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This paper presents a new class of models for persons-by-items data. The essential new feature of 
this class is the representation of the persons: every person is represented by its membership to multiple 
latent classes, each of which belongs to one latent classification. The models can be considered as a 
formalization of the hypothesis that the responses come about in a process that involves the application of 
a number of mental operations. Two algorithms for maximum likelihood (ML) and maximum a posteriori 
(MAP) estimation are described. They both make use of the tractability of the complete data likelihood to 
maximize the observed data likelihood. Properties of the MAP estimators (i.e., uniqueness and goodness- 
of-recovery) and the existence of asymptotic standard errors were examined in a simulation study. Then, 
one of these models is applied to the responses to a set of fraction addition problems. Finalty, the models 
are compared to some related models in the literature. 
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This paper presents a new class of models for persons-by-items data. The essential new 
feature of this class is the representation of the persons: every person is represented by its mem- 
bership to multiple latent classes. 

In traditional latent class analysis (Goodman, 1974; Lazarsfeld & Henry, 1968) every per- 
son is represented by its membership to one of T latent classes. In this paper, such a set of T 
latent classes is called a latent classification. The models to be presented here involve more than 
one latent classification, and every person is thus characterized by its memberships to the latent 
classes of these multiple latent classifications. Therefore, they are called multiple classification 
latent class models (MCLCMs). 

MCLCMs can be considered as a formalization of the hypothesis that the responses come 
about in a process that involves the application of a number of mental operations. Each of these 
mental operations corresponds to one latent classification. With binary latent classifications, one 
of the classes in every classification corresponds to mastery of this mental operation and the other 
to non-mastery. 

We start by giving an example of an item type (simplifying fractions) whose solution process 
can be described in terms of two mental processes (splitting and identifying). 

1. Example: Simplifying Fractions 

Consider items of the following type: 9/4 . . . . .  3/2 . . . . .  2/6 . . . . .  and 14/5 . . . . .  
The subject's task is to simplify these fractions as much as possible. For example, the correct 
answer to 14/5 . . . .  is 2 4/5. It is assumed that, to be able to correctly simplify all possible 
fractions, one has to master two mental operations: splitting and identifying. The splitting opera- 
tion involves that a given fraction is split in a units part and a fraction part. And the identifying 
operation involves that the largest common denominator of the fraction part is identifiable. 
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FIGURE 1. 
Responses of four types of persons to four types of items as a function of the mental operations (splitting and identifying) 
mastered by the persons and required by the items. 

Given these two mental operations, four types of items can be distinguished. First, there are 
items that require neither splitting nor identifying. An example is 3/5 . . . . .  The correct answer 
is simply 3/5. No mental operation has to be performed to produce this answer. Second, there are 
items that require only identifying. An example is 2/6 . . . . .  The subject has to find the largest 
common denominator (i.e., 2) and then divide numerator and denominator by it. This produces 
1/3 as the correct answer. Third, there are items that require only splitting. An example is 5/3. 
Applying the splitting operation, 5/3 is transformed into 3 /3+2/3 .  Then, 3/3 is transformed into 
1 without having to identify the largest common denominator. And fourth, there are items that 
require both splittifig and identifying. An example is 8/6 . . . . .  Applying the splitting operation, 
8/6 is transformed into 6/6 + 2/6 = 1 + 2/6. And applying the identifying operation, the largest 
common denominator of 2 and 6 is seen to be 2 such that 2/6 can be written as 1/3. 

Analogous to the distinction of four types of items, also four types of persons are distin- 
guished: those that master neither splitting nor identifying, those that master only splitting or 
identifying, and those that master both splitting and identifying. For each of these four types of 
persons, one can specify which item types they will answer correctly. For this, the rule has to be 
followed that an item is answered correctly if and only if the person masters all mental opera- 
tions required by the item. This is illustrated in Figure 1. In this figure, a 1 is used to denote that 
an item requires a particular mental operation and 0 to denote that it does not. Similarly for the 
persons, a 1 is used to denote that a person masters a particular mental operation and 0 to denote 
that he or she does not. 

2. Models 

First, we present the conjunctive MCLCM. Then, other MCLCMs are presented along the 
same lines. 
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2.1. The Conjunctive MCLCM 

MCLCMs consist of  two components: (a) a model for the latent class memberships and 
(b) a model for the item responses conditional on the latent class memberships. Although our 
main interest is in (b) (the way the item responses come about), the exposition is facilitated by 
considering (a) first. 

2.1.1. The Saturated Model for the Latent Class Memberships We consider the random vari- 
able (RV) Zg that indicates a person's membership to some class of  the k-th latent classification. 
The number of  latent classifications is denoted by K (k = 1 . . . . . .  K). In general, Zk is a cate- 
gorical RV with a number of  categories that can be specified freely, as in ordinary latent class 
analysis. In this paper, we only consider latent classifications consisting of two classes. Thus, 
Zk is a Bernoulli RV. The realizations of  Z~ are denoted by zg whose values are 0 or 1. The 
restriction to two classes is motivated by the fact that, in this way, the latent classifications can be 
interpreted as mental operations, with the two classes corresponding to mastery and nonmastery. 

Because there are K latent classifications, every person is characterized by a K-dimensional 
vector of  zk 's. This vector is denoted by z (z = (z 1 . . . . .  z r )t). This vector z is a realization of  the 
K-dimensional RV Z (Z = (Z1 . . . . .  ZK)t). For Z, several models can be formulated. A model 
for Z is a probability density function (PDF). This PDF depends on some vector of  parameters 
~j, and is denoted by P ( Z  = z; ~). 

We consider the saturated model for Z. This model assumes that the probabilities of  each 
of the different realizations of  Z (z-patterns) are unrestricted, allowing for all possible statistical 
dependencies between the Zk's. The total number of  z-patterns is 2 K. This number is denoted 
by T, and t is used as an index for the z-patterns (t ---- 1 . . . . .  T). The only restrictions on the T 
parameters ~t :=  P(Z  = zt) are the obvious ones, 0 < ~t < 1 and the fact that they have to sum 
to 1. This model is characterized by the following PDF: 

T 

= z ;  = ( 1 )  P(Z  
t= l  

in which It is an indicator function having the value 1 if z is the t-th pattern and 0 otherwise. 

2.1.2. A Conjunctive Latent Response Model for the Item Responses Conditional on Z Before 
describing the conjunctive latent response model (LRM), some notation and assumptions are 
presented that are common to all models for the item responses. 

Notation and general assumptions. For every person, a vector of  I item responses is 
observed. The RV Yi is used to denote the response on the i-th item (i = 1 . . . . .  I) .  In general, 
Yi is a categorical RV with any number of categories, but in this paper only dichotomous items 
(e.g., correct/incorrect) are considered. The realizations of Yi are denoted by yi whose values are 
either 0 or 1. The vector-valued RV of the I item responses is denoted by Y (=  (Y1 . . . . .  YI) t) 
and its realization by y (=  (yl . . . . .  yl)t). 

The PDF of Y depends on Z, the vector of  latent class memberships, and 7/, a vector of  
item parameters. This PDF is denoted by P ( Y  = ylZ = z; 1/) or P(YIZ;  1/) if there is no danger 
of  confusion. The assumption of  local statistical independence (LSI) is made, involving that, 
conditionally on Z, the Yi's are statistically independent. Denoting the PDF of  Yi by P(Yi IZ; ~/), 
this assumption can be expressed as follows: 

I 

P(YIZ;  r/) = H P(YilZ; ~/). (2) 
i=1 

It is also assumed that P(YilZ; 11) depends on ~/only through some subset/'/i of  7, the item 
parameters of  the i-th item. Therefore, P(Yi IZ; ~/) can also be expressed as P(Yi IZ; I/i). We now 
consider a further specification of P(Yi IZ; ~i), namely as a LRM. 
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A conjunctive latent response model. The basic idea behind LRMs is that the observed 
response (Yi in our case) is the result of a mapping that takes a set of latent responses as its 
argument (Marls, 1995; Maris, De Boeck & Van Mechelen, 1996). LRMs are defined by (a) 
a model for the latent responses, and (b) a so-called condensation rule that maps these latent 
responses into the observed responses. We first consider (a). Considering the latent classifications 
as corresponding to mental operations (e.g., splitting and identifying), we now consider the K 
latent responses that are the results of the application of each of these K mental operations. These 
latent responses denote the successful or non-successful application of these mental operations. 
Thus, the latent responses are dichotomous. When speaking about latent responses, the term 
component will be used to denote the process that generates the latent response. Every component 
corresponds to one latent classification. 

The k-th latent response on item i is denoted by the RV Xik. In general, Xil~ is a cate- 
gorical RV that can have any number of categories, but here only dichotomous Xik's are con- 
sidered. For example, simplifying a fraction may involve Xij and Xi2 , denoting, respectively, 
whether the splitting and the identifying operation was applied successfully (Xil, Xi2 = 1) or 
not (Xi~, Xi2 = 0). The vector-valued RV of the K latent responses on item i is denoted by Xi 
(= (Xi l  . . . . .  X iK) t ) .  The PDF of X i is denoted by P(Xi[Z; ~/i)- We make the assumption of 
LS1, which involves that, conditionally on Z, the Xik's are statistically independent. Denoting 
the PDF of Xik by P (Xik [Z;/]i), this assumption is expressed as follows: 

K 

P ( X i I Z ;  rli ) = 17  P(XiklZ; lli). (3) 
k=l 

(For situations in which this assumption is violated, the models can be extended in a straightfor- 
ward way.) 

Next, it is assumed that P(XiklZ; ~li) depends on qi only through some subset qik of//i" 
T h e r e f o r e ,  P(XiklZ; lli ) can also be expressed as  P(XiklZ; llik). This subset of the item param- 
eters will be called the component item parameters. 

