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A logistic regression model is suggested for estimating the relation between a set of man- 
ifest predictors and a latent trait assumed to be measured by a set of k dichotomous items. 
Usually the estimated subject parameters of latent trait models are biased, especially for short 
tests. Therefore, the relation between a latent trait and a set of predictors should not be 
estimated with a regression model in which the estimated subject parameters are used as a 
dependent variable. Direct estimation of the relation between the latent trait and one or more 
independent variables is suggested instead. Estimation methods and test statistics for the Rasch 
model are discussed and the model is illustrated with simulated and empirical data. 
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Introduction 

Attempts to relate (psychological) scales to other variables are often based on 
linear models. In the classical approach to test theory (see Lord & Novick, 1968), the 
weighted or unweighted test scores are typically linearly related to m independent 
variables (called predictors in the sequel): 

Y~, = ~ o  + [31x,,1 + • • • + flmXvm "-F E v .  (1) 

Here, Yv is the test score of individual v, Xvj  is the observed value of predictorj for 
individual v, /3j is the corresponding regression parameter, and ev is the error term. 

In contrast to classical test theory, latent trait theory (see Fischer, 1974; Lord, 
1980) uses the item responses to estimate latent variables. In the dichotomous Rasch 
model, the conditional probability of a positive response of subject v on item i ( Y v i  = 

1) is modeled as a function of the latent (ability) parameter of v ( O v )  and the latent 
(difficulty) parameter of i (o t i )  with the familiar logistic function: 

exp (Or - o ~ i )  

P ( Y ~ i  = 11o~) : 1 + exp (or - o ~ i ) "  (2) 

The item parameters ot can be estimated consistently either with conditional max- 
imum likelihood (see Andersen, 1970, for the Rasch model only) or with marginal 
maximum likelihood (see Bock& Aitkin, 1981). But for the estimation of the relation 
between the latent trait and one or more predictors, the subject parameters 0 are 
required as a dependent variable. The subject parameters can be estimated with max- 
imum likelihood or with the mean or mode of the posterior distribution when using 
marginal maximum likelihood estimation. However, the estimates of the subject pa- 
rameters (6) are biased and inconsistent (see Goldstein, 1980; Lord, 1984). The incon- 
sistency of 0 makes it problematic for use in regression models. 

In this paper a method is suggested to estimate the relation between the latent trait 
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and one or more predictors directly without estimating the subject parameters. The 
method is developed for the Rasch model, but can be generalized easily to the two- and 
three-parameter logistic latent trait models (see Lord & Novick, 1968). In the following 
section we will develop the model and consider methods for estimation and testing. 

The Logistic Regression Model 

Model 

Consider the population of individuals concerning the latent variable 0 with density 
function, #(0).  A sample of N individuals responds to a questionnaire containing k 
items that are scored dichotomously. The probability that individual v(v = 1 , . . . ,  N)  
responds positively to item i(i = 1, . . . ,  k) is modeled with the Rasch model as 
specified in (2). Now consider the (linear) model for 0: 

0~ = 13'x~ + c o ,  (3)  

where xv is a vector of length m consisting of the observations for individual v on m 
predictors, 13 is the vector of the unknown regression parameters, and ev is the usual 
error term. Equation (3) may include interaction or higher-order terms. Substituting (3) 
in (2) gives 

exp (/30 +/31xvl + ' ' "  +/3mXvm + ev - oti) 
P(Yvi = lle~, x o ) =  = hvi. (4) 

1 + exp (/3o + /31Xvl + ' ' '  + /3mXvm + ev  -- oli) 

Let x l, . . . ,  Xm be fixed, and eo independent, identically distributed normal 
random variables with mean zero and standard deviation or, and density function ~elo-). 
This defines (4) as a logistic regression model with fixed effects for the predictors, and 
a random component. For models like this, see Breslow and Day (1980). 

The joint likelihood of the item response vector Y~ = (Yvl, - - . ,  Y~k) and e~ 
given xv is 

k 

p(Y~, e v l x v ) - - p ( Y v l e , , ,  x~)4,(elcr) = 1~ h Y ; ' ( 1 - h v i ) l - r " ~ ( e l o ' ) ,  
i = l  

where Y~,i is the realization of Yvi. The marginal likelihood of Yv given x~ is 

P(Yvlx~) = f ?~  P(Y~lev, xv)d'(ettr) de ,  

and the conditional marginal likelihood of all item responses, Y, given X, Lm( Y[X, or, 
I~, or), is 

N k 

Lm(YIX ,  a ,  [1, ~r)= 1-~ f f ~  ]-I 
v = l  i = 1  

hY['(1 - hvi) 1 -Y~'tk(eltr) de .  (5) 

The conditional marginal maximum likelihood estimators (&, 13, b) maximizing (5) are 
consistent and asymptotically normally distributed (Bock & Aitkin, I98I). The number 
of parameters is finite, and therefore, standard ML asymptotics apply. 

