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Defining equivalent models as those that reproduce the same set of covariance matrices, 
necessary and sufficient conditions are stated for the local equivalence of two expanded iden- 
tified models Mi and M 2 when fitting the more restricted model M o. Assuming several regu- 
larity conditions, the rank deficiency of the Jacobian matrix, composed of derivatives of the 
covariance elements with respect to the union of the free parameters of M I and M 2 (which 
characterizes model M12), is a necessary and sufficient condition for the local equivalence of MI 
and M2. This condition is satisfied, in practice, when the analysis dealing with the fitting of Mo, 
predicts that the decreases in the chi-square goodness-of-fit statistic for the fitting of M1 or M2, 
or Ml2 are all equal for any set of sample data, except on differences due to rounding errors. 
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Introduction 

Covariance structure analysis can be used to analyze models for linear relation- 
ships. At present, there are several programs available, such as LISREL 7 (Jfreskog & 
Sfrbom, 1988), EQS (Bentler, 1989), and COSAN (McDonald, 1978), that can be used 
to estimate the strength of interrelationships between both observed and latent varia- 
bles in a model, and to test whether a model fits the sample data. 

Frequently, a researcher has to decide between several competing models. In this 
paper we will concentrate on a special class of competing models: the equivalent 
models. Jfreskog and Sfrbom (1988, p. 224) define models to be equivalent when they 
represent different (conceptual) parameterizations of the same covariance matrix. 
Stelzi (1986) developed rules on how to generate equivalent models from the one under 
investigation. In this paper the phenomenon of equivalent models is approached in the 
light of a model modification process. Often an investigator starts with some baseline 
model (Luijben, Boomsma, & Molenaar, 1988), and if it does not fit the data well, tries 
to modify it. The discussion here considers models that form a nested sequence. There- 
fore, each model modification considered to improve the fit of a model implies a pa- 
rameter relaxation. In general, both theoretical and statistical considerations are in- 
volved in the decision of which parameter has to be relaxed. It may happen, however, 
that statistical considerations are of no use in this choice, as in the case when two 
different parameter relaxations result in two equivalent models. 

Sfrbom (1989) developed the modification index (MI), which is an estimate of the 
decrease in the chi-square goodness-of-fit statistic when a single constraint is relaxed 
(both the Lagrange multiplier statistic, Bentler, 1986; Lee & Bentler, 1980; Silvey, 
1959, and Score statistic, Satorra, 1989, p. 133, are equivalent). Assume that the MI's 
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for two parameters 0 i and Oj are equal. Such an equality suggests that relaxation of 
either Oi or Oj results in the same improvement in fit. A researcher fitting the baseline 
model would like to know whether the equality of the MI's is a necessary and/or 
sufficient condition for the equivalence of the expanded models. MacCallum (1986) 
implicitly suggested this by stating: "When MI's for all solutions were examined, an 
interesting, but not unusual phenomenon occurred: MI's for two different structural 
pa rame te r s . . ,  were almost identical in each sample. In fact freeing either of these 
parameters would have the same effect on the fit of the model, and any observed 
difference in their MI's would be due only to rounding error" (p. 114). It turns out that 
equality of the MI's is a necessary condition for the equivalence of the expanded 
models but not a sufficient condition. In contrast, necessary and sufficient conditions 
for model equivalence are developed below with particular attention to the practical 
possibilities of checking these conditions. The discussion is limited to the case of one 
parameter added at a time to a model, because this case is the simplest and clearest; 
moreover, a researcher frequently wants to stay as close as possible to the original 
model. Extensions to applications where more parameters are added at a time can be 
derived fairly simply after this case has been worked out. 

The outline of the paper is as follows. The next section defines formally the con- 
cept of model equivalence and displays an example. Section 3 gives a new theorem that 
provides a necessary and sufficient condition for the local equivalence of two models 
when a more constrained model is fitted. Section 4 gives practical guidelines on how to 
conclude that the conditions of the theorem are satisfied. The paper closes with a 
discussion. 

An Example and Definitions 

An example is given below that illustrates several aspects of equivalence. Although 
very simple, it has the advantage that the equivalence of the different models can be 
checked easily, and can serve an illustrative value throughout the whole paper. We do 
note that in this set of equivalent models, an unrealistic aspect is sometimes encoun- 
tered by fixing the variance of a measurement error to zero, but this is done to keep this 
example as simple as possible. Throughout this paper the LISREL terminology and 
notation (Jrreskog & Srrbom, 1988) will be followed. 