Finally, it is assumed that P(Xik [Z; rlik) depends on Z only through Zk, the membership in 
the latent classification that corresponds to this component. It follows that P(Xik iZ; Tlik) can be 
replaced by P (XiklZ~; rli~). Considering the memberships in the latent classifications as mastery 
or non-mastery of a mental operation, this assumption involves that the result of the application 
of the k-th mental operation (i.e., Xik) only depends on the person's mastery of this particular 
mental operation. This assumption is necessary for the substantive interpretation of the Zk's. In 
particular, if the parameter estimates show that some component is only involved in a particular 
item type (e.g., items that involve splitting), then we know that the corresponding Zk operates on 
the item characteristic that distinguishes this item type from the others. 

We now consider the different component item parameters. For every (item,component)- 
pair there are two parameters. Every parameter corresponds to one conditional probability: 
P(Xik = 11Zk = 1), the probability of a correct application of the k-th mental operation given 
that it is mastered, and P(Xik • 11Zk = 0) ,  the probability of a correct application of this mental 
operation given that it is not mastered. P(Xik = llZk = 0)  is the probability that non-mastery 
of the k-th mental operation can be compensated by other mental resources. And one minus 
P(Xik = llZk = 1) is the probability of a careless error (e.g., due to lack-of-attention). The 
conditional probabilities P (Xik ----- l[Zk = 1) and P (Xik = l lZk = 0) are the item parameters 
of this model and they will be denoted by, respectively, r/ikl and 0ik0. Thus, ~ik "~- (T]ikl, ~ ikO)t" 

This allows us to write P(XiklZk; Ilik) as follows: 

The second defining characteristic of a LRM is its condensation rule. This condensation 
rule is a mapping of Xi into Yi, denoted by C(Xi). The conjunctive condensation rule is defined 
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as follows: 

K 

C(Xi)  = I--I Xik. 
k=l 

This function has the value 1 if and only if all Xik 'S  have the value 1. A useful interpretation of 
this condensation rule is in terms of mental operations whose successful application is necessary 
for giving the correct response. Thus, all mental operations have to be applied successfully to give 
a correct response. For example, to solve a fraction item, both the splitting and the identifying 
operation have to be applied successfully (if they are involved in the solution process, of course). 
Together with the assumption of LSI of the Xik's (see (3)), this condensation rule leads to the 
following form for P(Y/IZ; I/i): 

P(Y/IZ; II i) = P(Xik = ltZk) 1 - P(Xik = llZk) 
k=l k=l 

(5) 

2.1.3. The Marginal Model for the Item Responses Finally, we consider the PDF of Y, the 
vector of observed item responses. The starting-point for this PDF is the joint PDF of Y and Z: 

P(Y, Z; t/, ~j) = P(YIZ; t/)P(Z; ~j). 

From this joint PDF we get the marginal PDF of Y by summing over all possible realizations of 
Z: 

1 1 

P(Y; r/, ~j) = ~--~ . . .  ~ P(Y, Z = z; r/,/j). 
ZI=0 zK=O 

2.2. Other MCLCMs 

Other MCLCMs are obtained by formulating (a) a different model for the latent class mem- 
berships, and (b) a different model for the item responses conditional on Z. 

2.2.1. Different Models for the Latent Class Memberships Another model for Z is the inde- 
pendence model, This model assumes that every Zk is independently distributed. Because Zk is 
a Bemoulli PDF, it is characterized by a single parameter ~k which is equal to P(Zk = 1). The 
only restriction on these ~k's is that they have to be between 0 and 1. This model is characterized 
by the following PDF: 

K 
P(Z = z; ~) = 1--I ~ ( 1  - ~k) ~-z*. 

k=l 
(6) 

Still another model for Z is a loglinear model for the K-dimensional 2 x 2 x . . .  x 2-table of 
latent class memberships. Actually, the models in (1) and (6) can also be formulated as loglinear 
models for this table: a model with all possible interactions between the K classifications for (I)  
and a model with only main effects for (6). Obviously, by adding and deleting interaction terms 
a whole variety of loglinear models can be formulated. 

2.2.2. Different Models for the Item Responses Conditional on Z 
Different latent response models. LRMs are very well suited for formalizing psycholog- 

ical hypotheses about the process in which the responses come about. Within this framework, 
different types of MCLCMs, corresponding to different psychological hypotheses, can be for- 
mulated easily. Three kinds of extensions to the conjunctive model are possible. First, one can 
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formulate different PDFs for the latent responses X i conditional on Z. For example, this PDF 
may involve statistical dependencies between the latent responses, reflecting the hypothesis that 
the application of one mental operation influences the application of others. Second, one can 
assume the latent responses to be polytomous, or even continuous, instead of dichotomous. For 
example, continuous latent responses may be an appropriate choice for a detection or identifia- 
bility task in which stimuli are presented that vary on a number of continuous dimensions. And 
third, one can formulate other condensation rules besides the conjunctive one. 

Another useful condensation rule is the disjunctive one. It is defined as follows: 

K 

C(Xi) = 1 - I~ (1  - Xik). 
k=l 

This function has the value 1 if and only if there is at least o n e  Xik that has the value 1. A 
useful interpretation of this condensation rule is in terms of mental operations or strategies whose 
successful application is sufficient for giving a correct response. Together with the assumption of 
LSI of the Xi~'s, this condensation rule leads to the following form for P (Yi t Z; ~/i): 

P(YilZ; T/i) -~ 1 - 17  P(Xik = 0 l Z k )  P(Xik ~- 01Zk) 
k=l  k=l  

(7) 

Still other condensation rules may have more than two different function values. For ex- 
ample, one can formulate MCLCMs for multiple choice items by chosing the condensation rule 
such that every pattern of latent responses is mapped into a particular response alternative accord- 
ing to some hypothesis about the response process. Such an hypothesis should not only specify 
how the correct response comes about, but also the different incorrect responses. 

Estimation (section 4) will be considered only for the conjunctive and the disjunctive model 
with independent latent responses. The extension to other condensation rules and other models 
for the latent responses is straightforward, however. 

Restrictions on the item parameters. Besides extending the LRM-framework by formu- 
lating other PDFs for the latent responses and using other condensation rules, the usefulness 
of this class of models is also enhanced by introducing restrictions on the item parameters. In 
particular, interesting special cases appear if rlikO and/or l"]ikl are fixed at 0 or 1. Under the con- 
junctive condensation rule, fixing rlik0 at 0, the restriction is imposed that this item absolutely 
requires mastery of this mental operation. This type of restrictions is very well suited for testing 
hypotheses about the response process. For example, one can fix r/il0 at 0 for all fraction items 
that require splitting, and fix r/i20 at 0 for all fraction items that require identifying. The introduc- 
tory example was implicitely based on this kind of deterministic response model (see Figure 1). 
Also under the conjunctive condensation rule, by fixing both ~]ikO and 17ikl at l ,  the restriction 
is imposed that the corresponding mental operation is simply not involved in the solution of this 
item. For example, the fraction 2/6 . . . .  does not involve splitting. So, one can fix rlil0 and T/ill 
at 1 for this item. Under the disjunctive condensation rule, similar restrictions can be imposed. 

Latent response and latent variable models. At this point, we should point out the dif- 
ference between LRMs and latent variable models in general. In a broad sense, LRMs are latent 
variable models because the model for the observed data (the Yi's) is obtained by integrating 
(summing) out a set of unobserved random variables (the Z's  and the Xi's). In a narrow sense, 
latent variable models (the factor analysis model, the latent class model) involve (a) a draw from 
the PDF of the latent variables, and (b) a draw from the conditional PDF of the observed variables 
given the latent variables. This does not hold for LRMs, because there is no conditional PDF of 
observed variables given latent variables; latent variables are mapped into observed variables 
by means of a function. This mapping of latent into observed random variables is the essential 
new feature of LRMs, distinguishing it from classical latent variable models, and creating the 
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possibility to formalize new substantive hypotheses like solution processes that involve multiple 
requirements (conjunctive) or multiple solution strategies (disjunctive). 

We now consider a MCLCM that is a latent variable model in the narrow sense decribed 
above. 

A compensatory model. The basic idea behind this compensatory model is that mastery 
of a particular mental operation may compensate for non-mastery of another mental operation. 
Moreover, this compensation is gradual. As such, it is different from the disjunctive LRM in 
which a successful application of one strategy completely compensates for the non-successful 
application of the other strategies. The compensatory model can be written as follows: 

z exp[   ( 
P(Y/[Z; ~'/i) : ~ K  -- ~]i0] (8) 

l + e x p [  k=lqikZk 

In this model, K + 1 item parameters are involved. The first, r/i0, is a threshold parameter that 
specifies the value of ~kX_l OikZ~ that is needed for the probability of a correct response to be 
equal to 05.  The r/ik-parameters are the amount of increase in probability on the log-odds scale 
if the person changes from non-mastery to mastery of the k-th mental operation. 

This model is analogous to the item factor analysis model described by Muth~n (1978) and 
Bock and Aitkin (1981). The only difference is the nature of the latent variables, the Zk's in (8). 
In the item factor analysis model, the latent variables are continuous, while in this model they 
are discrete. 

In a different parametrization, the model in (8) was proposed by Hagenaars (1990, 1993; 
see also Heinen, 1993) in the context of so-called causal models with discrete latent variables. 
Consider the model for the joint PDF o f Y  and Z that follows from (2), (8) and some model for 
Z like (1), (6) or a loglinear model. It is easy to see that this model can be written as a loglinear 
model for the item_I x . . .  xitem_I ×Classification _1 × . . .  x Classification_K-table. In this log- 
linear model, -i/i0 is the parameter of the main effect of item i. And Oik is the parameter of the 
interaction effect of item i and classification k. From this loglinear model for the unobservable 
complete table, a latent class model for the observed table of vectors Y is obtained by summing 
over all possible realizations of Z. 

