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The relationship between the higher-order factor model and the hierarchical factor model is explored 
formally. We show that the Schmid-Leiman transformation produces constrained hierarchical factor so- 
lutions. Using a generalized Schmid-Leiman transformation and its inverse, we show that for any un- 
constrained hierarchical factor model there is an equivalent higher-order factor model with direct effects 
(loadings) on the manifest variables from the higher-order factors. Therefore, the class of higher-order 
factor models (without direct effects of higher-order factors) is nested within the class of unconstrained 
hierarchical factor models. In light of these formal results, we discuss some implications for testing the 
higher-order factor model and the issue of general factor. An interesting aspect concerning the efficient 
fitting of the higher-order factor model with direct effecls is noted: 

Key words: factor analysis, higher-order factor models, hierarchical factor models, hi-factor solutions, 
general factor, model equivalence. 

1. Introduction 

Schmid and Leiman (1957) propose a transformation for deriving hierarchical factor solu- 
tions from higher-order factor solutions with simple factor clusters structure. The result of the 
so-called Schmid-Leiman transformation is the derivation of a single order of hierarchical fac- 
tors. Using the fictitious example in Schmid and Leiman, the factor structure of a hierarchical 
factor model is illustrated in Table 1. Wherry (1959) provides a different method that produces 
hierarchical factor solutions equivalent to that of Schmid and Leiman. Because of the orthogo- 
nality of the hierarchical factors, Schmid and Leiman argue that hierarchical factor models are 
more interpretable than the corresponding higher-order factor models with oblique factors. 

The translation between the hierarchical factor model and the higher-order factor model us- 
ing the Schmid-Leiman transformation bears some important implications for the psychometric 
interpretation of the so-called higher-order factors, For example, Humphreys (1981) wrote, 

The Schmid-Leiman (1957) transformation of oblique factors in several orders into 
a single order of orthogonal factors defined by the original variables shows very clearly 
that the only difference between a first order or so-called primary factor and a higher 
order factor lies in the number of variables which define it. Breadth is the key concept, 
not superordination, yet factor theorists continue to discuss factors in two orders as 
if they belonged to different species of abilities and as if their factors had completely 
independent existences. (pp. 90-91) 

In addition, Wherry (1959) claims that because the hierarchical factor models and the 
higher-order factor models "are mathematical equivalent, the question of whether factors are 
'really' oblique or orthogonal is unanswered" (p. 50). Regardless of the truthfulness of Hum- 
phreys' or Wherry's conclusions, the basis for their claims is not well-founded. That is, in gen- 
eral the class of hierarchical factor models is not equivalent to the class of higher-order factor 

Yiu-Fai Yung is now at the SAS Institute, Inc. The authors would like to thank the reviewers for their useful 
comments for the revision of the manuscript. Requests for reprints should be sent to Yiu-Fai Yung, R52, Multivariate & 
Num. R&D, SAS Campus Drive, SAS Institute, Inc. Cary NC 27513. 

0033-3123/1999-2/1996-0621 -A $00.75/0 
© 1999 The Psychometric Society 

113 



114 PSYCHOMETRIKA 

TABLE 1, 
An example of hierarchical factor solutions derived from the Schmid-Leiman transformation (Source: Schmid 
and Leiman, 1957) 

Layer 3 Layer 2 Layer 1 

I II III IV V VI VII VIII IX X 

1 .5120 
2 .5760 
3 .3920 
4 .3360 
5 .1920 
6 .0960 
7 .2520 
8 .0720 
9 .5670 

10 .3150 
11 .1260 
12 .1470 

.3840 .4800 

.4320 .5400 

.2940 .4999 

.2520 .4285 
.2560 
.1280 
.3360 
.0960 

.7332 

.3666 
.5600 
.1600 

.5784 .3923 

.3214 .2180 

.1285 .5723 

.1499 .6677 

models. This has been pointed out independently by McDonald (in press), McLeod and Thissen 
(1997), and Mulaik and Quartetti (1997). Using some illustrative examples, Mulaik and Quar- 
tetti show that the Schmid-Leiman transformation actually yields more restricted hierarchical 
factor solutions than would be needed. McLeod and Thissen describe the hidden constraints of 
the Schmid-Leiman hierarchical factor solutions. If one were to fit directly a hierarchical factor 
model to the data using a structural equation modeling software (e.g., EQS by Bentler, 1990; 
LISREL by Joresk6g & S6rbom, 1993), a different, as well as less restricted, hierarchical fac- 
tor solution than that derived from the Schmid-Leiman transformation is obtained. Mulaik and 
Quartetti conclude that the classes of higher-order factor models and hierarchical factor mod- 
els are just near equivalent in some cases. (Mulaik & Quartetti use terminology differently than 
the present authors. Because they tried to make terminology consistent with an earlier article by 
Gustafsson and Balke (1993), hierarchical factor models in their paper refer to the usual higher- 
order factor models. However, we follow the more traditional terminology adopted by Gorsuch, 
1983, McDonald, 1985, Schmid & Leiman, 1957, Tucker 1940, and Wherry, 1959.) 