Example 
Consider the factor analysis model with one common latent factor ~l for two 

observed variables, xl and x2: 

where the parameters AH and h21 denote the factor loadings, 61 and 62 the error terms 
with variances 08), and 0e~: and covariance 0~,  and 4'11 the variance of ~1. Assume that 
in Model A1, the parameters h n , h21, and 0~, are free, 0~ and 0e~, are fixed at zero, 
and ~bll at one. The covariance matrix of this model is given in Table 1. Note that 
besides this factor-analytic description, A1 can also be regarded as a regression model. 
Of course, the assumption that 0~, is zero is somewhat unrealistic implying that vari- 
able ~:1 is measured without error by x2. The scale of ~1 in Al is directly determined by 
fixing the variance ~bll of ~l at one. A different way of scaling is when one of the hij is 
fixed at a certain value, and 4'11 is a free parameter. Such a model is A2, where All = 
1 and ~b n is free. Model A2 is also displayed in Table I. 
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TABLE 1 

Four Models A I to A 4 
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2 2 
Model All '~21 06 06 06 ~ l x  aa aab  ab 

II 22 21 

A I 

A 2 

A 3 

A 4 

A 0 6 0 0 i 
Ii 21 

11 

I ~zl 06 0 0 ~il 
11 

i II I 0~ 0 0 ~ll 
11 

~ 0~ 0~ 0 I 
ii 22 

~ i + 0 6  ~xxXzx 
11 

~ii+86 XZi~ii 
II 

i~i411+O ~ All411 
ii 

la+0~ I z 

11 

~ 2  

21  

lz l~ 1 
2 i 

11 

;,z+0~; 

22 

Note: The left part of the table gives the six possible 
parameters and those that are free and fixed for each model. The 
free parameters are given by the corresponding Greek letter. The 
right part gives the nonduplicated covariance elements for each 
model. 

Two additional Models A 3 and A 4 will also be considered. In A3, it is assumed that 
the variance of ~:l is fixed at the variance of x2. This is done by setting A21 to one and 
0~2 to zero, and corresponds, in our view, to equalizing the unit of measurement of ~l 
and x 2. Further, 0~, = 0. In A 4, All and A21 are constrained to be equal: )qi = A21 = 
A; A, 0~,, and 0~2 are free parameters; 0~, = 0 and ~l l  = 1. All four models are given 
in Table 1. 

A formal definition of the equivalence of M1 and M E could be: For each parameter 
vector of M1, there is one parameter vector o f M  2, both producing the same covariance 
matrix. Note that both Al and A3 can produce any positive-definite covafiance matrix, 
which would mean that A l and A 3 are equivalent (saturated) models. However, for any 
parameter vector of As, there are two parameter vectors, (All, A21, 08,,) and ( - - A l l  , 

-A21,08,,), of A1 that produce the same covariance matrix. This is a consequence of the 
fact that A 1 is globally nonidentified in the sense of Definition 1 given below. 

Definitions 

Define tr(0) = vecs (E(0)), the vector of m = 2 - l p ( p  + I) non-duplicated cova- 
fiance elements of E. Moreover, let tri(O) = vecs (El(O)), where El(O) the covariance 
matrix of model Mi, and denote the parameter space by II i. 

Definition 1. A model M i is globally identified when for 0 a , 0 b E [~ i ,  or i (Oa)  ---- 
tri( O b) implies 0 a = 0 b. 

Although Model A 1 is globally nonidentified, it is not overparameterized (which 
means that at least one parameter is redundant), and in this sense one often considers 
this model still as identified. Weld (1950, p. 239) states that a model is identified when 
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only a finite number of parameter vectors give the same (covariance) matrix. Hurwicz 
(1950, p. 248) allows even a denumerably infinite number of vectors (the "mode l" /x  = 
sin(0) would be identified by his definition). In general, one states that a model is 
identified when there is a subset ~ i  of f~i that has a positive Lebesgue measure (Apos- 
tol, 1957, p. 228) in f~i, implying that fii has the same dimension as f~i, on which the 
model is uniquely identified. For example, in Al ,  

fta,  ={ ( : t l l ,  :t21, 0 ~ , ,  0~2~, 08~,, 4~11)1~21~0, 0~,, > 0 ,  0 ~  = 0 ,  

08,, = 0, ~bll = 1} 

is a hypersurface of dimension 3 in ~6, and 

~A, ={(All, A21, 08,,, 0822, 082,, q~II)IA21 3>0, 08,, ~>0, 082: =0, 

0~2, = 0, ~bll = 1} 

is the set that has a positive Lebesgue measure in fta~ and on which A1 is uniquely 
defined. Consequently, 

Definition 2. Let IM(cri) be the image of ~r i, consisting of all positive-definite 
symmetric matrices (written as a vector) that can be produced by o'i: IM(cr i )  = { x  

~ m l x  = O'i(O ) for some 0 E fti}. 

Definition 3. The model M i is said to be identified when a subset ~ i  of ~'-~i exists 
that has a positive Lebesgue measure in ft i such that for each x E IM(cri), there is one 
and only one 0 ~ ~ i  with cri(O) = x (see, e.g., Sen, 1979, p. 1021, Assumption A1). 