Looking at (8) from the perspective of loglinear modelling leads to an interesting extension 
of the model. This extension involves adding three-variable interaction terms corresponding to 
item i and two classifications k and l. The additional term that appears in the exponent of (8) is 
then r l i k l Z k Z  I . This model can be interpreted in terms of a solution process in which a correct 
response depends on a joint mastery of two mental operations. This dependence on joint mastery 
has some conjunctive flavor but the model is nevertheless compensatory because of the linear 
combination of ~7-parameters in the exponent. 

This compensatory model will not be considered any further. Only for the MCLCMs of 
the LRM-type, a ML and MAP estimation algorithm will be described. The algorithm for the 
compensatory model, however, has essentially the same structure. ML estimation of this model 
is also described by Hagenaars (1990). 

3. Identifiability 

It can be shown that the conjunctive and the disjunctive MCLCMs presented above are 
not identifiable. Some identifiability restrictions are necessary to get unique, and therefore inter- 
pretable, parameter values. This non-identifiability is of the same type for the conjunctive and 
the disjunctive version of this model. Therefore, only the conjunctive version is considered in 
detail. Moreover, this non-identifiability is of the same type for all values of K > 2. Therefore, 
only the case K = 2 is considered in detail. 
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FIGURE 2. 
Conditional probabilities of the two possible realizations of Yi according to the conjunctive LRM with K = 2 conditional 
on the four possible Z-patterns. 

Two types of non-identifiability will be considered. The first one is with respect to the 
P(YilZ; ~/i)'s and the second one is with respect to the P(Y; I/, ~)'s, after some identifiabil- 
ity restrictions are imposed on the P(YilZ; ~Tl)'s. The P(Yi IZ; ~/i)'s are considered first. The 
P(Yi IZ; I/i)'s for the conjunctive LRM with K = 2 are shown in Figure 2. From this figure, it 
can be seen that there exists a multiplicative trade-off between the parameters of  the two com- 
ponents. In particular, if 0ill and ~i10 are multiplied by some constant c and ~/i21 and r/i20 are 
divided by the same constant, the P(Yi IZ; ~/i)'s remain the same. By fixing one of  these four 
parameters, this multiplicative trade-off is no longer possible. We put ~ill equal to 1. This re- 
striction is consistent with our interpretation of  Oi 11 as the conditional probability of  successful 
application given mastery, because it is at least as large as T/i 10, the conditional probability given 
non-mastery. 

It is easy to show that for K > 2 more than one parameter has to be fixed to make this 
multiplicative trade-off impossible. A restriction that is sufficient to achieve this is putting the 
first (K - 1) rlikl'S equal to 1. 

We now consider the second type of  non-identifiability. Imposing the restrictions above 
is not sufficient to get an identifiable model for Y. This can be shown from the formula for 
P(Y; ~/, ~). This formula is considered for the case of  a conjunctive LRM with K = 2 for Y 
given Z and the independence model for Z. (The model we choose for Z is not essential for the 
point to be shown.) 

1 
P(Y; I/, ~) = H(rl i21)Yi(1  - rli21)l-Yi~l~2 -.I- 

i=1 

1 

I-I(T]i20) Yi (1 - T]i20) l -Yi~l  (1 - ~2) + 

i=1 
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1 

E(/7i10/7i21) ~ (1 -- r/i10/7i21) 1-)'z (1 - s e l ) ~ e 2  -}- 

i=1 

1 

E(/7i10/7i20) Yi (1 - t]ilO/Ti2o) 1-Yi (1 - ~1)(1 - -  se2). 

i=1 

(9) 

In this formula, the restriction that/7ill equals 1 is already imposed. It is possible to find an- 
other set of  parameter values/7'21, /7'20, /7'10, ~;' and ~ that results in exactly the same value 
as P(Y; I/, 5) in (9). The possibility of  such a transformation is best seen by first interchanging 
the second and the third row on the right-hand side of  (9) and then performing the following 

transformation:/7"21 ~-- /7i21, /7i'20 • /7il0/7i21, r / i l0 = /7i20//7i21, ~ ~--- ~2 and ~ = ~ l -  

By imposing the restriction that r/i21 equals 1, this transformation is reduced to a permuta- 
tion of component item parameters (/7*2o =/7i  lo and/7'~0 = ~i20)- Fortunately, from the point of  
view of interpretation such a permutation of  parameters does not create any problems. Formally, 
this permutation of  component item parameters is analogous to a permutation of  the dimensions 
(factor loadings) in the factor analysis model. 

For K > 2, the first type of  non-identifiabitity was made impossible by putting the first 
( K  - -  l )  ?]ikl 'S equal to 1. To remove the second type of non-identifiability, also ~]i K I is put equal 
to 1. The psychological interpretation of this model involves that there is no probability of  a 
careless error: if a person masters a particular mental operation then he or she will also apply it 
successfully. 

For the disjunctive LRM, similar identifiability restrictions have to be imposed. For this 
model, all K/7ik0's are put equal to 0 instead of all K/Ti l l ' s  put equal to 1. The reason for this is 
that, in the latter case, the disjunctive LRM would predict a perfect item response pattern Y for 
all latent class membership patterns z different from (0 . . . . .  0) t. Therefore, no distinction can be 
made between these latent class membership patterns on the basis of the observed item response 
patterns (e.g., by means of the posterior probabilities of  these latent class membership patterns 
given the observed item response patterns). For the conjunctive LRM, an analogous problem 
occurs if all K Oi~0's are put equal to 0 instead of all K ~]ikl's put equal to 1. 

It is admitted that this way of dealing with the identifiability problem is not a proof  of the 
model being identifiable. Evidence with respect to identifiability can also be obtained from a 
simulation study. In section Five, a detailed report of such a simulation study is given and the 
relevance of the results with respect to identifiability is pointed out. 

4. Estimation 

First, it is described how the EM-algorithm (Dempster, Laird & Rubin, 1977) can be used 
to compute the ML estimates of  the MCLCMs of the LRM-type. Second, a hybrid algorithm is 
described that combines the EM- and a Newton-type algorithm. And third, it is described how 
maximum a posteriori (MAP) estimates can be obtained using the same two algorithms. 

4.1. An EM-AIgorithm 

A MCLCM is a model for the item response vectors Y. For dichotomous items, there are 21 
different item response patterns. This number is denoted by S, and s (s = 1 . . . . .  S) is used as an 
index for these patterns. The constant Csi is used to denote the response (0 or 1 ) on item i in pat- 
tern s. The complete vector of  responses is denoted by Cs (Cs = (Csl . . . . .  CsDt). The number 
of  observations of  response pattern s is denoted by the random variable Ns and its realization by 
ns. The vector (N1 . . . . .  Ns)  t is denoted by N and its realization (nl . . . . .  ns) t by n. The total 
number of  observations is denoted by Nobs. 
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The following multinomial model is formulated for N: 

P(N = n; ~/, ~) = n l . . .  ns [P(Y = Cs; ~, ~)]ns. 

Ignoring the part of this PDF that does not depend on the parameters, the loglikelihood 10/, ~; n) 
can be written as follows: 

S 

10/, ~; n) = Z n s  In P(Y = Cs; r/, ~). 
s = l  

The EM-algorithm can be used to maximize 10/, ~; n) because n can be considered as the 
observed data that result from a so-called missing data generating process in which part of the 
complete data is lost. For every person, the complete data consists of an (I × K) matrix of latent 
responses Xik, denoted by X, and a K-element vector of latent class memberships Zk, denoted 
by Z. This pair (X, Z) is mapped into the vector Y, the observed data for this person. In the 
missing data generating process data are lost in two ways: (a) by applying the condensation rule 
to the rows of X and (b) by dropping Z. 

Now, some notation is introduced. For dichotomous latent responses, there are 2 t × r differ- 
ent matrices X. This number is denoted by R, and r (r = 1 . . . . .  R) is used as an index for these 
matrices. The constant Brik is used to denote the response (0 or 1) on component k of item i in 
latent response matrix r. The complete matrix of latent responses is denoted by Br. Further, for 
dichotomous latent classifications, there are 2 K different class membership patterns. This num- 
ber is denoted by T, and t (t ---- 1 . . . . .  T) is used as an index for these patterns. The constant 
Dtk is used to denote the membership (0 or 1) in classification k for pattern t. The complete 
vector of memberships is denoted by Dt (Dt = (Dr1, . . . ,  DtK)t). The number of observations 
of latent response matrix r and class membership vector t is denoted by the random variable Mrt 
mad its realization by mrt. We use M to denote the (R x T) matrix of Mrt'S and m to denote its 
realization. 

The following multinomial model is formulated for M: 

( [P(X = Br, Z = Dt; ~/, ~)]rnrt. 
P(M = m; I/, ~) = ml! . . .mRr r=l t=l 

Ignoring the part of this PDF that does not depend on the parameters and replacing P (X = Br, 
Z = Dr; 7/, ~) by the product P(X = BrIZ = Dr; 1/) x P(Z  = Dr; ~), the complete data loglike- 
lihood h0/, ~; m) can be written as follows: 

T R T 

hOl,~;m)= y ~ m + t l n P ( Z = D t ; ~ ) W  ~-~y~mrt lnP(X=Br lZ=Dt;~ l ) ,  (10) 
t : l  r = l  t = l  

in which m+t denotes the sum over r of the mrt's for some value of t. 
In the (p + 1)-th cycle of the EM-algorithm, one maximizes the conditional expected value 

of the complete data loglikelihood h01, ~; M) given the observed data n and the parameter values 
of the p-th cycle, denoted by ~/(P) and ~ (P). This function is denoted by Q 0/, ~; I/(P), ~ (P)), and it 
is defined as follows: 

Q0/, ~; 1/(p), ~(P)) = ~ [h(I/, ~; M)IN = n; 1/(p), ~(P)]. (11) 

Maximizing Q(~/, ~; ~/(P), ~(P)) is simple because h(l/,/j; m) is linear in the data, the mrt'S (see 
(lO)). This involves that one only has to replace the mrt'S by their conditional expected values 
(the E-step of the EM-algorithm) and apply a maximization algorithm to the complete data log- 
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likelihood (the M-step of the EM-algorithm). (Further, it will be shown that it is not necessary to 
compute expected values of individual Mrt's but only of certain linear combinations of Mrt'S.) 