We will demonstrate formally in this article the nonequivalence of the two classes of factor 
models. More importantly, we will show that the class of higher-order factor models is nested 
within the class of hierarchical factor models. The two classes of models will be equivalent when 
certain free parameters are added to the higher-order factor models. In this regard, a "relaxed" 
version of the higher-order factor model, which is formally equivalent to the hierarchical factor 
model, is derived. The relaxed higher-order factor model includes direct effects of the higher- 
order factors on the manifest variables. As we shall see, the derivation has some important impli- 
cations for testing, as well as the fitting, of higher-order factor models. In addition, because the 
bi-factor (general-plus-specific) model is a special case of the hierarchical factor model, we will 
also discuss the implications of our results for the bi-factor model. 

2. The Form of Hierarchical Factor Models and its Relationships with 
Higher-order Factor Models 

The basic structure of the hierarchical factor model is illustrated in Table 1 (taken from 
Schmid & Leiman, 1957). For a typical hierarchical factor model, there are several layers of 
factors. In each layer, each manifest variable loads on exactly one of the factors in that layer. The 
numbering of the layers is determined by the number of factors in the layer, starting from the 
layer with the largest number of factors. All factors in a hierarchical factor model are said to be 
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in the same order, in the sense that they are orthogonal to each other. When there are just two 
layers of factors, with a single "general" factor in the second layer and several "group" factors 
in the first layer, the hierarchical factor model reduces to the idealized pattern of the bi-factor 
model (Holzinger & Swineford, 1937; see an example in Table 2 of the Appendix). 

Using the numerical results in Table 1, the hidden constraints in the Schmid-Leiman hier- 
archical factor model are clear. For example, when comparing the non-zero loadings between 
columns 1 and 2, it is observed that all the first four pairs of loadings are of a 4:3 ratio. When 
comparing column 2 with column 5, the ratios for the first two pairs of non-zero loadings are 
both 4 to 5. Similar observations can be drawn for other pairs of non-zero loadings on factors 
between layers. These hidden proportionality constraints in the Schmid-Leiman transformation 
may be removed for a general hierarchical factor solution. This is illustrated in the right panel of 
Figure 1, where the Schmid-Leiman hierarchical models form a sub-class of general hierarchi- 
cal factor models. For simplicity, the unique variance for the factors and the manifest variables 
are not shown. In the top row of the two-by-two array of models in Figure 1, an equivalence 
relationship between the class of higher-order factor models and the class of Schmid-Leiman 
hierarchical factor models is established by the Schmid-Leiman transformation and its inverse 
transformation, the existence of which will be established later. 

A higher-order factor model with direct effects from the general factor to the manifest vari- 
ables is shown in the lower left comer of Figure 1. Clearly, the class of higher-order factor models 
is nested within this class of models, as shown in the left column of Figure 1. More importantly, 
as will be shown, this class of models is also equivalent to the class of general hierarchical 
factor models. Thus, it bridges the relationship between the models in the main diagonal of Fig- 
ure 1. To show the equivalence of the models in the bottom row, a generalized Schmid-Leiman 
transformation and its inverse will be established. Once this general relationship is shown, the 
model equivalence for the upper row models will follow as a special case. Before deriving such 
a transformation, it is useful to review the original Schmid-Leiman transformation from a new 
perspective. 

3. A Different Look at the Schmid-Leiman Transformation 

As described by Schmid and Leiman (1957), the higher-order factor solution is obtained 
by repeated factoring of the correlation matrices for the (higher-order) factors. Starting with a 
correlation matrix Ro(no  x no) of no manifest variables, the fundamental equation for the factor 
analysis model is 

Ro = P1RIP'I + U 2, (1) 

where P1 is an no x n t  matrix for factor loadings (no > n i l  Rl is an nl × nl correlation matrix 
for (the first order) factors, and Uo 2 = Ino-diag(Pt R1P'I ) is an no × no diagonal matrix of unique 
variance for variables; Ino is an no × no identity matrix, and diag(A) is a diagonal matrix formed 
by retaining only the diagonal elements of A and with all other elements in diag(A) identically 
zero. If R1 is not an identity matrix, it can further be factored to yield second-order factors. In 
general, the factor model for the i-th level factors is 

Ri = Pi+IRi+IPI+I + U 2, (2) 

where Pi+I is an ni × ni+l  matrix for factor loadings (ni > ni+l), Ri+I is an ni+l  × ni+l  

correlation matrix for the i + 1-th level factors, and U 2 = Ini-diag(Pi+l Ri+I PI+I ) is an ni  × ni  

matrix of unique variance for the i-th level factors. We further assume that all unique variances 
in U~ are bigger than zero so that Ui, obtained by taking the positive square root of the diago- 
nal elements of U 2, is invertible. This assumption is mild when discussing model relationships, 
although practical model fitting may not always result in an invertible Ui, or positive unique 
variance estimates. 
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(a) A higher-order factor model 

P2 PI 

1 lset n  l 1 
direct effects direct effects proportionality 
from g from g to z e r o  constraints 

(c) A higher-order factor model with 
direct effects (Ez) of g on X 

(b) A Schmid-Leiman hierarchical factor model 

With seven ity 

I ~ ° n s ~ n ~  I 

I Imposing the 
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I 

(d) A general hierarchical factor model 

bl b2 

FIGURE l. 
Higher-order factor models and hierarchical factor models. 