The model specified in (4) cannot be estimated uniquely. A restriction is needed 
both for ot and the distribution of e. We norm the item parameters in such a way that 
the mean of the estimates of ot is zero, and the mean of e is fixed to zero. Alternatively, 
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the mean of  e might be free, but then the intercept parameter/3 o must be fixed to zero. 
If  all item parameters are allowed to vary, both the intercept and the mean of e must be 
fixed to zero. 

Sampling Designs 
The likelihood in (5) is derived from the conditional distribution of the item re- 

sponses given the predictors: p(Y[X). This is the appropriate likelihood in case of 
experimental studies, where the predictors have been fixed a priori by the experi- 
menter. This kind of sampling scheme is called conditional sampling (see J. A. Ander- 
son, 1972). It arises, for instance, if the experimenter is interested in the differences 
between males and females or between ethnic groups with respect to the latent variable 
0. 

With observational studies, the predictors are not fixed a priori, but are sampled 
from some population with (multivariate) density function G(X). In this case, the joint 
likelihood of Yv, Xv, and ev is given by 

P(Yv, ev, X v ) =  P(Yv, e~Ixv)G(Xo)= p(V~lev, x~)4,(E~Io-)G(X~), 

and the marginal likelihood is now given by 

t m ( Y  , Slot , 13, 0")= ~I  H hY/i(  1 - hvi)l-yvic~(El°r) dE ~ I  a ( X v )  • 

v = l  i = 1  v = l  

(6) 

The second term of(6) (IIvG(X~)) is uninformative with respect to a ,  13, and tr, because 
G(X) is not a function of Ot, 13, or tr. Therefore we need to optimize only the first term 
of (6) to estimate a,  13, and o'. This part of the likelihood is equal to the conditional 
marginal likelihood as specified in (5). Hence, the ML estimators of Ot, [3, and o-in case 
of observational studies are equal to the ML estimators of Ot, 13, and tr with conditional 
sampling. Anderson (1972) and van Houwelingen and le Cessie (1988) call this kind of 
sampling, mixture sampling. The asymptotic results of conditional sampling also apply 
to the estimators derived under mixture sampling (Prentice & Pyke, I979). 

The third case where a logistic regression model arises, is the case of  separate 
sampling. This sampling design generalizes from case-control studies (see Breslow & 
Day, 1980). A separate sampling design arises when the item response vector y~ is 
fixed. Prentice and Pyke (1979), Breslow and Day, and van Houwelingen and le Cessie 
(1988) showed that the estimators derived under conditional sampling can also be seen 
as the maximum likelihood estimators under separate sampling. But matters are more 
delicate. With k items, there are 2 k different response patterns. Separate sampling 
means that for every response pattern Yr, a sample of nr is taken from the conditional 
distribution of (X, e) given Y = Yr" The likelihood of the observations is given by 

2 k nr 

L(X) = I-I 1--I fr(Xv, evlYr), 
r=l v=l 

w h e r e f r ( X  v, evlYr) is the conditional distribution of (X, e) given Y = Yr- Let 

2 ~ nr 
Pr = - - ,  w i t h  n = E nr, 

n r=l 
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2 k 

f (X,  e )= ~ P~fr(X, elyr),  
r=l 

and 

g,(x, ~ ) -  
Prfr(X,  e l y r )  

f(X, e) 

The logistic model assumption is equivalent to 

k 

ar(X, e)= 1-I a,i(x, e), 
i = 1  

logit [ffri(X, e ) ]  = ~ ' X  + e - oti 

(van Houwelingen & le Cessie, 1988, pp. 220-221). Furthermore, assuming X and e to 
be independent, f(X, e) can be written as the product m(X)$(elcr), where re(X) is a 
(multivariate) density function of the predictors X. The likelihood L(X) can now be 
rewritten as 

L ( X ) =  1-I m ( X v ) x  1-I I-[ hY~(t-hvi)n-Y~'d~(el ,- x 1-I P2 n" 
v = l  v = l  i = 1  r=l 

= L1 x L2 x constant, 

where hvi is defined as in (4). The maximum likelihood principle means that L(X) is 
maximized with respect to m(X), a, f~, and cr, integrating out e. Assume for simplicity 
that X has a discrete distribution with generic value z. The unrestricted maximum 
likelihood estimator of m(z), rh(z), is the fraction of subjects with x = z. The unre- 
stricted maximum of L2, integrating out e, is given by the estimator (&, I~, &) as derived 
under conditional sampling (see Prentice and Pyke, 1979, for more details). 

Separate sampling designs are important in medical research, but it will seldom be 
appropriate in applied psychometrics. An example of separate sampling in psychomet- 
rics is when one is studying the characteristics of (groups of) individuals with some 
specified response pattern. 