The maximization of the complete data loglikelihood is a standard problem. First, we con- 
sider the maximization with respect to ~. Replacing P(Z = Dt; ~) in the right-hand side of 
(10) by the completely saturated model in (1), it can easily be shown that the ML estimates 
~t (t = 1 . . . . .  T) are given by the following closed-form expression: 

~t = m+t (12) 
__Nobs ' 

the proportion of persons having class membership pattern t. And if the model for Z is the 
independence model in (2), it is easily shown that the ML estimates ~k (k = 1 . . . . .  K) are given 
by the following closed-form expression: 

T 
~k - -  E t = l  m+tDtk 

Nobs ' (13) 

the proportion of persons belonging to latent class 1 of the k-th classification (having Zk = 1). 
In a loglinear model for Z, the ML estimates are the solution to a set of nonlinear equations 
(see Bishop, Fienberg & Holland, 1975). In these equations, the observed frequencies in some 
marginal tables of the complete cross-classification of the K Zk'S are put equal to their corre- 
sponding predicted frequencies. These predicted frequencies are obtained by summing the ap- 
propriate P ( Z  = Dt; ~)'s, in which ~ is the ML estimate of ~. These equations can be solved by 
means of iterative proportional fitting or Newton-Raphson (see Bishop et al.). 

The maximization of the complete data toglikelihood with respect to 1/involves the maxi- 
mization of the second term on the fight-hand sided of (10). Again, this maximization is a stan- 
dard problem. Because the (I × K) latent responses Xik are statistically independent conditional 
on Z, P(X = BrlZ = Dt; 1/) can be written as follows: 

I K 

e ( x  = BrlZ = Dt; T/) = I ~  I ~  e(xil~ = BriklZk = Otk; llik). 
i=1  k = l  

Replacing e (X ik  = BriklZk = Dtk; ~lik) by the right-hand side of (4), the second term on the 
fight-hand side of (10) can be written as follows: 

R T 

~ m r t  lnP(X = BrlZ = Dt; ~/) = 
r = l  t = l  

~ ~ In ~itl mrtBrikDtt 
i=1  k = t  r = l  t--1 

+In(1 - Oikl) m+tDtk -- mrtBrikDtk 
L t = l  r = l  t = l  

+ l n  ~iko mrtBrik(1 -- Dtk) 
r = l  t = l  

[ * 1 + l n ( 1  - -  rlikO ) Nobs -- ~ m+tOtk -- ~ .  ~ mrt Brik(1 -- Dtk) • ( 1 4 )  

t = t  r = l  t = l  

From (14), it can easily be shown that the ML estimates ~likl and #ikO are given by the following 
expressions: 
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~]ikl = ZrR=I ZT-I  mrt BrikOtk (15) 

rlikO = ~ r R l  ~T=I mrtBrik(1 -- Otk) (16) 

We now consider the E-step of the EM-algorithm. In this step, we replace the statistics that 
appear in h(7/, ~; m) by their conditional expected values given N -- n, the observed data, and 
~/(P) and ~(P), some preliminary values of i/and ~. These statistics are (a) the numerators of (12) 
and (13), (b) the observed frequencies in the likelihood equations for a loglinear model, and (c) 
the numerators and denominators of (15) and (16). The conditional expected value of the m+t's 
are considered first. These m+t's appear in (12), (13), (15) and (16), and can be used to compute 
the observed frequencies in the likelihood equations for a loglinear model. 

R 

r=l 
(17) 

For every observed item response pattern Y = Cs there is a certain probability (possibly 0 or 1) 
of the pattern (X = Br, Z = Dt). Therefore, the expected value in the right-hand side of (17) can 
be written as follows: 

s 
= E n s P  (X = Br, Z = DtIY = Cs; ll(P), ~(P)) 

s=l 

s 
= - ~ n s P ( X = B r [ Y = C s ,  Z=Dt;rI(P))P(Z=Dt]Y=Cs;rI(P)~(P)).  

s=l 
(18) 

Inserting (18) in (17) and interchanging the summations, one has to take the sum over r of 
P (X = BrlY = Cs, Z = Dr; ~/(P)). This sum is equal to 1. Therefore, one gets: 

s 
~(Mrt]N~II;II(P),~(P)) ~ E n s P ( Z  

s=l 
= DtIY = Cs; I/(p), ~(P))  • (19) 

The conditional probability in the fight-hand side of (19) can be computed using B ayes' theorem: 

P (Y = CslZ = Ot; t/(p)) P (Z = Dt; ~(P)) 
P (Z = Ot[Y = Cs; ~i(P), ~ (p)) : P (Z = Ot[Y = Cs; ~i(P), ~(p)) : 

EU=I 

The P (Y = CslZ = Dt; ~/(P))'s can be computed using (5) or (7), the conjunctive or the dis- 

junctive LRM. And the P(Z = Dr; ~(P))'s can be computed using (1) or (6), one of the models 
for Z. 

The conditional expected value of the numerators of (15) and (16) are similar. Therefore, 
only (15) is considered. Using (18) and interchanging the summations, the following is obtained: 

£ ~MrtBrikDtk]N = n; q(P), ~(P) = 
r=l t=l 
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S T 

Z n s ~ D t k P  ( Z = D t l Y = C s ; ~ / ( P ) , ~ ( P ) )  × 
s= l  t= l  

R 

nrike ( X  = BrlY = Cs, Z = Dt; ~/(P)) (20) 
r = l  

The sum over r on the right-hand side of (20) is the conditional probability of Xik ~- 1 given 
Yi = Csi and Z = Dt: 

R 

y~BrikP(X=BrtY~-Cs ,  Z-~-l)t;ll (p)) ~ P(Xik-~- llYi ~Csi ,Z:Dt;q[P)) .  
r = l  

(21) 

For the conjunctive LRM, P/(x ik  = IIY i = Csi,Z = D t ;  ~/~P))(\ can be shown to be the follow- 
% 

ing: 

e(Xik  = llYi = 1 , Z =  Dt; ~/I p)) = 1, 

P(Xik = liri - -  0, z = Dt ;  , I  p)) = P(Xik  = 1, r i = 01Z = Dt;//~P)) 
P(Y/ = 01Z = Dr; ~/~P)) 

-(P)X P(Yi llZ Dr; rJ~ p)) P(Xik = llZk = Dtk; qik ] - -  = = 

P(ri = 0 1 z  = o , ;  

For the disjunctive LRM, similar formula's hold. 
In summary, an EM-algorithm has been presented whose E-step and M-step are both com- 

putationally feasible. In the E-step, conditional expected values are computed that involve a 
summation over the observed response patterns (in (18) and (20)-(21)) and a summation over 
the latent class membership patterns (in (20)-(21)). The number of terms in these summations is 
bounded above by Nobs × 2 K. Because K is usually small, these summations are computationally 
feasible. And in the M-step, one has to solve a complete data maximization problem that has a 
closed-form solution or is solvable by means of a standard iterative algorithm. 

4.2. A Hybrid Algorithm 

A well-known problem of the EM-algorithm is that its convergence can be very slow (see 
Dempster et al, 1977). For MCLCMs this is indeed the case. Therefore, the EM-algorithm was 
combined with a second order algorithm (i.e., an algorithm that makes use of the matrix of second 
derivatives). This hybrid algorithm starts with the EM-algorithm and switches to the second 
order algorithm if the elements of the gradient vector are close to zero. By starting with the 
EM-algorithm, advantage is taken of the fact that the EM-algorithm monotonically increases the 
loglikelihood at all points of the parameter space. And by switching to the second order algorithm 
near the maximum, advantage is taken of the fact that a second order algorithm performs well at 
points where the surface of the loglikelihood is nearly quadratic, which is true for points near the 
maximum (see Gill, Murray & Wright, 1981). 

The second order algorithm being used, ~is based on a Cholesky decomposition of the neg- 
ative of the Hessian matrix (see Gill et al, 1981, pp. 108-111). This algorithm differs from the 
classical Newton-Raphson algorithm in that a possibly nonnegative definite Hessian matrix is 
adjusted to make it negative definite. This allows one to construct a monotonically increasing 
second order algorithm (see Gill et al, pp. 99-111). 

The gradient vector that is needed in this hybrid algorithm can be computed using EM-code. 
In particular, it is easy to show that the gradient of 1(i/, 5; n), the observed data loglikelihood, 
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is equal to the conditional expected value of the gradient of h(I/, ~; M), the complete data log- 
likelihood (see Louis, 1982). Now, since h0/, ~; M) is linear in the data, the same holds for its 
gradient. In particular, the gradient of h(t/, ~; M) is linear in the statistics whose conditional ex- 
pected values are computed in the E-step (i.e., the statistics in (12), (13), (15) and (16)). This 
allows one to compute the gradient of I0/, ~; n) by replacing these statistics in the gradient of 
h(~, ~; M) by their conditional expected values. 

In the computer implementation of this hybrid algorithm, the Hessian matrix was approx- 
imated using finite differences (see Gill et al, 1981, pp. 54-56). For an exact computation, one 
could make use of a formula given by Louis (1982). An implementation of this formula would 
require new code. 

The stopping criterion used in the computer implementation of this hybrid algorithm makes 
use of the gradient of the observed data loglikelihood. In particular, the algorithm stops if every 
element of this vector is less than 0.001 in absolute value. 