Note that for an overparameterized model, a subset ~ i  of ft i exists that has zero 
Lebesgue measure in f~i, such that for each x E I M ( c r i ) ,  there is one and only one 
0 ~ ~i  with cri(O) = x 

Now Model A1 is identified following Definition 3. The equivalence of A 1 and A 3 
can thus be established by the fact that there is a one-one correspondence between each 
element of fiA~ and 

~A~ ={(/,11, X21, 0a,,,  0a~2, 0a~,, 4,11)1)t21 = 1, 0a,, > 0 ,  0a~, = 0 ,  

0~2, = 0, 4~ll > 0}, 

producing the same covariance matrices. 
Assume that M* has one more free parameter compared with M i e v e n  though M* 

reproduces the same set of covariance matrices a s  M i. Consequently, M* is a non- 
identified (overparameterized) model that is equivalent with M i. We will not consider 
this kind of trivial equivalence, and more generally, will restrict equivalence of models 
to identified models that are, moreover, the ones usually examined in practice. Now a 
formal definition of equivalence is given. 

Definition 4. Two models M i and Mj are called equivalent (notation M i ~ M j )  

when: 

i. M i and Mj are both identified; 
ii. there is a 1:1 function g j i : ~ i  ~ ~j  with cri(O) = tTj(gj i (O))  for all 0 ~ ~ i .  
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A common name for the I:1 function gji is a reparameterization (gji reparameter- 
izes the parameters of Mi into the parameters of Mj). It can be found by gji(O) = 
orfl o ~ri(O) (the symbol o denotes the composition of two functions). 

In the Example above, Models As and A 3 are equivalent because both identified 
models can reproduce any 2 × 2 positive-definite covariance matrix. Luijben (1989, sec. 
6.2.4) gives an example of equivalent models that are not saturated. To generate the 
reparameterization, the parameters of this factor-analytics model are denoted by 0 A = 
(All, A21, 08,,, 06z~, 082,, (~1t); take ~a ,  and ~A~ as defined above, and derive 913 by 
calculating o-/~ l o O'A. Let 

orA, = (A21 + 08,, ,  A2 , )=  ((T2, Or2). (I) 

Then, 

2 2 2 -1, OrAl(All = orab(Or2) -1/2, A21 = (0"2) -1/2 , 08,, = (Ta -- orab(orb) 0822 = 0, 

082, = 0, ~bll = 1) = (era 2, O'aO, o-2). (2) 

Therefore, define 

or-ltor2A, k a, (Tab, orc) = (orab(or2) -1/2, (0"2) -1/2, (Ta2-- (Tab(Orb)2 2 - I ,  O, O, I ) ,  (3) 

and insert Ora, = (A2~4)ll + 08,,, All,b11, 4)11) into (3), giving 

913(A11, A21, = 1 , 0 s . ,  0s2~ = 0, 0s~, = 0, ~11) 

= (Al l (~bl l )  1/2, (~bll) -1/2, 08, , ,  0, 0, 1). (4) 

Analogously, 

931(A11, A21, 0 3 . ,  0822 = 0 ,  08:, = 0, ~bll = 1) = (AIIA2j, 1, 08,,, 0, 0, A~]2). 

(5) 

This example shows directly that the estimates for the parameters that are present in 
both equivalent models can differ considerably. For example, the value of All is the 
same in AI and A3 only when A2-i z = 1 i n A l ,  and thus, 4)11 = 1 in A3. 

In Example A, Models A1 and A 2 a re  not equivalent because A 2 cannot produce 
positive-definite covariance matrices with a zero off-diagonal element. This set of ma- 
trices, however, has Lebesgue measure zero in the set of 2 × 2 covariance matrices, w ¢ 
and the set ~"~AL = {(All '  A21' 0~,~, 0825, 08:,, ~bi1)10822 = 0, 082 ' = 0, ~11 ---- I ,  
A21 > 0, 06tt > 0 and All = 0} that produces the positive-definite covariance matrices 
with a zero off-diagonal element in A1, has Lebesgue measure zero in fiA,. This results 
in the following definition. 

Definition 5. Two models M i and Mj are called almost equivalent (notation 
MiaMj)  when: 

i. Mi and Mj are both identified; 
ii. there exists subsets ~ c  and ~ f  of ~i and ~i ,  respectively, with Lebesgue 

measure zero (in ~ i  and Oj, respectively), and a 1:1 function gj i : f i i \~  c ~ i~ij\fl-f with 
(Ti(O) = (Tj(gji(O)) for all 0 E ~i\l~ c. (The expression AkB, where A and B are sets, 
denotes the exclusion of set B from set A.) 