Repeated factoring is done until at the k - 1 level the factor model becomes 

t 2 Rk-1 = PkPk + Uk-1, (3) 

indicating that the k-th level factors are orthogonal or there is just one factor at the k-th level. 
Schmid and Leiman (1957) assume that all factor loading matrices P1, P2 . . . . .  Pk have simple 
cluster structures. That is, only a single non-zero factor loading is permissible in each row of  Pi. 
This structure of  factor loading matrices implies that 

U2 :" Ini - diag(Pi+lP~+l),  (4) 
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for all i = 0 to k - 1. Equation (4) also implies that none of the elements in U/2 needs to 
be treated as free parameters in the factor model, as they are expressed as functions of  factor 
loading matrices. 

The repeated factoring procedure described above is obscure with respect to the transfor- 
mation of the factors during the Schmid-Leiman transformation. A more transparent description 
is through the specification of  the model equation among factors and variables. First, the factor 
model for the manifest variables can be written as 

z = Pl f l  + Uouo, ( la)  

where z is an no x 1 random vector for standardized manifest variables, fl is an nl x 1 random 
vector for the first-order factors, Uo is an no x 1 random vector for unique factors, and Uo is 
an no x no diagonal matrix for unique factor loadings. As usual, both fl and Uo are assumed to 
have zero mean vectors and are uncorrelated with each other. The correlation matrix, as well as 
the covariance matrix, for fl is RI .  The correlation matrix, or the covariance matrix, for Uo is 
an identity matrix. Equation ( la)  implies a correlation structure Ro of  z specified exactly in (I).  
With similar assumptions and notation as in above, factoring of  the i-th level factors is described 
by the equation 

fi = Pi+lf i+l  + Uiui, (2a) 

which leads to the correlation structure in (2). Finally, factoring stops at the k - 1 level when fk 
in the equation 

fk-1 = Pkfk + Uk-lUk-1 (3a) 

is either a single factor or a set of  orthogonal factors. This leads to the correlation structure for 
fk-1 in (3). 

Utilizing the equations described in ( la)  through (3a), the model equation under the Schmid- 
Leiman transformation is 

z = PI(P2f2 + UlUl) + Uouo 

= PI (P2(P3f3 + U2u2) + UlUl) + Uollo 

= PI (P2(" • " (Pk-1 (Pkfk + Uk-lUk-1)  + Uk-2Uk-2)  " '"  -}- U l U l ) )  + Uouo. (5) 

Upon expansion and rearranging the terms in (5), the final form of  the Schmid-Leiman hierar- 
chical factor model is 

z = B o b  + U o u o ,  (6 )  

where 

h {f~, ' u~_ 2, • url} ' = Uk_l, . . . . .  , 

k is a vector of  ~--~i=l ni hierarchical factors, and 

(7) 

Bo = {PIP2P3 " '"  Pk - lPk  Uki 

P1P2P3 " '"  P k - l U k - l !  
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PIP2U2i 

PlU1} (8) 

is an no x Y~=l ni factor loading matrix. In (8), Uk = Ink is added to show the consistent 
pattern of  the sub-matrices for factor loadings in Bo. Thus, the correlation model for the manifest 
variables can be expressed as 

Ro = BoW o + Uo 2. (9) 

Using (1) through (3), Schmid and Leiman (1957) express the hierarchical factor loading 
matrix as 

Bo = P1 (P2(P3 " '"  (Pk-I  ( P k i U k - 1 ) i U l , - 2 ) ' ' '  !U2)iU1), (10) 

which is identical to (8). 
Compared with the original Schmid-Leiman derivation, there are many advantages for the 

present perspective. They are summarized as follows. 
Result 1. The set of transformed factors are orthogonal. It is clear from (7) that after the 

Schmid-Leiman transformation the original set of  (higher-order) factors f = {fk, fk-l , '  fk-2' , 
t I . . . . . .  , f l  1 }' are now replaced by the set of  hierarchical factors h = {ft,,' i lk_l,t  Uk_2/ , . . . . . .  , U l  } . 

Whereas Schmid and Leiman (1957) use the factor equation (9) to argue for the orthogonality 
of  the hierarchical factors, the same fact is made apparent in (7). Except for fk, which remains 
unchanged after the Schmid-Leiman transformation, all the original factors are replaced by their 
corresponding unique components, which, by construction, are uncorrelated with any other trans- 
formed factors. In fact, we can even replace fk with uk, a new symbol that represents the unique 
part of  f~, to reflect the orthogonality of  the entire set of  hierarchical factors. That is, 

h ' ' ' . . . . . .  , U11} '. = { I l k ,  U k -  1 , U k -  2 ,  (11) 

This clears up the question raised by Gorsuch (1983), who suspected the orthogonality of  the 
transformed factors on the ground that the factor scores produced are dependent (Gorsuch, 1983, 
p. 252). It seems in the description by Gorsuch that the transformed factor matrix Bo in (8) has 

I ! been (mis-) associated with the set of  original higher-order factors f = {f~, fk-1,  f~-2, " . . . . .  , 
f'l }', which is a set of  correlated factors. But the new vector h in (11) obviously contains a set of  
orthogonal factors. 

Result 2. The hierarchical factor model based on the Schmid-Leiman transformation is 
highly structured. Let us denote the general form of hierarchical factor matrix as 

B =  {bkibk-libk-2i  . . . . . .  ib2ibl}, (12) 

w h e r e  b i ' s  (of dimension no x ni each) are layers of  factor loading matrices. Comparing (12) 
with (8), we have 

bi = Pj  Ui (1 < i  < k )  (13) 

as a form for the i-th layer using the Schmid-Leiman transformation. Thus, it is clear that the 
Schmid-Leiman hierarchical factor model is highly structured. 