4.3. MAP Estimation 

A well-known problem in the context of models for discrete data (logistic regression, log- 
linear models .... ) is that, depending on the data, ML estimates in the interior of the parameter 
space may not exist. This is also the case for MCLCMs. This fact is problematic because (a) it 
may result in over/underflow during computation, and (b) the asymptotic sampling properties of 
ML estimates (e.g., asymptotic normality) cannot be applied. 

In the Bayesian framework, using a proper prior PDF, this problem does not exist. For 
reasons that will become clear in the following, MAP estimation will be considered here. With 
respect to the arbitrariness of the prior PDF, it has to be noted that, except for a constant, the 
likelihood function and the posterior PDF are asymptotically equivalent. Therefore, MAP and 
ML estimates are asymptotically equivalent. 

Although ML and MAP estimates are defined in a different statistical framework, their 
actual computation may be very similar. In particular, the choice of a particular prior PDF in 
some cases is formally equivalent to adding a prior sample within the ML framework (see, e.g., 
Novick & Jackson, 1974). 

4.3.1. The Beta Prior for Binomial PDFs The independence model for Z is a product- 
binomial, as is the conditional PDF of the latent responses X given Z. The parameters of 
these models, as well as the resulting models for the observed data, are all probabilities. So, not 
being in the interior of the parameter space involves that some parameters have boundary values 
of 0 or 1. For models that have probabilities as their parameters, a prior PDF that (for certain 
values of its parameters) is formally equivalent to a prior sample, is the beta distribution (see 
Mood, Graybill, & Boes, 1974, p.115). This PDF is defined on the domain ]0, 1[, as it should be 
for probabilities. The beta PDF has two parameters and if we take both of them equal to 2, this 
PDF can be written as follows: 

f (W;  2, 2) c~ W(1 - W). 

This PDF has expected value and variance equal to 0.5 and 0.05, respectively. Letting W be 
any parameter of the MCLCMs being considered (~ ,  r/ikl or l/ik0), it follows that f ( W ;  2, 2) 
is proportional to the joint probability of a 1- and a 0-response on the latent Bernoulli random 
variable (Zk or Xik) whose PDF is specified by this parameter. 

Making use of this prior sample interpretation of the beta prior, it is clear that MAP estimates 
can be computed as ML estimates using an extended sample. This extended sample involves both 
N and the prior sample, which will be denoted by P. The array P is of order U x 2, and contains 
one pair of observations, Pul and Pu2 for every parameter (u = 1 . . . . .  U). For the MCLCMs 
being considered, U is equal to K + (I x K x 2) if no identifiability restrictions are imposed, 
and K + (I x K) if all ~ikl'S are fixed at 1. 
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The MAP estimates can be computed by means of the EM-algorithm. The complete data 
are M and P. The P,~l's and Pu2's are considered as a special type of latent random variables 
that are mapped in observed random variables by means of the identity function. The function to 
be maximized in the M-step is Q0/, ~; ~/(P), ~(P)) as defined for ML estimation (see (11)), plus 
the loglikelihood of P. This latter loglikelihood has the same structure as QO/, ~; ~/(P), ~(P))- It is 
easy to show that the sum of Q 0/, ~; ~/(P), ~ (p)) and the loglikelihood of P is maximized by means 
of formula's that differ from the complete data maximizers (13), (15) and (16) in two respects: 
(a) the statistics are replaced by their conditional expected values, and (b) the numerators are 
augmented by 1 and the denominators by 2. This latter difference is due to the beta prior. Because 
the numerators of (13), (15) and (16) are bounded above by their denominators, it is clear that 
this algorithm cannot result in estimates on the boundary of the parameter space. 

The second order algorithm can also be easily adapted to compute MAP estimates. In the 
formulas for the gradient of t0/, ~; n) one only has to augment the conditional expected values 
of certain statistics by 1 and others by 2. 

4.3.2. The Dirichlet Prior for Multinomial PDFs The saturated model for Z (see (1)) is multi- 
nomial. The parameters of this model are a vector of probabilities, restricted to sum to 1. A prior 
PDF that has the same structure as the multinomial PDF, is the Dirichlet (see Bishop et al, 1975, 
p. 405). With appropriate parameter values, the Dirichlet is formally equivalent to a prior sample 
of a number of subjects distributed over the T latent class patterns. Maximizing the posterior 
PDF for a MCLCM with a saturated model for Z proceeds in essentially the same way as in 
the case with an independence model together with a beta prior. The only difference is that the 
statistics that have to be augmented by values coming from the prior are the m+t's instead of the 
E,LI m+, D,~'s. 

4.3.3. The Logistic Prior for Loglinear and Logistic Models In the previous, we mentioned 
the possibility of formulating a loglinear model for Z, and in (8), we presented a logistic model 
for Y given Z. For these models, not being in the interior of the parameter space involves that 
some parameters have boundary values of - o o  or +c~. A prior PDF that has the same struc- 
ture as a loglinear or a logistic model, is the logistic PDF (see Mood et al. 1974, p. 118). For 
suitable parameter values, this PDF is equivalent to a prior sample of two observations (a 1- 
response and a 0-response) on a hypothetical data point characterized by a probability that has a 
loglinear/logistic structure. 

Maximizing the posterior PDF is possible by means of a simple modification of the algo- 
rithm for the maximization of Q0/, ~, l/(p), ~(P)). Also, the gradient of the observed data log 
joint PDF can be computed by means of" a simple modification of the formulas for the gradient 
of the observed data loglikelihood. 

4.4. A Full)' Bayesian Approach 

A fully Bayesian approach would involve that the complete posterior PDF of the parameters 
given the data be computed, not only its mode. This posterior PDF is not analytically available. 
However, using standard asymptotic theory, it can be approximated by a multivariate normal PDF 
with expectation equal to the mode, and covariance matrix equal to the inverse of the Hessian 
matrix at the mode. For small samples, the approximation can be improved by making use of the 
sampling-importance-resampling algorithm (Rubin, 1987). This algorithm allows one to obtain 
draws from the posterior PDE These draws can then be used (a) to compute the moments of this 
PDF, and (b) to construct 95-percent posterior probability intervals. 

5. Simulation Study 

In a simulation study, two properties of the MAP estimates were examined: (a) the unique- 
ness of the solution of the posterior PDF equations (i.e., the gradient of the log posterior PDF 
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equated to zero), and (b) the goodness-of-recovery (GOR) of the true parameter values. As an 
extension to the GOR-study, also the existence of  asymptotic standard errors was examined. 

5.1. The Simulation and the Estimation Design 

Data were generated according to the conjunctive MCLCM with the independence model 
(see (2)) as a model for Z. The simulation design involves three factors: (a) the number of  items 
( I )  with two levels ( I s  20 or 40), (b) the number of  components (K)  with two levels (K=  2 or 
4) and (c) the number of  persons (N) with four levels (N= 100, 250, 1000 or 2500). Thus, the 
simulation design has 2 x 2 x 4 = 16 cells. For every cell in this design, 100 random data sets 
were generated, using parameter values to be described in the following. 

The independence model for Z is characterized by K parameters, the marginal probabilities 
P(Zk = 1). For K = 2, these marginal probabilities are 0.6 and 0.4, and for K = 4, they are 0.6, 
0.4, 0.7 and 0.5. Item responses were generated with all l"]ikl-parameters (P(Xik = 11Zk = 1)'s) 
equal to 1. This corresponds to the identifiability restriction that was imposed when doing the 
estimation. The values for the ~7ik0-parameters (P(Xik = l[Zk ----- 0) 's) are shown in Figure 3. 
For K = 2, only the first two columns were used. For items 21 to 40 in the cells with I = 40, 
the same Oik0-parameters were used as for items 1 to 20. 

By estimation design, we mean which analyses have been performed on which data sets. In 
this study, this was very simple: every data set was analyzed twice: once using the conjunctive 
MCLCM with the independence model for Z, and once using the conjunctive MCLCM with the 
saturated model for Z. 

Component  Component 
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.1 

. l  
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.5 .5 

.5 .5 

.5 .9 
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.9 .9 

.9 .5 

.9 .9 

.5 .5 

.9 .5 

.5 .9 

.9 .9 

• 5 .9 

.5 .5 

.5 .5 

FIGURE 3. 
Values of the rlikO-parameters used in the simulation study. 
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5.2. Uniqueness 

To examine uniqueness, 40 data sets were used; five from each of the eight cells in the design 
with number of items equal to 20. For each of these data sets, the parameters of the conjunctive 
MCLCM were estimated 10 times using the independence model for Z, and 10 times using 
the saturated model. Because every analysis started from different random starting values, these 
analyses give information that is relevant for the uniqueness problem. 

For six out of eight cells in the design, the algorithm always converged to the same solution 
point. This was the case for all four 2-component data sets/analyses and the two largest (N = 
1000, 2500) 4-component data sets/analyses, both with the independence model and the saturated 
model for Z. For the two smallest (N = 100, 250) 4-component data sets/analyses, multiple 
solution points were found for most of the data sets (8 out of l0 data sets for the analyses with the 
independence model, and 7 out of 10 for the analyses with the saturated model). In these analyses, 
the solution with the highest posterior PDF was the most frequent: in more than 60 percent of the 
analyses the algorithm converged to the best solution. Therefore, performing multiple analyses 
using different random starting values may still be a successful optimization method in these 
cases. 

For all data sets, the solution points, whether single or multiple, were allways local maxima 
and never saddle points or points in a linear subspace. This follows from the fact that the Hessian 
matrix at the solution points was allways negative definite. This was also the case for all analyses 
that were performed in the goodness-of-recovery study. 