658 PSYCHOMETRIKA 

One can see immediately that A 4 cannot produce covariance matrices with a 
negative off-diagonal element, or those with a positive off-diagonal element in which 
one of the diagonal elements is smaller than the off-diagonal one, because this would 
imply a negative variance of the corresponding measurement error (i.e., a Heywood 
case). Model A 4 shows that equivalence of models can depend on the values that are 
admissible, and if negative variances are admissible, A 4 can produce all covariance 
matrices with a nonnegative off-diagonal dement.  However, one could then suggest 
that the imaginary numbers are also part of the admissible values. To avoid these cases, 
the admissible values considered in this paper are the proper ones in the sense that they 
are meaningfully interpretable. This implies that A 4 is not equivalent with A l, A2, and 
A 3 since the matrices that cannot be reproduced by A 4 have a positive Lebesgue 
measure. One could state, however, that A 4 and A 1 are locally equivalent implying 
there are open sets U4 and U1 of ~4 and ~1, respectively, on which the models are 
equivalent, and this will be worked out in detail in the next section. 

Local Equivalence 

Consider the baseline Model Ao where )ql and A21 are constrained to be equal to 
A, 0~,, is a free parameter, 4~11 fixed at one, and 0e~ and 0~ are fixed at zero. For any 
given sample covariance matrix, the LISREL-output gives MI(All) = MI(A20 = 
MI(0~), but the two expanded Models AI and A 4 are not equivalent because A 4 could 
only perfectly fit a sample covariance matrix with a positive off-diagonal element while 
A 1 can fit any covariance matrix perfectly. This example shows that the equality of the 
MI does not guarantee the equivalence of the expanded models. Intuitively, this is 
understandable considering that at a certain point of the parameter space (e.g., the 
maximum likelihood estimate), only local information is available in the form of the first 
and second-order derivatives. From calculus, it is known that such local information is 
often sufficient to prove theorems that hold in a neighborhood of the point from which 
the information is obtained. It will be investigated in this section which information is 
available at a certain point, and whether this information is sufficient to obtain the local 
equivalence of models. A comparison is made with the related topic of conditions of 
local identification. 

A Theorem for  the Local  Equivalence o f  Models  

Let 0 = (01 . . . .  , 0q+2) E ~12 C ~q+2 be the q + 2 free parameters of a model 
Ml2. Assume that M o, M 1 and M 2 are nested in Ml2 with q, q + I and q + 1 free 
parameters, respectively, with Mo is nested both within M l and M 2. Assume that M l 
and M E are defined by fixing 0q+2 and 0 q + l ,  respectively, at zero; Mo is then defined 
by fixing both parameters Oq+ 1 and Oq+2 at zero (the value zero is completely arbitrary 
and could be replaced by any other value, but in practice, fixing a parameter at zero is 
very common as it denotes a superfluous parameter). Nesting in a different way by 
constraining parameters to be equal will not be discussed but can be reduced to this 
situation by a transformation. The nesting of these three models in M12 will be de- 
scribed by the following functions: 

n 0 : ~  0 C__ ~ q  ---) ~ q + 2  w i t h  n 0 ( 0 1 ,  . .  o , Oq) : ( 0  1 . . . .  , Oq, 0,  0 ) ;  (6)  

n1:~1C_R q+l ~ • q + 2 w i t h n l ( O 1  . . . .  , O q + l ) = ( O ~  . . . .  , Oq, Oq+l ,  0); 
(7) 
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n 2 : ~  2 ( :  ~ q + l  __> ~ q + 2  wi th  n2(01 . . . .  , Oq, 0 q + 2 )  

= (0 l . . . .  , Oq, 0, 0 q + 2 ) .  (8) 

The notation of the function: o'12:R q+2 ~ ~ m  is 

o.12(01,  . - ,  , 0 q + 2 ) ~ - ( o . ~ 2 ( 0 1 ,  . . ,  , 0 q + 2 ) ,  . . - ,  o .~ (01  . . . . .  0 q + 2 ) ) .  (9) 

The o. functions for the models M 0, M1, and M2 are related to o.12 by the expression 

tTi:~q+min(i,1) _.~ ~m,  with o.i = o'12 ° ni(i = 0, 1, 2). (I0) 

Denote 0 i as an arbitrary parameter point of M i (i = O, 1, 2, 12). 

Definition 6. Mo is locally identified at 0 ° when there is a set U 0, open in ~0 C_ 
R q with 0 o ~ U0, such that 0* E U0, (7o(0*) = O'o(0 °) implies 0* = 0 °. 

Definition 7. M 1 and M 2 are locally equivalent at (0 ! , 02) (denoted as 
MI(0 l) ~1 M2(02) )  if MI and M 2 a r e  locally identified at 01 and 02, respectively, and 
there exist sets U1 and U2, both open in ~ l  _C [~q+l and ~2 C R q+l  , respectively, 
with 01 E UI and 02 E U2, and a l:l-function Y21:U1 "~ U2 with o.l(0) = 
o.2(Y21(0)) for all 0 ~ U1. 