Result 3. Adjacent layers of the Schmid-Leiman hierarchical factor matrix are constrained. 
In the introduction, we point out the proportionality constraints in the hierarchical factor model 
obtained from the Schmid-Leiman transformation. A little manipulation of  (13) explicates a more 
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general fact: 

\ j = l  

: b i - i  (U~__IlPiUi) (1 < i < k). (14) 

That is, each i-th layer (i > 1) factor submatrix bi is a linear combination of the i - 1-th layer 
factor submatrix b i - l .  This explains the proportionality constraints for adjacent layers of  the 
Schmid-Leiman hierarchical factor model. 

Result 4. The Schmid-Leiman hierarchical factor model could be characterized as a general 
hierarchical factor model with (no - -  n i - 1 )  constraints in the i-th layer. Because of  the linear 
dependence of  factor layers shown in (14), the number of  parameters in the Schmid-Leiman 
hierarchical factor model should be counted with caution. In (8), we observe that all parameters 
in the Schmid-Leiman hierarchical factor model are contained in the k-th factor layer bk and none 
of  the remaining layers contains additional parameters. Therefore, the total number of  parameters 
in the Schmid-Leiman hierarchical factor model is 

k-1 

parameters ~ ni, number of  

i=0 

(15) 

which is the total number of  nonzero factor loadings in all Pi. Again, it is noted that all the 
parameters in Ui are redundant with the parameters in Pi and should not be counted. This number 
is the same as the number of  parameters for the original higher-order factor model. 

Were the solution of  a hierarchical factor model obtained directly, there would be no param- 
eters in each factor layer. Therefore, the total number of  parameters for a general hierarchical 
factor model is 

k 

number of  parameters = ~ no = k n o .  

i=1 
(16) 

By comparing (15) and (16), the number of  constraints placed on the Schmid-Leiman hier- 
archical factor model is 

k k - I  k 

number of  constraints = Z n o -  Z ni = y ~ ( n o -  ni-1). 
i=1 i=O i=1 

(17) 

In (17), we express the total number of  constraints as a sum of the number of  constraints placed 
on each layer of  the Schmid-Leiman hierarchical factors. The characterization of  the constraints 
is not unique. The particular characterization in (17) is chosen because it motivates the derivation 
of  higher-order factor models with direct effects, which will be elaborated later. 

A short example. Using (17), there are 15 constraints in the hierarchical factor model shown 
in Table 1, 9 = 12 - 3 for the third layer and 6 = 12 - 6 for the second layer. To get this number, 
one can also count the proportionality constraints directly. When comparing the third and the 
second layers, we observe that the first four pairs of nonzero loadings from the two layers are 
of  the same proportion, so this yields 3 constraints. Similarly, there are 6 more proportionality 
constraints for the next eight pairs, counting four pairs at a time. These nine constraints plus the 
six proportionality constraints between the second and the first layers sum to 15, as expected. 
Therefore, even though there are 36 nonzero entries in Table 1, the number of  free parameters is 
just 21 (=  36 - 15). 
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4. Deriving Higher-Order Factor Models from Hierarchical Factor Models: 
A Generalized Inverse Schmid-Leiman Transformation 

To show the equivalence for either the upper or the lower row models illustrated in Figure 
1, one needs to define a one-to-one transformation between the two classes of models. Schmid 
and Leiman (1957) provide the left-to-right transformation for the models in the upper row. We 
generalize the Schmid-Leiman transformation by adding (constrained) direct higher-order effects 
matrices Ei (1 < i < k) to the higher-order factor model. This provides the left-to-right trans- 
formation for the models in the lower row. Such a generalized Schmid-Leiman transformation 
is detailed in the Appendix. To complete the proof of equivalence, we now need to define the 
right-to-left transformation: a generalized inverse Schmid-Leiman transformation. 

To motivate the derivation of the inverse transformation, we start with the restrictive case 
for the models in the upper row. Suppose that a hierarchical factor matrix Bo, which satisfies 
the proportionality constraints, is given; the inverse Schmid-Leiman transformation is the same 
problem as finding unique PI, P2, P3, "'" Pk-1, Pk given Bo. A point critical to the understand- 
ing of the inverse transformation involves the interpretation of the layers of loadings in Bo. For 

i example, in (13), bi = (l--[j=1 Pj)Ui is the factor loading matrix for the hierarchical factors 
ui, which are the unique components, respectively, of the corresponding higher-order factors fi. 
Therefore, bi can be interpreted as the unique effects of fi on the manifest variables, with the ef- 
fects of all other factors removed. The same interpretation is also offered in Humphreys, Tucker, 
and Dachler (1970), and Mulaik and Quartetti (1997). A little manipulation of (13) reveals the 
idea behind the inverse Schmid-Leiman transformation in the appendix. That is, 

i 
biUI71 = U eJ' 

j=l 
(18) 

where bi Ui-1 summarizes the total effects of f /on  the manifest variables, without controlling for 
the effects of factors at higher levels. The product form of the factor loading matrices on the right 
side of the equation represents the usual calculation of indirect effects of factors fi, except for 
i = 1. Taken together, (18) states that the total effects off/  (i > 1) on the manifest variables are 
all indirect. A further manipulation of (18) gives 

biUSt I : ( I -]  P j )  Ui-IU~_I_IPi, 
\ j = l  

= bi_ 1U~__ll Pi. (19) 

If Ui is known in (19), then the only unknowns in the equation are the elements in Pi and Ui-1. 
Furthermore, because Ui-1 is a function of Pi (see (4)), the ni-1 parameters in Pi are the only 
unknowns. This suggests an algorithm (or a transformation) for solving for Pi given Bo. The 
inverse Schmid-Leiman transformation starts with the highest factor level (layer) k. Because Uk 
is an identity matrix, nk-1 unknowns in Pk and Uk-~ can be solved using the no linear equations 
in (19). After Uk-l is solved, (19) is reapplied to the next highest factor level (layer) for solving 
for Pk - l ,  and hence for Pk-2 . . . .  successively. 