53. Goodness-of-Recovery and the Existence of Asymptotic Standard Errors 

For every parameter, two GOR-statistics were computed: (a) the difference between the true 
parameter value and the average estimated parameter value (denoted by BIAS), and (b) the root 
mean square deviation between the true and the estimated parameter values (denoted by RMSD). 
Both averages were computed over the 100 replications in every cell. Formally, they are defined 
as follows: 

//~-,100 ~(i))  
/ Z.~i= 1 u, 

BIAS = \ 100 - 0 

~k] O0 (0(i) - -0 )  2 
RMSD = 100 

In these equations, i is an index for the replications, 0 is some parameter and O(i) is its estimate 
in replication i. The RMSD is a function of both the bias and the standard error (SE) of the 
estimates. The SE is estimated by the Monte Carlo standard error (MCSE): 

i00 ^ i 
MCSE --- ,/'~i=1 (0() - ~)2 

V ~ ' 

in which 0 is the average estimated parameter value. It is easy to show that 

RMSD 2 = MCSE 2 + BIAS 2. 

In interpreting the results, it is useful to know that, if the bias is negligable and the sampling 
distribution is normal, a 95-percent confidence interval has width equal to (2 × 1.96 × RMSD). 
If  the 95-percent confidence intervals for the latent response probabilities (the r/ik0's) have an 
average width of less than 20 percent of the range of a probability (i.e., (0, 1)), we say that the 
goodness-of-recovery is sufficient for substantive interpretation of the components. 
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Besides the MAP estimates, in every analysis, also the Hessian matrix of the log posterior 
PDF was computed. It is known that, under certain regularity conditions, the inverse of this matrix 
converges to the sampling covariance matrix of the MAP estimates, or, from a Bayesian perspec- 
tive, the posterior covariance matrix of the parameters (see, e.g., Gelman, Carlin, Stern, & Rubin, 
1995, pp. 94-111). Here, we take the frequentist perspective, considering the MAP estimates as 
point estimates of unknown constants, and ask the question how well this inverse Hessian matrix 
approximates the true sampling covariance matrix for finite, but increasing, sample sizes. For 
MCLCMs, as opposed to other models like the loglinear model, this question is especially im- 
portant, since we have no proof of the identifiability of the MCLCMs, and identifiability is one 
of the regularity conditions for the asymptotic result to hold, 

For a given parameter, inverting the Hessian matrix gives us one asymptotic standard error 
(ASE) per replication in a cell of the simulation design. These 100 ASE were aggregated by 
computing the mean ASE (MASE). A possible bias in the asymptotic SE's is found by computing 
the difference between these MASE-statistics and the MCSEs. 

When computing GOR-statistics, one has to be sure that one has actually computed the 
estimate whose pertbrmance one wants to evaluate, in our case the MAP estimate. As is clear 
from the uniqueness study, for the small (N = 100, 250) 4-component data sets/analyses the 
solution of the maximization algorithm is not always the MAP estimate. Therefore, the values of 
the GOR-statistics in these cells of the simulation design will not be considered. 

A further complication is that MCLCMs involve a trivial nonidentifiability caused by the 
fact that the components may be permuted without changing the probabilities of the observed 
item response vectors. For instance, with the independence model for Z, the marginal latent 
class probability and the I latent response probabilities of the first component (i.e., ~j, r1110, 
~7210 . . . . .  rl110) may be replaced by the corresponding probabilities for the second component, 
and vice versa, without changing the P(Y; 5, ~/)'s (a similar, but somewhat more complicated, 
permutation is possible with the saturated model for Z). To get the same order of components for 
each of the replications, the true parameter values were used as reference values. In particular, 
for every replication, a deviance measure was computed for every (true component, estimated 
component)-pair. This deviance measure is simply the sum of the absolute differences between 
the corresponding true and estimated latent response probabilities (the ~ik0'S). Formally, for the 
k-th true and the l-th estimated component, this deviance measure is the following: 

l 

i=1 

Every estimated component was given the order of the true component from which it deviated 
least. It should be clear that this way of determining the order of the components only works 
if the goodness-of-recovery is not too bad. Otherwise, it might occur for example that one true 
component is the best choice for more than one estimated component. Fortunately, this turned 
out to be the case for none of the data sets considered. This fact of having every true component 
represented best in only one estimated component is already an indication of at least a reasonable 
goodness-of-recovery. 

Only the results for the [20 items, independence model] data sets/analyses will be con- 
sidered in detail. At the end, the effects of number of items (20/40) and type of model for Z 
(independence/saturated) will be discussed briefly. In Table 1, the results are shown for the [20 
items, 2 components, 100 persons, independence model] data sets/analyses. In this table, the 
following is shown: the average parameter estimates, the true parameter values, and the BIAS-, 
RMSD-, MCSE-, and MASE-statistics. These values are given for the marginal latent class prob- 
abilities (~1 and ~2) and the latent response probabilities (the ~i~0's) of items 1, 3, 5 and 7. In this 
table, also the averages over all ~ik0's (so, not only items 1, 3, 5, and 7) of these six statistics are 
shown. (For the BIAS-statistics, the average of their absolute values was computed, whereas for 
the others the ordinary average was computed.) First, taking into account the small number of 
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TABLE 1. 
GOR-statistics for the [20-item, 2-component, 100 persons, independence 
explanation). 
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model] data sets/analyses (see text for 

Parameter Average True BIAS RMSD MCSE MASE 

~1 0.6072 0.6 0.0072 0.0466 0.0461 0.0522 
~2 0.4072 0.4 0.0072 0.0555 0.0550 0.0518 

r/ll 0 0.8777 0.9 -0.0223 0.0541 0.0493 0.0621 
0120 0.8834 0.9 -0.0166 0.0458 0.0427 0.0471 

0310 0.8141 0.9 -0.0859 0.1180 0.0809 0.1030 
r/320 0.1183 0.1 0.0183 0.0422 0.0380 0.0465 

r/510 0.1199 0.1 0.0199 0.0615 0.0582 0.0594 
0520 0.8693 0.9 -0.0307 0.0589 0.0503 0.0608 

7710 0.1425 0.1 0.0425 0.0882 0.0773 0.0759 
r/720 0.1171 0.1 0.0171 0.0466 0.0433 0.0498 

Average over all 
item parameters 0.5909 0.6 0.0235 0.0680 0.0615 0.0675 

persons (100) and the relatively large number of  parameters (42), goodness-of-recovery is sat- 
isfactory. However, it is insufficient for a substantive interpretation of  the components.  Second, 
the MASEs  are too large (by an average percentage of  10.96). 

In Table 2, the results are shown for the [20 items, 2 components,  1000 persons, indepen- 
dence model] data sets/analyses. First, goodness-of-recovery now is sufficient for substantive 
interpretation; the 95-percent confidence intervals for the latent response probabilities have an 
average width of  about 0.083. Second, as it should be, all GOR-statistics are much smaller for 
the 1000- than for the 100-persons data sets/analyses. And third, also the differences between 
the MASEs and the MCSEs are much smaller than for the 100-persons data sets/analyses. The 
MASEs  are too large by an average percentage of 1.39 only. 

For the [20 items, 2 components, 2500 persons, independence model] data sets/analyses 
the values of  the GOR-statistics are again smaller than for the 1000-persons data sets/analyses. 
In particular, the average absolute BIAS- and RMSD-values of  the item parameters are 0.0012 
and 0.0136, respectively. The average difference between the MCSEs and the MASEs  is further 
reduced to an average percentage of  0.13. 

"TABLE 2. 
GOR-statistics for the [20-item, 2-component, 1000 persons, independence model] data sets/analyses (see text 
for explanation). 

Parameter Average True BIAS RMSD MCSE MASE 

~1 0.5997 0.6 -0.0003 0.0169 0.0169 0.0167 
~2 0.4026 0.4 0.0026 0.0165 0.0163 0.0163 

r/110 0.8996 0.9 -0.0004 0.0187 0.0187 0.0195 
r/120 0.8981 0.9 -0.0019 0.0154 0.0153 0.0149 

~/310 0.8946 0.9 -0.0054 0.0274 0.0268 0.0296 
0320 0.1005 0.1 0.0005 0.0144 0.0144 0.0137 

r/510 0.0996 0.1 -0.0004 0.0171 0.0171 0.0180 
0520 0.8970 0.9 -0.0030 0.0178 0.0175 0.0189 

r/7 t0 0.1021 0.1 0.0021 0.0226 0.0225 0.0227 
0720 0.1005 0.1 0.0005 0.0152 0.0152 0.0156 

Average over all 
item parameters 0.5987 0.6 0.0028 0.0212 0.0209 0.0211 



206 PSYCHOMETRIKA 

TABLE 3. 
GOR-statistics for the [20-item, 4-component, 1000 persons, independence model] data sets/analyses (see text 
for explanation). 