Estimation of  the Model Parameters 
We developed an EM algorithm to estimate the parameters of the model specified 

in (4), which is comparable to the one developed by Rigdon and Tsutakawa (1983). We 
maximize the expected value of the joint log-density function of ( Y, elX), m(Y, elX) -- 
log (P(Y, elX)), given starting values of the model parameters, &(0), 13(0), &f0), 

F =  Elm(Y, e[X)l&(o), ~(o), 0"(o)] 

N k 
---- v ~=1 i=lE f:ao (Yv~ log (hv~)+ (1-  Yvi)log (1-  hvi))pv(etxv, yv)de 

N f : ~ (  ~ l e e \ \  (7) 
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where pv(elx~, yv) is the posterior density function of  e given (x~, y~) and (&(0), I~(0), 
6"(o))- The posterior density function is proportional to 

1 evZ'~ 
exp (y~. e v ) e x p  20-~o--) J 

k 

I-[ 1 + exp (15(o)Xv + ev - ~ i ( o ) )  

i = l  

where y~. is the raw score of  subject v. 
The algorithm is iterative with two steps. In the E-step, (7) is maximized with 

respect  to tr. Therefore, the partial derivative o f F  with respect  to 02 is equated to zero, 
yielding the following equation to solve for 02: 

tr2= 1 ~ f f~  e2pv(elx~' y~) (8) 

In the M-step (7) is maximized with respect  to a and 15, simultaneously. Therefore,  the 
partial derivatives of  F with respect  to oti(i = 1, . . .  , k) and [3j(j = 1 . . . .  , m) are 
equated to zero, yielding the following two sets of  equations to solve for ai and/3j ,  
respectively: 

N ~ v  + e -- Oti) 
Y.i  = E . . . . .  ~= 1 J - ~  1 + exp (l~'xo + e - ~ i )  po(elx~,  yv) de, (9) 

and 

N N f ®  exp ( ~ ' X  v -I- e - -  O/i)  

E xvjyv = E xoj ~= I ~= l 1 + exp (l~'x~ + e - ai) pv(elx~,  yv) de, (10) L 
where Y.i is the item score of  item i, and Yv. is the raw score of  subject v. The two sets 
of equations can be solved with any efficient optimization algorithm. The integrals can 
be evaluated with Gauss-Hermite quadrature (see Abramowitz  & Stegun, 1964). Stan- 
dard errors of  the estimated model parameters can be obtained from the matrix of  
second order partial derivatives of  (5) evaluated at (&, I~, &). The partial second order 
derivatives of  (5) are derived in the Appendix. 

For the Rasch model, the algorithm can be simplified by using the conditional 
maximum likelihood estimates of  ~x as fixed constants in (5), (7), (8), and (10). This 
means that (9) is eliminated from the M-step as specified above. Such a two-stage 
procedure was also suggested by Andersen and Madsen (1977) for the estimation of  the 
population distribution of  0. Although some efficiency in estimating a is lost, the re- 
duction in the computational effort is enormous. 

Testing the Model 
The model specified in (4) is a generalization of  the Rasch model. Hence,  the 

assumptions that have been made for the model as specified in (4) are equivalent to 
those of  the Rasch model (see Fischer, 1974): 
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i. Monotonicity: The probability of a positive response is a monotone increasing 
function of I~'x + e. 

ii. Conditional independence: Given fixed level of I~'x + e, the responses to the 
items are independent of other items. 

iii. Unidimensionality: The error component e is independent of  the item param- 
eters. 

iv. The regression parameters 13 are independent of the item parameters. 

The assumptions (i) and (iv) together are equivalent to the assumption of the simple 
Rasch model that the item characteristic curves are parallel. The assumptions (i) to (iv) 
can be tested with statistics that were developed to test the Rasch model (see Andersen, 
1973; Glas, 1988, 1989). 

Two additional assumptions are: 

v. The error component is normally distributed. 
vi. The regression between O and I~'x + e is linear. 

As yet, we have not developed a global test of the model as specified in (4) that would 
be sensitive and informative for violation of assumptions (v) and (vi). 

Hypotheses with respect to 13 can be tested with likelihood ratio statistics, Wald, 
or scoring type statistics (see Rao, 1973, pp. 415--420). Wald and scoring statistics are 
useful for stepwise selection of predictors. The Wald statistic needs only the full model 
(with all predictors included) to be estimated, and is therefore useful for backward 
selection. The scoring statistic needs only the restricted model (with a selected number 
of  predictors included) to be estimated, and is therefore useful in forward selection. 
Several other test statistics and heuristic fit procedures can be generalized from the 
logistic regression model, for example, log-odds plot, and log-log plot per item (see 
BMDP; Dixon, 1985). 