At the first glance, it seems that there is an over-identification problem of Pi in each step of 
the algorithm. However, as Result 4 suggests, because there are exactly (no - ni- l)  constraints 
in the i-th layer of the Schmid-Leiman hierarchical factor matriX, there are exactly ni-1 = n o  - -  

(no -- ni-l)  nonredundant equations for solving for ni-1 unknowns in Pi in each step of the 
inverse transformation. In other words, the solution for P1, P2, P3, " "" Pk-  1, Pk given the Schmid- 
Leiman hierarchical factor matrix Bo is unique. Therefore, the equivalence of the models in the 
upper row of Figure 1 is established. 
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We now generalize the equivalence relationship between the models in the lower row. Here 
we show the right-to-left transformation (i.e., a generalized inverse Schmid-Leiman transforma- 
tion) for illustrating the basic idea. Detailed derivations are available in the Appendix. Basing 
on the fact that biUtY 1 summarizes the total effects of f/ on the manifest variables, (19) is now 
extended to include the direct effects, in addition to the indirect effects, of  fi. That is, for any un- 
constrained hierarchical factor model with factors h, we relate it to a higher-order factor model 
via the equation 

biU~ 1 : bi-IU~_I1Pi + Ei, (20) 

where Ei is an no × ni matrix representing the direct effects of fi on the manifest variables (i > 1). 
Certainly, not all elements in Ei could be free parameters. For an unconstrained hierarchical fac- 
tor model, there are no linear equations in (20) and ni-1 non-redundant parameters in U i - l  and 
Pi. As a result, assuming consistency of the equations, only (no - n i - 1 )  nonredundant param- 
eters in Ei can be solved uniquely. This would also be the maximum number of non-redundant 
parameters for the identifiability of  Ei. For example, when obtaining an equivalent higher-order 
factor model (lower left corner) from the general hierarchical factor model (lower right corner) 
in Figure 1, exactly (no - n 1) = 10 - 3 = 7 nonredundant direct effects from f2 (i.e., the g factor 
in Figure 1) must be defined. There are many ways to do this. For example, for the bottom left 
model we may set the direct paths from g to X1, X4 and X8, respectively, to zero. This results in 
just seven parameters (non-zero direct paths from g) in E2. For identification purposes, we note 
that exactly one path from the higher-order factor g to the variables in each factor cluster at the 
next order should be set to zero. It remains arbitrary to select the zero path within each factor 
cluster. One may perhaps suggest the use of substantive theory in guiding our choice. Unfortu- 
nately, while substantive theories for zero direct effects may exist, they do not seem to provide a 
general methodology. Here we consider two other possibilities. 

The first method considered is the so-called "minimum correlations method". This method 
selects a set of  zero paths so that the correlations among the higher-order factors at the next 
level are minimized (see a numerical example in the Appendix). To achieve this, the method 
essentially minimizes the nonzero values of  higher-order factor loadings Pi and at the same 
time maximizes the nonzero direct effects in matrix Ei. The advantage of  this method is the 
clarity of the derived higher-order factors. Unfortunately, the large direct effects produced as a 
byproduct are incompatible with the structural simplicity of  the higher-order factor model. We 
thus consider an alternative in which the direct effects are expressed as "residual" effects in the 
generalized inverse Schmid-Leiman transformation. In other words, we set the sum of the direct 
effects in each factor cluster to zero, instead of  setting one of them to zero. This method is called 
the "residual direct effects method", an example of  which could be found in the Appendix. 

Whichever method one selects to define the direct effects, (20) itself is sufficient to define a 
generalized inverse Schmid-Leiman transformation. Once (20) is established, as illustrated in the 
Appendix, it is algorithmically straightforward to transform the models uniquely. Some useful 
results will then follow. 

Result 5. Any hierarchical factor model is equivalent to a higher-order factor model with or 
without direct effects. When a hierarchical factor model satisfies the Schmid-Leiman proportion- 
ality constraints, a traditional higher-order factor model without direct effects can be derived. In 
general, however, a hierarchical factor model is not equivalent to a higher-order factor model, 
unless a set of (constrained) direct effects are added to the latter model. 

Result 6. The class of  higher-order factor models (without direct effects from higher-order 
factors) is nested within the class of  general hierarchical factor models. Our conclusion follows 
immediately from the derivation of  the higher-order factor model with direct effects, which is 
a simple extension of  the traditional higher-order factor model and is equivalent to the general 
hierarchical factor model. 
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Result 7. For empirical data, a chi-square difference test can be applied for testing the 
higher-order factor model (without direct effects) against the corresponding general hierarchical 
factor model. The degrees of freedom for the chi-square difference test are equal to the number 
of constraints imposed by the Schmid-Leiman transformation, that is, d f  k = ~-~i=l(no -- ni-1). 
This follows immediately from Result 6 and the difference in the number of parameters between 
the two models. 