Parameter Average True BIAS RMSD MCSE MASE 

~1 0.6000 0.6 0.0000 0.0220 0.0220 0.0253 
~2 0.4116 0.4 0.0116 0.0224 0.0191 0.0203 
~3 0.6921 0.7 -0.0079 0.0224 0.0210 0.0260 
~4 0.5094 0.5 0.0094 0.0221 0.0200 0.0216 

;7110 0.8908 0.9 -0.0092 0.0291 0.0276 0.0290 
;7120 0.8968 0.9 --0.0032 0.0222 0.0220 0.Q212 
r/130 0.8952 0.9 --0.0048 0.0324 0.0321 0.0337 
;7140 0.9044 0.9 --0.0044 0.0234 0.0230 0.0235 

;7310 0.8834 0.9 --0.0166 0.0450 0.0418 0.0444 
;7320 0.0979 0.1 --0.0021 0.0168 0.0167 0.0188 
;7330 0.8589 0.9 --0.0411 0.0679 0.0541 0.0573 
;7340 0.8934 0.9 --0.0066 0.0311 0.0304 0.0314 

;7510 0.1009 0.1 0.0009 0.0327 0.0327 0.0316 
0520 0.8856 0.9 --0.0144 0.0344 0.0312 0.0321 
;7530 0.8644 0.9 --0.0356 0.0654 0.0539 0.0615 
;7540 0.0993 0.1 --0.0007 0.0202 0.0202 0.0225 

0710 0.1073 0.1 0.0073 0.0369 0.0362 0.0335 
r/720 0.1009 0.1 0.0009 0.0194 0.0193 0.0197 
;773O 0.8520 0.9 --0.0480 0.0791 0.0629 0.0645 
;7740 0.8879 0.9 0.0121 0.0388 0.0369 0.0386 

~71010 0.1053 0.1 0.0053 0.0360 0.0356 0.0373 
;71020 0.1029 0.1 0.0029 0.0270 0.0268 0.0252 
r/1030 0.1135 0.1 0.0135 0.0508 0.0490 0.0467 
;71040 0.1056 0.1 0.0056 0.0315 0.0310 0.0306 

Average over all 
item parameters 0.5945 0.6 0.0089 0.0366 0.0349 0.0365 

We now consider the results for the [20 items, 4 components, independence model] data 
sets/analyses. Because the estimation algorithm does not result in unique solutions for the small 
(N = 100, 250) 4-component data sets/analyses, only the results for the larger (N = 1000, 2500) 
4-component data sets/analyses are considered. In Table 3, the results are shown for the [20 items, 
4 components, 1000 persons, independence model] data sets/analyses (for items 1, 3, 5, 7 and 
10). First, goodness-of-recovery is sufficient for substantive interpretation of  the components: 
the 95-confidence intervals for the latent response probabilities have an average width of  about 
0.143. Second, comparing the results in Table 3 with those for the corresponding 2-component 
data sets/analyses in Table 2, we see that estimating more parameters is at the expense of a 
goodness-of-recovery: the average RMSD is 33 percent larger for the latent class membership 
probabilities and 73 percent for the latent response probabilities. Third, there is an interesting 
relation between the four marginal latent class probabilities and the goodness-of-recovery of  the 
corresponding latent response probabilities: the larger the marginal latent class probability, the 
better the goodness-of-recovery of  the corresponding latent response probabilities. In particular, 
the four marginal latent class probabilities are 0.6, 0.4, 0.7, and 0.5, and the average (over the 
items) RMSDs of the corresponding latent response probabilities are 0.0388, 0.0266, 0.0498, 
and 0.0314, respectively. (The same pattern was found in all 4-component data sets/analyses.) 
This pattern is understandable because only the persons with Z~ = 0 give information about the 
Oiko's. And fourth, as is the case for the 2-components data sets/analyses, the MASEs are on the 
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average (over the parameters) larger than the MCSEs (in particular, by an average percentage of 
5.38). 

For the [20 items, 4 components, 2500 persons, independence model] data sets/analyses the 
values of all GOR-statistics are smaller than for the 1000-persons data sets/analyses, similar to 
the difference between the results for the corresponding 2-components data sets/analyses. 

The effect of the number of items on the goodness-of-recovery is rather small. Doubling 
the number of items (i.e., 40 instead of 20) resulted in a global decrease of the RMSDs of the 
marginal latent class (pattern) probabilities by an average percentage of 14.51, and of the latent 
response probabilities by an average percentage of 9.42. 

The effect of the model for Z (i.e., independence versus saturated) on the goodness-of- 
recovery of the latent response probabilities is negligable. Under the saturated model, the RMSDs 
of the latent response probabilities are smaller than under the independence model by an average 
percentage of 0.67 only. For the parameters of the model for Z, we start from the observation that 
the independence model has two or four (K = 2, 4) free parameters, and the corresponding satu- 
rated model three, respectively, fifteen (that is, 2 K - 1). For the 2-component data sets/analyses, 
the RMSDs of the parameters of the saturated model are smaller than those of the independence 
model by an average percentage of 15.53. For the 4-component data sets/analyses this average 
percentage is 74.76. This result is somewhat puzzling, since the model with the larger number of 
parameters has a better goodness-of-recovery. 

From this goodness-of-recovery study we can draw four conclusions. First, goodness-of- 
recovery was more than satisfactory, even with as few as 100 persons. However, for substantive 
interpretation of the components, more persons are required. Second, the global decrease of the 
RMSDs with increasing sample size strongly suggests consistent estimation. Third, there is good 
evidence that the diagonal elements of the inverse of the Hessian matrix of the log posterior 
PDF are asymptotic sampling variances; although the elements are systematically larger than the 
true sampling variances, this bias disappears with increasing sample size. Fourth, the positive 
results with respect to goodness-of-recovery, and the fact that the usual asymptotic standard 
errors appear to be valid, are indirect evidence for the identifiability of the conjunctive MCLCM 
(at least for the parameter values used in the simulation study). However, it is clear that only 
an analytic identifiability proof, probably involving conditions on the model structure and the 
parameter values, is fully satisfactory. Proving identifiability of MCLCMs would be a major step 
forward, since it would give us a class of discrete latent variable models that does not suffer from 
rotational invariance (or something similar), as does the factor analysis model. 

6. Application 

The conjunctive MCLCM (with identification restrictions as described in section 3) was 
applied to data collected by Tatsuoka (1984). The items are fraction addition problems. The item 
set consisted of both simple (e.g., 3 / 4 +  1/2 = ,  1 /5+ 1/4 = ) and mixed (e.g., 3 5 / 7 + 4  6/7 = ,  
1 1/3 + 2 4/6 = ) fraction addition problems. The test consists of 38 items. The first half of 
the test is parallel to the second half. This means that for every item in the first half, there is 
another item of the same type (single/mixed, same/different denominator, small/large numbers, 
. . .  ) in the second half. Item 26 was excluded from the analysis because the information about 
this item in the documentation (i.e., Tatsuoka's, 1984, report) was not consistent with item 26 in 
the list that was also part of this documentation. There were 595 subjects. In this group, there 
were children from grade 7, 8 and 9. 

The conjunctive MCLCM, instead of the disjunctive or some other type, was chosen because 
the solution of this type of items can be described well in terms of multiple abilities that are all 
necessary for a correct response (see the interpretation below). Because we had no hypotheses 
about the structure in the latent class membership probabilities, the saturated model was chosen. 

We obtained MAP-estimates for the conjunctive MCLCM with from one to five compo- 
nents. The analyses were performed using multiple random starting-values. Except for the 4- and 
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TABLE 4. 
Number of parameters and loglikelihood values for the conjunctive MCLCM with from one to five components 
applied to Tatsuoka's fraction addition data. 

Number of Number of Loglikelihood 
Components Parameters at the MAP-estimates 

1 39 - 14810.70737 
2 79 -9321.21454 
3 121 -7990.82645 
4 167 -7616.34449 
5 221 -7452.08613 

the 5-component model, these analyses always resulted in the same parameter values. Both for 
the 4- and the 5-component model, two local maxima were found. Only the solutions with the 
largest value of  the posterior density are considered in the following. In Table 4, we give (a) 
the number of  parameters, and (b) the value of  the loglikelihood at the MAP-estimates, for each 
of  these five solutions. Note that the function being maximized is not the loglikelihood, but the 
loglikelihood plus the log prior density. One might consider using the likelihood ratio statistic 
to determine the number of  components. Unfortunately, likelihood ratio statistics for mixture 
models involving different numbers of  latent classes do not have the usual asymptotic chi-square 
distribution (with degrees of  freedom equal to the difference between the number of  parameters 
of  the two models; see McLachlan & Basford, 1988). Therefore, the loglikelihood was used as 
a descriptive statistic only. A scree-plot of  the loglikelihood values shows that the decrease in 
loglikelihood is almost linear from the 3- to the 5-component solution. 

Besides the scree-plot, a second reason for restricting our attention to the 3-component so- 
lution, is that the interpretation of  the 4-component solution is along the same lines as the simpler 
interpretation of  the 3-component solution. This is evident from the pattern of correlations be- 
tween the latent response probabilities of  the different components and two item characteristics 
(see further). 

The 3-component solution is given in Tables 5 and 6. The estimates and the associated 
standard errors of the ~t's (t = 1 . . . . .  8) are given in Table 5 (for identifiability, ~1 is put equal 
to 1 minus the sum of the other ~t-parameters). The estimates and the associated standard errors 
of  the latent response probabilities (the Oik0's) of  the first 19 items are given in Table 6. The 
averages in the bottom of this table are over all 37 items. In this table, we also show two item 
characteristics that are used for the validation of the interpretation of  this solution (see further). 

For the interpretation, it is important to know that (a) r/ik0 is the probability of  a correct 
application of  the k-th mental operation, given that one does not master it (Zk = 0), and (b) sub- 

TABLE 5. 
MAP-estimates of the latent class pattern probabilities under the 3-component conjunctive MCLCM (with a 
saturated model for Z) applied to Tatsuoka's fraction addition data. 

Pattern Estimate [St. Err.] 

