-centralization + Degree-prestige 

32 Choice + Mutuality + G 
33 Choice + Mutuality + G + Transitivity 
34 Mutuality + Differential choice + G 
35 Differential choice + Mutuality 

+ Transitivity + G 
36 Mutuality + G + Transitivity 

+ Degree-centralization + Cyclicity 
+ Degree-prestige + All 2-stars 
+ Differential choice 

Number Likelihood Sum of 
of ratio Absolute 

Parameters Statistic Residuals 
5 895.7 302.0 
6 753.0 247.0 

12 675.7 215.5 
3 780.1 254.5 
4 702.9 226.7 
6 755.1 245.8 

7 684.5 220.1 

13 626.4 197.9 
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Table 10: General differential block effects (based on gender) 

Model 
37 Choice + Differential mutuality 
38 Choice + Mutuality 

+ Differential degree-prestige 
39 Choice + Mutuality 

+ Differential degree-centralization 
40 Differential mutuality + Differential choice 
41 Differential mutuality + Differential choice 

+ Transitivity 
42 Choice + Mutuality + Differential transitivity 
43 Mutuality + Differential transitivity 

+ Differential choice 
44 Differential choice + Differential mutuality 

+ Differential transitivity 
45 Differential mutuality + Differential choice + G 
46 Mutuality + Differential choice 

+ Differential within-block transitivity 
47 Differential choice + Differential mutuality + G 

+ All 2-stars + Degree-prestige 
+ Transitivity 

48 Differential choice + Mutuality + Transitivity 
+ Differential within-block transitivity 

Number Likelihood Sum of 
of ratio Absolute 

Parameters Statistic Residuals 
5 935.5 315.2 

4 967.8 330.6 

4 948.1 322.4 
8 887.0 299.3 

9 744.6 244.2 
6 748.7 244.6 

9 739.8 243.1 

12 729.0 240.0 
9 735.9 239.1 

7 831.0 275.6 

16 610.1 193.4 

8 751.0 245.7 

and girl-boy) ties. Comparing Models 14 through 16 with Model 3, we see a modest 
tendency for stronger within-block choice effects, but only small tendencies for stronger 
within-block reciprocity and transitivity. 

The models summarized in Table 8 include p ~ and various generalizations. Model 18 
adds a single within-block choice parameter to Model 17, with a reasonable increase in fit. 
This model is a logit formulation of a stochastic blockmodel in which block effects are all 
equal and occur only on the diagonal of the blockmodel. Models 19 through 25 augment 
p~ with one or more other structural parameters, but Model 18 appears to provide one of 
the more useful improvements in fit overp~. Models 26 through 28 illustrate how different 
density effects can be fitted in the presence and absence of another relation (the "Work 
With" relation). The parameter ~/corresponds to a graph statistic (G) that is a count of the 
number of pairs of nodes joined by both "Work With" and "Get on With" ties, and so 
reflects the greater likelihood of a "Get on With" tie in the presence of a "Work With" tie. 

We also considered models with differential choice effects according to the gender of 
the sender and recipient of a tie (see Table 9). Model 29 specifies a mutuality effect and 
different choice parameters for each of these four types of tie (boy-boy, boy-girl, girl-boy, 
girl-girl). It is a better fit than Model 2, suggesting that the likelihood of ties varies among 
and between blocks. Model 30 adds a transitivity parameter to Model 2, while Model 31 
adds various other homogeneous effects as well. Models 32 through 36 add a parameter for 
association with the "Work With" relation. It may be noted that Model 30 appears to 
provide a better fit to the data than Model 15; thus, the model that constrains within- 
gender effects to be equal (that is, boy-boy and girl-girl) and between-gender effects to be 
equal (that is, boy-girl and girl-boy) does not provide as good a fit to the data as the model 
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in much of modern applied statistics (for example, with covariance structure models and 
test theory). Further investigation of the quality of maximum pseudolikelihood estimates 
is certainly called for, and will be the topic of future research. 

Comparisons ofpl-type models and the ML estimates of their parameters with logit 
p* models and their approximate, MP parameter estimates have been made by Strauss and 
Ikeda (1990). We have also investigated how much is "lost" in MP estimation in very small 
networks (Walker, 1995). The bottom line from this initial research (which is quite re- 
assuring) is that approximate MP estimates are quite close to their exact, ML counterparts. 
We can proceed to postulatep*-type models, and fit them approximately, and probably not 
lose too much in the process (over exact estimation). 

These preliminary results will certainly be augmented in the future, particularly since 
the advent of computationally-intensive ML estimation techniques (such as the Gibbs 
sampler and Markov chain Monte Carlo ideas) should make ML estimation more feasible. 

In spite of this approximate estimation approach, the models and estimation strategy 
proposed here have substantial benefits. This approach has tremendous flexibility to ex- 
press plausible and interesting structural assumptions, coupled with ease in model fitting. 

There is more to be done to generalize these models to other types of relations. 
Pattison and Wasserman (in press) describe some of these extensions to valued and 
bivariate relations. 
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