5. Discussion and Implications 

Contrary to Wherry's claim (1959), we show that the hierarchical factor model is not mathe- 
matically equivalent to the higher-order factor model, unless appropriate direct effects (loadings) 
are added. In general, the latter is a subclass of the former. An immediate implication of this is 
the relative fit of these two types of models for empirical data. Because a chi-square difference 
test can now be applied to distinguish these two models, the power of the test is greatly improved 
over the usual chi-square test for the absolute fit of the higher-order factor model, assuming that 
the hierarchical model is true. For example, Mulaik and Quartetti (1997) found that these two 
types of models are nearly equivalent and concluded that the power of discriminating these two 
models is very small for empirical data; their conclusion does not correspond well with results 
reported here. Suppose we fit the second-order factor model (the upper left model) in Figure 1 
to some data. If  one tests the second-order factor model using the usual X 2 test at a = .05, the 
degrees of freedom for the test are 32. Assuming that the two-layer hierarchical factor model (the 
lower right model) is the true model and the noncentrality parameter is 6, the approximate power 
of the test is just.  18. Here, the procedure of finding the approximate power of the chi-square test 
is based on the theory described in chapter 10 of Ferguson (1996). More conveniently, as was 
done in this paper, we may use the following SAS/IML (1990) statements: 

alpha = .05; df = 32; nc = 6; 

crit_val = cinv(alpha, df, 0); 

power = 1 - probchi(crit_val, df, nc); 

to find the approximate power. 
However, if a chi-square difference test is applied for testing the second-order factor model 

against the two-layer hierarchical factor model, which is assumed to be the true model in this 
case, the degrees of freedom for the test would be 7 (= no - nl = 10 - 3). For the same non- 
centrality parameter, the power of the test is now .37 at ot = .05, an approximate increment of 
20% power over the test based on the absolute fit of the second-order factor model. 

Despite the fact that our results have been derived for correlation structures, they apply 
to the analysis of covariance structures as well. When covariance structures are analyzed, the 
formulas regarding the factor loadings and direct effects derived here should refer to the stan- 
dardized solutions, where factors and variables are all standardized to have variance 1. A formal 
demonstration about this is possible; but because it will not add to our basic understanding it 
may as well be omitted here. With slight modifications, the current results also extend to the 
"incomplete" hierarchical factor models, or the "incomplete" higher-order factor models, as de- 
scribed in Mulaik and Quartetti (1997). For example, suppose in Figure 1 that all the loadings 
from FI* to X1 through X3 vanish in the lower right model. In this case, we have an incomplete 
hierarchical factor model. Similarly, for the higher-order factor model in the upper left comer, 
we may have FI vanished and the effects of g on X1 through X3 all become direct. This results 
in an incomplete higher-order factor model. These two incomplete models still have a nested 
relationship, as explained by a simple argument here. When taking X1 through X3 away from 
the two incomplete models temporarily, two "complete" models for X4 through X 10 remain. All 
the derived results are now applied to these complete models. For example, the higher-order fac- 
tor model is nested within the hierarchical factor model for X4 through X10 and the degrees of 
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freedom for the chi-square difference test are 5 (no - nl = 7 - 2). When adding back the paths 
for X1 through X3, one merely adds the same new set of parameters to both models. Thus the 
established nested relationship between the models does not change. 

This result is now applied to the example of power assessment by Mulaik and Quartetti 
(1997), who quoted the models studied by Gustafsson and Balke (1993). Two incomplete models, 
one with higher-order factors and the other with hierarchical factors, are compared. There are 16 
variables and two orders (layers) of factors in the higher-order (hierarchical) factor model. In the 
higher-order (hierarchical) factor model, the first level (layer) consists of three primary factors for 
the last twelve variables and the second level (layer) consists of a single general factor. The first 
four variables directly load on the general factor in the two models. When testing the incomplete 
higher-order factor model using the chi-square test of absolute fit, the degrees of freedom are 
df  = 101. Assuming the incomplete hierarchical model is true and the noncentrality parameter 
is 3.59, the power of the test is .08 at ot = .05 (apparently using a normal approximation, Mulaik 
& Quartetti obtained a different power value). But when a chi-square difference test for relative fit 
is applied, the degrees of freedom are 9 (= no - h i  = 12 -3 ,  which is based on the comparison of 
the "complete" sub-models for the last twelve variables). With the same non-centrality parameter, 
the power of the test is now .20 at a = .05. 

We now discuss the implications of our results for the bi-factor model, which is a special 
case of the hierarchical factor model. In a hi-factor factor, the general factor (the only second 
layer factor; see Figure 1) has direct effects on all manifest variables but not on the primary fac- 
tors (the first layer factors). This is the "breadth" conception suggested by Humphreys (1981). In 
contrast, in a second-order factor model the general factor only has indirect effects on the mani- 
fest variables, which is the "superordination" conception of the general factor. Our result seems 
to suggest that the qualitative distinction between the breadth and the superordination concepts of 
the general factor can also be considered quantitatively. That is, a chi-square difference test can 
be applied to test the tenability of the superordination conception (the second-order factor model) 
against the breadth conception (the two-layer hierarchical factor model). Rejecting the second- 
order factor model implies that the superordination conception is too restrictive. The same test 
can also be interpreted in a slightly different way. That is, it is also a test of the necessity of 
adding direct effects from the general factor. This interpretation is especially clear if we adopt 
the residual direct effects method for defining the equivalence of the models in the bottom row 
of Figure 1. Therefore, it seems that we can now offer a reasonable answer, at least in empirical 
sense, to the question raised by Tucker (1940), who wrote, 

"Is the general factor one of the factors in domain a [i.e., the same order as the group 
factors], or is it one of the factors in domain fi [i.e., at the second order which explains the 
correlations among the first-order factors]?" 