There is a natural correspondence between the condition under which models are 
locally identified and locally equivalent. This follows from the next definitions and 
conditions. 

Define A12 = Oo.12/00the m x (q + 2) Jacobian matrix, and A0 = 0o0/00 the m × 
q Jacobian matrix, and analogously, A l and A 2. Further, A i(0 i) is the evaluation of A i 
at 0 i (i = 0, I, 2, 12). 

Definition 8. The point 0 o is called a regular point of M 0 if there is a set U0, open 
in ~0 C_ R q with 0 ° E U0, where for each 0* ~ U0, the rank of A0(0.) equals the rank 
of A0(0°). 

The following theorem gives necessary and sufficient conditions for the local iden- 
tification of models when the following assumption is satisfied (see Shapiro & Browne, 
1983, for a short discussion). 

Assumption 1:o.12 is a continuously differentiable function. 

Theorem 1. M o is locally identified at 0 °, and 0 o is a regular point, if and only if 
the rank of A0(0 °) equals q, the number of free parameters. 

Proof. See Fisher (1966, p. 163); Dijkhuizen (1978, p. 30), Bekker and Pollock 
(1986, p. 105). 

Let ~12 = (O1, . . .  , Oa, 0, 0) = (~o, 0, 0) be any point of M12 that satisfies the 
conditions of M0. T h e n - ~ r =  ~2 = (~o, 0), nl(O l) = n2('02), and thus, o-l(O 1) = 

The following assumptions (and Assumption I) are made and assumed throughout 
the remainder of the paper. 
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Assumption 2. The points ~12, ~1 and ~2 are regular points of M12, M 1 and M z, 
respectively. 

Assumption 3. MI and M 2 are locally identified at ~1 and ~2, respectively. 

Note 1. Assumptions 1 and 2, and Theorem 1 imply that the number of non- 
duplicated covariance elements m is larger than or equal to the number of free param- 
eters q + 1 of M1 and M2. 

Note 2. If A12(O 12) is of deficient rank, the previous three assumptions and The- 
orem 1 imply that its rank is q + 1. 

The following (new) theorem gives necessary and sufficient conditions for the local 
equivalence of models. Note that in correspondence with the conditions for local iden- 
tification, the Jacobian matrix A is of crucial importance. 

Theorem 2. A12(012) is of deficient rank if and only if the models Ml and M 2 are 
locally equivalent at ( ~ l  ~2). 

Proof." see the Appendix. 

Note 3. A direct consequence of Theorem 2 is that if M1 and M 2 are locally 
equivalent at (~1, ~2), then M12 is locally nonidentified at ~12 because of the rank 
deficiency of AI2(012) and Theorem 1. 

Note 4. From the proof of Theorem 2, it follows that the reparameterization g and 
its inverse are both locally differentiable functions when the stated assumptions and 
conditions of Theorem 2 are fulfilled. 

Note 5. One might think that two locally identified models M1 and M 2 with dif- 
ferent number of free parameters can reproduce the same set of covariance matrices as 
well. This would mean that the function y is a bijection between two sets of different 
dimensions, which is possible. But a consequence of Theorem 2 (and thus of the 
assumptions) is that the reparameterization g and its inverse are differentiable, and in 
particular, y is a local homeomorphism (a function is a homeomorphism when the 
function and its inverse are one-to-one, open, and continuous--Lipschutz, 1965, p. I00; 
the subsets U~ C ~ and U'~ C ~2 are then called homeomorphic. An important 
theorem from topology can now be applied, stating that U~ and U~ can only be 
homeomorphic when the dimensions of both subsets are equal (Brouwer, 1911). This 
implies that whenever locally identified models M1 and M2 reproduce the same set of 
covariance matrices, both have the same number of free parameters. Consequently, 
Definition 7 is not too restrictive when assuming that U1 and U2 are both open in 
R q+l , implying that U1 and U2 have equal dimensions. 

Note 6. The point ~14 = (All = a, A21 = a, 08, = b, 082 . = 0, 0~22 = 0, 
~bll = 1) with a, b > 0, is a regular point in Model AI4, where the Models Ao, A1, and 
A4 are identified and the rank of the gradient A14(014) equals 3 (A 0 is nested in both A1 
and A4, consequently, All = A21 = A, 0~, is free, and the other parameters are fixed; 
A14 is the union of A1 and A4). Thus, following Theorem 2, Al and A4 are locally 
equivalent at (~l, ~4). This implies that the points in the neighborhood UI (which is 
open in ~1) of 01 correspond to points in the neighborhood U4 (which is open in ~4) 



THOM C.  W. LUIJBEN 6 6 1  

of "0 4 . But U 4 contains points that have a negative 0~2, consequently, some proper 
values of AI correspond with improper values of A 4 although the same covariance 
matrix is reproduced. This is a direct result of the use of the implicit function theorem 
in the proof of Theorem 2. This theorem deals with open subsets of R q+l and may 
cause interpretation problems when the real line (as a subset of ~q+l)  corresponds to 
values of a variance or a correlation. 