000 0.2204 Id. Res. 
100 0.0838 [0.0162] 
010 0.0075 [0.0062] 
110 0.5232 [0.0204] 
001 0.0237 [0.0220] 
101 0.1048 [0.0168] 
011 0.0234 [0.0082] 
111 0.0128 [0.0046] 
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TABLE 6. 
MAP-estimates of the latent response probabilities under the 3-component conjunctive MCLCM applied to 
Tatsuoka's fraction addition data. 
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Com./Diff. 
Item LRP Comp. 1 LRP Comp. 2 LRP Comp. 3 Denom. STM Load 

28  + 3 ~ 0.3157 [0.0614] 0,6096 [0.0556] 0.7729 [0.0240] 1 2 
2 5 + ~g~ 0.4117 [0.1275] 0.0778 [0.0255] 0.6662 [0.0266] 0 7 
8 5 ÷ 6 0.1698 [0.0429] 0.6490 [0.0521] 0.8788 [0.0186] 1 2 

2 ½ + 4 2  0,366210.1135] 0.0960[0.0270] 0.834210.0210] 0 3 
1 + 117 Q 0,2495 [0.1042] 0,0397 [0.0189] 0.6289 [0.0272] 0 5 

35  + 4 6  0.2046 [0.0443] 0.7508 [0.053610.8062 [0.0228] 1 3 
3 5 + ~ 0.1220 [0.0357] 0.6273 [0.0531] 0.8950 [0.0177] 1 1 
1 + ½ 0.5917 [0.1253] 0.0234 [0.0118] 0.9106 [0.0162] 0 3 

174- + 1 ~ 0.2602 [0.0596] 0.5537 [0.0548] 0.7792 [0.0237] 1 3 
3 5 + 1 0.1591 [0.0343] 0,8198 [0.0400] 0.9766 [0.0087] 1 1 
3 4 ÷ ½ 0.4097 [0.1222] 0.0665 [0.0221] 0.8922 [0.0174] 0 3 

25  + 1 ~ 0.2749 [0.0526] 0.6502 [0.0518] 0.8959 [0.0174] 1 3 

3 -~ + 23  0.3046 [0.1169] 0.0204 [0.0131] 0.8190 [0.0217] 0 5 

3.._5 + ~ 5 1 5  l0 0.17t4 [0.04t0] 0.7505 [0,0460] 0.9084 [0.0164] 1 3 
1 2 ÷ 3 0.3499 [0.1204] 0.0191 [0.0124] 0.9260 [0.0148] 0 2 

12 + 3 0.1041 [0.0287] 0.7781 [0.0458] 0.9403 [0.0136] 1 1 
1 + 3 0.1420 [0.0305] 0.8961 [0.0351] 0.9579 [0,0113] 1 1 

. . ~ +  1 0.5364 [0.1319] 0.01t6 [0.0094] 0.8001 [0.0225] 0 4 
4 5 ÷ 53- 0.0968 [0.0271] 0.8722 [0.0417] 0.9113 [0.0165] 1 2 

Average over all 
item parameters 0.2023 [0,0638] 0.4329 [0.0340] 0.8418 [0.0193] 

jects with Z~ = 1 allways apply the k-th mental operation correctly. The latter restriction was 
introduced for identification of the model (see section 3). 

The first component both has the largest probability of being mastered (i.e., 0.72) and a 
uniformly small probability of compensation by other mental resources (around 0.20). Therefore, 
the corresponding latent ability most likely involves a mental operation that is involved in every 
item. This is true for the mental operation of adding simple fractions with a common denominator 
(i.e., a/c + b/c = (a+b)/c) since this operation has to be performed in every item. 

The second component involves knowing how fractions with different denominators have 
to be converted in equivalent fractions involving a common denominator. This is convincingly 
demonstrated by the 0.97 correlation between the latent response probabilities and the binary 
variable indicating whether the item has common (value 1) or different (value 0) denominators. 
This means that items with common denominators do not require this ability, whereas items with 
different denominators do require it. 

The third component involves short-term memory (STM) capacity. To show this, we first de- 
scribe which elements have to be stored in STM. In particular, solving fraction addition problems 
involves that the following numbers are computed and stored temporarily in STM: 
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• (If there are two unit-parts involved.) The sum of the unit-parts. 
• (If the denominators of the fractions are common.) The sum of the numerators. 
• (If the denominators of the fractions are different.) 

1. The new common denominator, which is determined as the smallest number that is a mul- 
tiple of both old denominators (e.g., 12 for the old denominators 6 and 4). 

2. The two new numerators, obtained by multiplying the old numerator by the same factor 
that was used to convert the denominator. 

3. The sum of the two new numerators, which replaces the two numerators in STM. 

• (If the sum of the fractions can be simplified.) The greatest common divisor of numerator and 
denominator. 

For the validation of our hypothesis that the third component involves STM capacity, we compute 
the STM load of each fraction addition problem. This STM load is computed as the largest 
number of digits that is at the same time in STM. Computing the number of digits' instead of the 
number of numbers in STM, reflects the assumption that it is more difficult to store a two-digit 
number than a single-digit number. Our hypothesis is corroborated by the negative correlation 
of -0 .83  between STM load and the latent response probabilities of the third component. This 
means that items with a high STM load can only be solved by subjects having Z3 = I. Further, 
as a kind of discriminant validity, these latent response probabilities are only weakly correlated 
with the binary variable indicating common versus different denominators (i.e., 0.40). 

Since this interpretation is post-hoc, a caveat is in order. A confirmatory study is needed 
to give this theory a more solid basis. Such a study might involve a test for STM capacity that 
is correlated with the a posteriori probabilities of belonging to the mastery-class of the STM 
component (as determined by the correlations between the latent response probabilities and STM 
load). 

7. Related Models 

MCLCMs are a generalization of ordinary latent class models because they involve 
multiple latent classifications instead of only one. This generalization is also presented by 
Hagenaars (1990, t993) using a loglinear model for the PDF of the item responses conditional 
on the latent class memberships (see 2.2.2., the compensatory model). From the perspective of 
latent class modelling, MCLCMs with polytomous instead of dichotomous latent classifications 
are a straightforward generalization. Obviously, polytomous latent classifications cannot be inter- 
preted as mastery/non-mastery of mental operations. However, they may be useful in modelling 
responses to items in the personality and clinical domain as, for example, items in a psychiatric 
symptom checklist. For this type of responses it makes more sense a priori to think in terms of 
polytomous latent classifications as, for example, [conforming, independent, antagonistic] as a 
relevant classification for attitude towards rules. 

The MCLCMs of the LRM-type are related to a family of decomposition models for binary 
two-way data. The first model in this family is the so-called HICLAS model of De Boeck and 
Rosenberg (1988) that involves a Boolean matrix decomposition. Boolean matrix decomposition 
is the deterministic limiting case of the disjunctive MCLCM. To show this, consider the disjunc- 
tive MCLCM with all r/ik0-parameters equal to 0. The remaining item parameters (the r/ikl's) 
can then be written in a K-dimensional vector ~'/i = ( / 7 i l  1 . . . . .  ~'/i K l)q Then, the probability of a 
correct response conditional on the latent class memberships can be written as follows: 

K 

P(Yi = IlZ; ~/i) = 1 - H ( 1  - rliklZ~) (22) 
k=l  
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The deterministic limiting case of this probability is obtained by letting the elements of ~/i go to 
either 0 or 1. In the limit, the right-hand side of (27) is the Boolean vector product of the binary 
vectors 1/i and Z. This Boolean vector product has the value 1 if and only if there is at least one 
k for which t}i~z = Zk = 1. 

A conjunctive version of the HICLAS model was proposed by Van Mechelen, De Boeck 
and Rosenberg (1995). This version of the model involves a kind of conjunctive Boolean ma- 
trix decomposition. This conjunctive Boolean matrix decomposition is the limiting case of the 
conjunctive MCLCM, as can be shown in a similar way as for the original Boolean matrix de- 
composition and the disjunctive MCLCM. 

It should be noted that the HICLAS model is not a latent class model. The Z 's  are not 
considered as RVs but as constants that are treated as unknown parameters (one for each of the 
persons in the sample). Thus, in an application of the HICLAS model, N + I binary vectors of 
constants (N Z 's  and I ~/i's) have to be estimated from the data. 

Probability matrix decomposition (PMD) models were proposed by Maris et al. (1996) as 
probabilistic versions of the Boolean matrix decompositions involved in the two versions of the 
HICLAS model. PMD models are introduced here using a matrix of patients by psychiatric symp- 
toms. For every cell in this matrix, a number of psychiatrists indicated whether the corresponding 
symptom applied to the corresponding patient. Thus, the data matrix is a matrix of frequencies 
instead of 0's and l 's.  Both the patients and the symptoms are characterized by a K-dimensional 
vector of probabilities. For the symptoms, this is similar to a MCLCM. There also, the items 
are characterized by a K-dimensional vector of probabilities (after imposing identifiability re- 
strictions on the rliko's or the rlikl 's). The difference between PMD-models and MCLCMs is the 
representation of the persons: in PMD models, this representation is a vector of probabilities, and 
in MCLCMs, it is a realization of a vector-valued binary RV. 

To give a formal characterization of PMD models, the vector of probabilities for patient 
p is denoted by ¢p = ((pl . . . . .  ~pK) t. And the binary RV indicating whether symptom i was 
judged to be applicable to patient p is denoted by Ypi. Then, analogous to (27), the probability 
of Ypi • 1 under the disjunctive PMD model can be written as follows: 

K 

P(Yi = llZ; ¢p, 1/ i )  = 1 - l'-I(1 - r]iklfpk). 
k = l  

(23) 

A similar formula holds for the probability of Ypi = I under the conjunctive PMD model. 
The disjunctive and the conjunctive MCLCM are half-way between the HICLAS and the 

PMD models. Ignoring the fact that Z is a RV in the MCLCMs, we go from the MCLCMs to 
the HICLAS model by replacing the vector of probabilities ~/i by a dichotomous vector. And we 
go from the MCLCMs to the PMD models by replacing every realization of Z by a vector of 
probabilities ~p. 

MCLCMs are IRT models. They specify the relation between an observed item response 
and one or more latent variables characterizing the persons. Since every person is characterized 
by a vector, MCLCMs are related most to the multidimensional IRT models. There is a close 
relationship between the compensatory MCLCM in (8) and the item factor analysis model (Bock 
& Aitkin, 1981; Muthrn, 1978). In particular, the item factor analysis model is obtained by 
replacing the dichotomous Zk's in (8) by continuous RVs. 

There is also a close relationship between the conjunctive and the disjunctive MCLCM 
and the conjunctive and the disjunctive Rasch model (Embretson, 1980; Maris, 1995). The con- 
junctive and the disjunctive Rasch model are also LRMs. The difference with the corresponding 
MCLCMs is the PDF of the latent responses, the Xik's. For the MCLCMs, this PDF is given in 
(4). And for the two generalized Rasch models, this PDF is an ordinary Rasch model. 
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