As a byproduct of showing the equivalence of the models in the bottom row of Figure 1, 
our results provide a computationally efficient method of fitting higher-order factor models with 
direct effects. For example, if direct effects are expressed as residual effects in the higher-order 
factor model (i.e., sum to zero direct effects for clusters of variables from the higher-order fac- 
tors), one may first fit the equivalent general hierarchical factor model, which, in our experience, 
is computationally efficient because of the orthogonality of the factors. Then the inverse trans- 
formation method described in the Appendix is applied to obtain the corresponding higher-order 
factor solution with residual direct effects. To the best of our knowledge, there is currently no 
statistical software that can fit this kind of models in a handy way. But the generalized inverse 
Schmid-Leiman transformation provides a good solution for this. 

Even for fitting higher-order factor models with a priori zero direct effects, applying the 
generalized inverse Schmid-Leiman transformation to the equivalent hierarchical factor models 
may circumvent some computational problems involved in the direct fitting. For example, sup- 
pose we want to fit a higher-order factor model with direct effects to the data that produces the 
hierarchical factor solution in Table 2. The higher-order factor model is illustrated in the lower 
left corner of Figure 1 (McLeod & Thissen, 1997). For identification purposes, one may set the 
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paths from the g-factor to Xl,  X4, and X8 to zero; or one may set the paths from the g-factor 
to X2, X5, and X10 to zero; and so on. There are totally 36 = 3 x 4 × 3 possible ways to fix 
these paths for identification. All these 36 equivalent models with a priori zero direct effects can 
be fitted by existing structural equation modeling software and should yield the same model fit 
for a given data set. Without setting a particular set of starting values, we fit all these 36 models 
using LISREL program. Among these 36 models, two of them did not yield convergent solu- 
tions. We suspect the reason for the difficulty in the fitting is the highly correlated factors in the 
higher-order factor models. For those converged solutions, the average number of iterations for 
convergence is 409, with a standard deviation of 132. However, when fitting the corresponding 
hierarchical factor model to the same data, the solution (i.e., the solution in Table 2) was obtained 
in just 33 iterations. The generalized inverse Schmid-Leiman transformation was then applied to 
the hierarchical factor solution. All 36 higher-order factor models with different patterns of direct 
effects were then obtained almost effortlessly. Whether this kind of computational advantage for 
fitting higher-order factor models has further implications is subject to further investigations. 

Appendix 

A generalized Schmid-Leiman transformation and its inverse. To include the direct effects 
from the higher-order factors in (la), we write: 

k 
z = Plfl  + Z E i f i  + Uiui, 

i=2 
(A1) 

where Ei (1 < i < k) is an no × ni matrix of factor loadings or direct effects offi  on z. In this gen- 
eral form, the factor model may not be identified unless further constraints on the direct effects 
are imposed; the constraints have been discussed in the main text and will be illustrated later. At 
this stage we assume these constraints are satisfied. Substituting (2a) into (A1) successively we 
get 

z = Bh  + Uouo, (A2) 

where 

f t }f 
h = {f~, u k_ 1' uk-2'  " . . . . .  u'j 

is a vector of ELI ni hierarchical factors and 

(A3) 

B = {(P1 " "Pk + E2P3 " "Pk + E3P4 ' '  "Pk + " "  + Ek-lPk + Ek)Uki 

(PI " " P k - 1  + E 2 P 3 " " P k - I  + " "  + Ek-2Pk-I  + Ek-1)Uk-l i  

(P1PzP3 + E2P3 + E3)U3i 

(PiPe + E2)U2i 

(P1)UI} (A4) 

is the corresponding factor loading matrix for the hierarchical factors. Clearly, the set of  hierar- 
chical factors h obtained here is the same as that in the original Schmid-Leiman transformation 
(refer to (11)). But we now have a generalized form in (A4) for (8). A more compact representa- 
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tion for each layer of factor loadings is 

((12-I P j )  -'1- i Ej ( ILI Pq ) )  bi :- ~ Ui (1 < i < k), (A5) 
j =1 j=2 q=j+l 

where the summation and the second product in (A5) will not be carried out, respectively, if 
i < j and if i < q. Equation (A5) thus provides a transformation for obtaining hierarchical 
factor layers from a given higher-order factor model with (constrained) direct effects. It is a 
generalized version of the Schmid-Leiman transformation characterized by (13), which could be 
derived by setting all Ej in (A5) to null matrices. 