Note  7. One could ask whether all these aspects of equivalent modeling also occur 
when the model is simplified. In particular, one may think that omitting two different 
parameters from a locally identified model M results in two restricted models that are 
locally equivalent. This cannot be the case because the union of those two models is M, 
which was locally identified, and consequently, the rank of its gradient matrix is (lo- 
cally) full. Thus, two models that are both simplified models of an identified one can 
never be equivalent. 

How to Test Local Equivalence in Practice 

Theorem 2 shows that if there is a dependence between the columns of A12 that is 
structural--which means that the rank of A)2 is deficient for all parameter values in an 
open U12 C fi12 of Ml2, except for a set of irregular points that has Lebesgue measure 
zero in fi12--then the identified models M 1 and M2 are locally equivalent. Hence, a 
researcher wants to know whether A 12 is not of full rank when expansion of the fitted 
model M 0 is considered. Seidel and Eicheler (1990) developed the LISRAN program 
that determines the rank of any Jaeobian matrix, for example A12 , by searching for 
dependencies between the columns of A 12 only using parameter equations---so without 
any data. This is a straightforward procedure to determine the rank of A12 without 
problems of irregular points. There is no such option in LISREL and EQS, and even the 
Jacobian matrices A1(01 ), ~ 2 ( O 2 ) ,  a n d  Al2(O 12) cannot be obtained, though this could 
easily be established. There is an alternative approach (only in EQS), however, to 
determine the rank deficiency of A12(012). The multivariate modification index (or 
equivalently, the multivariate Lagrange multiplier statistic) is an estimate of the de- 
crease in the chi-square goodness-of-fit statistic when several parameters are relaxed 
simultaneously. The Jacobian m a t r i x  AI2('012) is involved in the formula of the multi- 
variate modification index MI12(O 12) when Mo is fitted and Oq+ 1 and Oq+z are the ones 

" - -12  • • to relax. The rank deficiency of A12(0 ) results m a singular information matrix I12(012) 
and a nonexistent MI12(012), because the inverse of I12(012) is involved in MIl2(O 12) 
(see, e.g., Luijben, 1989, p. 163). EQS, however, uses a generalized inverse of a 
singular I12(012), to calculate a generalized modification index MI~2(01~). Denote 
MI1(O j2) and MI2(0 j2) as the MI for On+ 1 and On+ 2, respectively. It turns out that 

- -12  . . . .  - * - - 1 2 -  - -12  - -12 Al2(0 ) IS of deficient rank if and only 1fMI12(0 ) = MII(0 ) = MI2(0 ), except for 
a set of data matrices S that have Lebesgue measure zero in the Wishart distribution of 
S, given E (the population covariance matrix). Thus, we can conclude--with probabil- 
ity one--that  the rank of A12(012) is deficient when the EQS-output denotes that the 
estimated decreases in chi-square are identical when either Oq+ 1 or Oq+2, or both Oq+ 1 
and Oq+ 2 are added as free parameters to model Mo. 

Can we now safely conclude that the identified models Mx and M2 are locally 
equivalent when the rank of A12(012) is deficient? We recognize one problem. The 
parameter point ~12 = (~0, 0, 0) can be an irregular point such that the rank of At2 is 
only deficient in ~12 but full in any point of an open neighborhood U12 ofO 12. What is 
the probability that a 0 ° is obtained--when Mo is f i t tedusuch that (0 °, 0, 0) is irregular 
in Ml2 ? Can we conclude, in general, that this probability equals zero because the set 
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of parameter estimates 0 °, for which (0 °, 0, 0) is irregular in MI2, has Lebesgue 
measure zero in Mo? The answer is no, as pointed out by an anonymous reviewer. The 
reason is that the two parameters 0q+ 1 and Oq+2 are a priori fixed at zero and only 01 
up to Oq are estimated freely, which can cause a disappearance of several elements 
from Al2 that are nonzero in general. Luijben (1989, p. 160-161) gives an example 
where (0 °, 0, 0) is irregular in M12 for even all parameter estimates 0 °. The main 
conclusion is that there are models for which a positive probability exists that a 0 ° is 
obtained, when Mo is fitted, such that (0 °, 0, 0) is irregular in M~2. Hence, there is a 
positive probability, for such models, that the deficiency of the rank of Al2(012) is not 
sufficient to conclude that Ml and M 2 are locally equivalent. Note, that this situation 
is different from the situation that the identification of M12 is determined by examining 
the rank of A12 at, for example, the maximum likelihood estimate b 12 obtained by free 
estimation of 0r up to Oq+ 2 . The probability that ~12 is irregular in MI2 when Mt2 is 
fitted, is equal to zero when o-12 is an analytical function (Fisher, 1966, p. 167), which 
is the case in covariance structure analysis (see below the subsection). Therefore, if 
A(012) is not of full rank q + 2, then Ml2 is not locally identified with probability one 
(see Theorem 1). 