To show the existence of the corresponding generalized inverse transformation, (A5) is re- 
expressed as 

( )t biU~l = Pj + ~ Ej I'-[ Pq + Ei "= \q=j+l 
((~ )i--1 (~ )) 

---- Pj -t- ~ Ej Pq Ui-IU~__IlPi -b Ei 
\ j  =1 j=2 \q=j+l 

= bi_IUTllPi + Ei, (i > 1) (A6) 

which is Equation 20, as well as a generalization of (19). Given any matrix B that exhibits a hi- 
erarchical factor pattern, the inverse transformation amounts to finding solutions for P1, P2 . . . . .  
and Pk, and E2, E3 . . . . .  and Ek. When the hierarchical factor loading matrix B satisfies the 
Schmid-Leiman proportionality constraints, all Ei are null matrices. In general, an inverse trans- 
formation algorithm starts with i = k (the highest layer), where Uk is an identity matrix. With 
appropriate parameterization in Ei (such as the minimum correlation method, or the residual di- 
rect effect method discussed in the text) and bi given, (A6) can be solved uniquely. Therefore 
we get solutions for Ek, Pg, and hence Uk-l. The latter is replaced in the left side of (A6) for 
i = k - 1 so that all Pi and Ei will be solved successively. When i = 1, the finally step reduces 
to: 

blU11 -- P1. 

Hence, P1 is solved directly since U1 has been obtained in the previous step. 

(A7) 

TABLE 2. 
An example of general hierarchical factor solutions (Source: McLeod and Thissen, 1997) 

Layer 2 

g 

Layer 1 

FI* F2* F3* 

1 .610 
2 .628 
3 .658 
4 .527 
5 .486 
6 .474 
7 .574 
8 .656 
9 .583 

10 .649 

.434 

.569 

.377 
.017 
.116 
.286 
.373 

.205 

.367 

.490 
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Illustrating the inverse transformation. With all Ei set to zero, we successfully recover the 
original higher-order factor solution reported in Schmid and Leiman (1957) by applying the 
inverse transformation to the Schmid-Leiman hierarchical factor solution in Table 1. To illustrate 
the case where no proportionality constraints are imposed on the hierarchical factor model, an 
example reported in McLeod and Thissen (1997) is used. 

In Table 2, a two-layer hierarchical factor solution with a general factor is reported. The 
corresponding path diagram representation is shown in the lower right comer  of  Figure 1. We 
start with i = 2 for solving for P2, and E2. We attempt to find an equivalent second-order factor 
model with constrained direct effects. Because U2 is an identity matrix, (A6) becomes 

(.610' 
.628 
.658 
.527 
.486 
.474 
.574 
.656 
.583 

\.649, 

t.434 

.569 

.377 
.017 
.116 
.286 
.373 

.205 

.367 

.490 

1 

)~2 
~-3 

/e  1 
e2 
e3 
e4 
e5 + 
e6 
e7 
e8 
e9 

~elo J 

(A8) 

where 21, 22, and L3 are factor loadings of  the first order factors on the general factor, and el 
to el0 are direct effects from the general factor. In (A8) there are 10 equations for 13 unknowns. 
For identification purposes, the direct effects from the general factor to X3, X7, and X10, re- 
spectively, are set to zero (i.e., e3 = 0, e7 = 0, and el0 = 0). The factor loadings can then be 
solved uniquely using the equations at the third, the seventh, and the tenth rows, respectively. For 
example, we have 

"6582 
)~l = sign(.377) (.3772 -k- .6582) = .868. 

Replacing the solution for ~,1 into (A8), the direct effects el and e2 are solved easily. For example, 

.434)~1 
el = .610 _ _  -- - . 148 .  

Continuing the same procedure, we finally have 

and 

P2 = [868, .839, .798]' 

E2 = [ - .148 ,  - . 365 ,  0, .501, .308, .034, 0, .385, .097, 0] ~, 

as the solutions for the higher-order factor loadings and the direct effects from the general factor, 
respectively. Now, for i = 1, we use (A7) to obtain the following matrix equation 



YIU-FAI YUNG, DAVID THISSEN, AND LORI D. MCLEOD 127 

t.434 
.569 
.377 

.017 

.116 

.286 

.373 
.205 
.367 
.490 

~/1 - )~2 

= P1, (A9) 

where L1, )~2, and )~3 have been solved previously. Therefore, 

.873 1.145 .758 ) I  
P1 = .031 .213 .523 .685 

.340 .609 .813 

is a solution for the first-order factor loading matrix 
The minimum correlations method. When solving for P2 above, we could have set some 

other direct effects to zero for obtaining unique solutions for (A8). A specific set of such direct 
effects can be chosen so that the correlations among the first-order factors will have minimum 
correlations. This is equivalent to finding the minimum possible values for the loadings in (A6). 
For example, setting the direct effects from the general factor to X2, X7, and X10, respectively, 
to zero, accomplishes this goal. As a result, 

P2 = [.741,839,798]', 

E2 = [ .131,0, .242, .50t , .308, .034,0, .385, .097,0]  ~, and 

.646 .847 .562 
PI = .031 .213 .523 .685 

.340 .609 
.813) I" 

The residual direct effects method. To eliminate the arbitrariness of the selection of zero 
direct effects, one may instead constrain the sum of direct effects within each first-order factor 
cluster at zero. For example, in (A8), we could set: 

el + e 2 + e 3  = 0, 

e4 -q- e5 -k- e6 q- e7 = 0, 

e8 +e9  +e l0  = 0, 

and 

(A10) 

instead of setting e3 = 0, e7 = 0, and elo = 0. Then the following solutions are obtained: 

P2 = [.809,.934,.872] r, 

E2 = [ . 014 , - .154 , .140 , .483 , .184 , - .270 , - .400 , .292 , - .069 , - .222] ' ,  and 

.738 .967 .641 ) '  
Pj = .047 .323 .797 1.040 

.418 .749 1.000 
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