In our view, it is difficult to tell in general for which models the set with elements 
0 ° (and analogously, 01 and 02), such that (0 °, 0, 0) is irregular in MI2, has a nonzero 
Lebesgue measure in M0. However, no problems of irregular points occur for models 
where the (co-)variances of the measurement errors (elements of % and 0e) are the ones 
to relax, because these parameters vanish always in all columns of 612. A suggestion-- 
given in the discussion below---could be the basis of a general procedure. 

Regarding Assumption 1 
The assumption that o-12 is a continuous differentiable function is fulfilled in co- 

variance structure analysis (see Shapiro, 1986, p. 145). This can directly be observed 
from the general form of the covariance matrix given in Jrreskog and Srrbom (1988, p. 
5). The covariance elements are usually simple polynomials except for the elements in 
which the matrix 

(I  - B )  - l  ( 1 1 )  

is involved. Matrix (11), however, equals 

I + B + B 2 + B 3 + B 4 + . . . .  ( 1 2 )  

when all eigenvalues of B are within the unit circle (J6reskog & S6rbom, 1988, p. 35), 
and a sufficient condition is that the largest eigenvalue of BB' is less than one. This 
holds in LISREL 7 when the "stability index" is smaller than one. This means that all 
covariance elements are analytical functions (can be developed into power series) when 
the parameter space is restricted such that (11) is equal to (12). This restriction implies 
that only stable (or nonexplosive) models are considered (see Hayduk, 1987, p. 258). 
Note that an analytical function is differentiable an infinite number of times, so As- 
sumption 1 is satisfied when stable models are considered. 

Note 8. If M 1 and M 2 are locally equivalent, then the MI for Oq+l is equal to the 
MI for Oq+2. Thus, heuristically, the estimated decrease in the chi-square goodness- 
of-fit statistic is identical when either Oq+ l or Oq+2 is added as a free parameter to M0, 
or Oq+ 1 or Oq+2 simultaneously, if Mr and M 2 are locally equivalent. This result is the 
well-known fact that the Lagrange multiplier statistic is invariant under reparameter- 
ization of a model (see Cox & Hinkley, 1974, p. 339). 
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Note 9. If the MI for Oq+~ is unequal to the MI for 0q+2, then Ml and M2 are not 
(locally) equivalent. 

Discussion 

This paper presents a necessary and sufficient condition for two expanded models 
M 1 and M2 to be locally equivalent under the somewhat strong condition that (~0 0, 0) 
is a regular point in Ml2. We give one suggestion on how the regularity problem could 
be approached in future research. Fit M12, and assume that A(012) is of deficient rank 
at the maximum-likelihood-estimate 012 = (01, " ' "  , 0q, 0q+l ,  0q+2), which happens 
when the analysis denotes that MI2 is not identified. Define model M~ as the one with 
free parameters 01 up to 0q+1, and with fixed parameter 0ct+2 set at 0q+2. Define 
similarly M~, with free parameters 01 up to 0q, and 0q+2, and fixed parameter Oq+l set 
at bq+ 1 . Now, m~(0i2) ~l M~(bl2) with probability one because  b12 is regular in Ml2 
with probability one. It may be possible to prove that this local equivalence can be 
extended to a more global result, especially concerning local equivalence around ~12, 
using the nice analytical characteristics of the (LISREL-) equations. 

Appendix 

Proof of Theorem 2 

Sufficiency. According to Assumptions 2 and 3, and Theorem 1, there is an open 
U l c R q+l with~l  E Ul so that for each 01 E U l, the rank of Al(01) is (full) q + 
1. With the definition of 0-t and the chain rule (see, e.g., Rudin, 1964, p. 190, Theorem 
9.12) it follows that A l ( 0j ) = 00-12 ~On I (n I (01 )) On 1/0 0 (O 1 ). This implies that it may 
be assumed (possibly after permuting the m elements of o'12) for the function 
0-/2(012) = (0.112(012), . . .  , 0-~2+1(012)), consisting of the first q + 1 elements of 
o12(012), the matrix 0o'(2/00 t2 (012) is of full rank q + 1 for all 012 E nl(U1). Con- 
sequently, define tri/2t(012) = (0-~2+2(012) . . . . .  0-~(012)). 

The rank of a matrix A is semicontinuous implying that if rank (A) = r, there is a 
neighborhood W of A such that rank A' -> r for all A' E W (BrScker & J/inich, 1973, 
p. 45). Thus, ther--e is an open U12 C R q+2 with ~12 (~ Ul2, SO that for all 012 (~ Ul2 , 
the matrix 00"(2/0012 (012) is of rank q + 1. Now, with the assumed deficiency of the 
rank of AI2(012) and the regularity of ~12 in M12, the conditions of the rank-theorem 
(see, e.g., Burkill & Burkill, 1970, p. 230, Theorem 7.63) are fulfilled. This theorem 
states that there is an open U'~2 C_ Ui2 with ~12 E U~2 and a function h: Or/E(U'~2 ) ---> 
Rm-(q+l) such that for all 012 E U'~2, _n~,~I2~ Ol21, v ,, = (h o 0-/2)(012). Now, define: 

0-1/;UI ~ ~ q + l ,  with 0-~(O1)=(0-112onl)(Ol), and 

o.1:U2 _..4 ~q+ l ,  with 0-2t(0 2) = (o-~2 o n2)(02). 

Define f:  

U1 x U2 ---> ~ q + t ,  with f(O l, 0z)=(0-((01)-0.2t(02)) .  

Then, f is differentiable, f(O 1 , ~2) = 0, and Of/O01 (~1) is of full rank (q + 1). With 
the implicit function theorem (see, e.g., Rudin, 1964, p. I96, Theorem 9.18) it follows 
that there is a differentiable function #I2:U'~ ~ R q+l with U'~ C R q+l open and ~2 

U~, and g12(O 2) = ~1 andf(gl202), 02) = 0 for all 02 ~ U 3. Thus, o'~(02) = 
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o'/(912(02)) for all 02 E O'~. With the existence of the function h, it now follows that 
0"2(02) = O"1(912(02))for all 02 ~ U~. 

Similar derivations can be made when one starts with M 2 instead of MI ,  leading to 
the existence of a differentiable function Y21 :U']  --+ R q+l with U]  C R q+l open and 

- _ ~2 and o-/(01) = o.~(921(01)) for all 0 i E U ] .  With the 
~lexistence ~ U],ofandtheff21function (01) h,  it now follows that o'l ( 01 ) = o'2(921 ( 01 )) for all 01 E U ] .  

Necessi ty .  Because MI and M2 are locally equivalent at (~1, ~2) there exist se- 
quences of vectors {0 ~k)} and {02tk)} such that for all k, o'1 (0 l~k)) = o.2(02~k)) and 
limk._,~ 01~k) = ~1 = (~0, 0). Moreover,  all 02tk) are within a bounded U 2 so that there 
is a 02* such that, passing to a subsequence if necessary, limk~:~ 02tk) = 02* . Because 
of the continuity of o- 1 and o.2, o.l(~l) = 0.2(02"), but also o.l(O l) = o.2(02); conse- 
quently, o.2(02.) = o-2(02). This implies that 02* = ~2 = (~0, 0) because of  the local 
identification of M 2 at ~2. 

The i-th components of the functions n I and n2 are denoted n li and n2i, respec- 
tively (1 -< i - q + 2); thus, nl l  = 01, nlq = Oq, n lq+ l  = Oq+l, and nlq+2 = 0. 
Then, the multivariate mean-value theorem (see, e.g., Magnus & Neudecker ,  1988, p. 
98) can be applied for all j (1 -< j -< m) and all k: 0 = o.|J(0 lfk)) - tr2J(o2fk)) = 
Orl2J(n l (Ol(k) ) )  -- o.12J(n2(O2(k)))  = Y, iq=+l 2 Oo.12J/ooi (Oj 12(k)) [n l i ( O  l(kl)  

n2i(oZ(k))], where 0j lzfk) lies on the line between n l(O lfk)) and nz(02fk)). This implies, 
for all j and k, that  ~iq-_~ 20o . l zJ /Ooi  (Oj 12(k)) d(i k) = 0, where d/~k) = [n l i ( O  l(k)) - 

n2i(oZfk))]/llnl(Oltk) ) - n2(O2(k))ll.  
The sequence  {d (k) } is an infinite sequence within the closed unit sphere, and 

therefore,  passing to a subsequence if necessary, it may be assumed that there exists a 
limit point d = ( d l , . . . ,  dq+2) ,  where d i = limk__,~o [n l i (O  l(k)) -- n2i(o2(k))]/ 
IInl(O l(k)) -- n2(OZ(k))lt. As, limk__,= d fk) = d and limt,__,= Oj 12fk) = nl(O I) = n2(O 2) 
= (~0, 0, 0), for all j ,  and because OoqzJ/Ooi is continuous (Assumption 1), we have 
in the limit: 0 = Ziq_-+! 20o.12J[ooi (~0, 0,  0) di for all j .  This means that  AI2(O 12) d = 
0, and A12(012 ) is of  rank < q + 2, and thus rank q + 1 (see Note 2). [ ]  
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