Simulations 

Some simulations were performed to compare our method for estimating the re- 
gression of  0 on x to the method of estimating the regression with a linear model on the 
estimated subject parameters 

bv  = I~'x~ + ~ .  (11) 

We expect that our method described in the previous section performs better in esti- 
mating 1~ than using (I I) when the number of items is small, because in that case the 
distribution of b is very discrete and the variance and bias of  b are large. Therefore, we 
simulated item responses for varying number of  items (5, I0, 20, 30). The item diffi- 
culties were equal to zero, or spaced over the range ( -2 ,  2). Samples of 100 or 1000 
individuals were taken. 

Two predictors and an error term, (Xl ,  X2, e), were sampled from the multivari- 
ate normal distribution with mean vector zero, and diagonal covariance matrix. In all 
simulations, the subject abilities were calculated as 0 v = - 1/2 Xvl  + 1/2 xv2  + e v .  The 
variances of xl and x 2 were equal to one, and the variance of e was 0.50. Conse- 
quently, the variance of 0 was equal to one. Item responses were simulated by com- 
paring the item response probabilities according to (2) to random numbers sampled 
from the uniform distribution with domain (0, 1). If the probability was larger than the 
random number, the item response was one, and zero otherwise. 

The item parameters were estimated with conditional maximum likelihood (CML) 
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TABLE 1 

of Regression Parameters According to (4) and 
Standard Errors (se) are Given in Parentheses 
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k ~l s e  ~, s e  J~2 s e  ~2 s e  

N=1000, uE(-2,2) 

30 - .42 ( .014)  - .45 ( .037)  .52( .014)  .55(.036) 
20 - .49 ( .017)  - . 48 ( .037)  .46( .017)  .48(.037) 
10 -.51(.024) -.42(.042) .47(.025) .40(.043) 
5 -.40(.035) -.28(.040) .56(.035) .41(.040) 

N=100, ~E(-2,2) 

30 -.43(.047) -.50(.118) .57(.047) .60(.114) 
20 -.47(.047) -.56(.099) .42(.054) .45(.114) 
i0 -.49(.073) -.38(.140) .39(.080) .32(.149) 
5 -.29(.101) -.20(.i12) .51(.i08) .46(.123) 

N=1000, ~=0 

30 - .43 ( .013)  - .45 ( .036)  .50( .013)  .56(.036) 
20 - .49 ( .017)  - .46 ( .037)  .49( .017)  .46(.037) 
10 -.50(.022) -.39(.038) .48(.023) .39(.040) 
5 -.37(.030) -.18(.035) .54(.030) .26(.034) 

N=I00, ~=0 

30 -.37(.043) -.48(.i18) .64(.043) .67(.i14) 
20 -.49(.047) -.56(.096) .49(.054) .46(.112) 
10 -.57(.065) -.25(.142) .49( .072)  .39( .146) 
5 -.43(.092) -.40(.i04) .63(.099) .33(.i13) 

estimation. The subject parameters were estimated by maximizing the likelihood of the 
item responses given the CML estimates of at (Fischer, 1974, Equation 14.3.1, p. 251). 
Individuals with a zero or perfect score were excluded. The regression parameters 13 
were estimated according to the model specified in (4), I], and with the model specified 
in (11), ~. Also the standard errors of I~ and ~ were estimated. (A special Fortran-77 
computer program was written to estimate I] and its standard error, and can be obtained 
from the author.) The regression parameter ~ and its standard error were obtained with 
SPSSX-module regression. The estimated subject parameter, 6, was the dependent 
variable, and Xl and x2 were entered simultaneously as independent predictor varia- 
bles. The results are given in Table 1. 

For the simulations with 20 or 30 items, the estimated regression parameters using 
the models in (4) and (11) were almost equivalent. Neither one was best in terms of 
being closest to the true values. In the simulations with ten or five items, I~ was closer 
to the true values of 13 than ~. In all simulations the standard errors of I~ were smaller 
than the standard errors of ~. The number of individuals, and the range of the item 
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difficulties appeared not to affect the accuracy of 1~ and ~. Simulations were also carried 
out with varying degree of correlation between the two predictors. The results of  those 
simulations were not much different. It appeared that the regression parameters were 
estimated with equal accuracy as in the case of predictors being uncorrelated, but with 
larger standard errors. 

Empirical Data 

As an illustration of the logistic regression model we used item response data 
gathered in a study of the treatment of acute bronchitis with antibiotics. Only the 
necessary details will be discussed here. For an extended discussion of  these data, see 
Zwinderman (in press), and Zwinderman, Verhey, Hermans, Kaptein, and Mulder (in 
press). 

A sample of 434 general practitioners responded to a questionnaire of 11 simulated 
patients with varying number of clinical symptoms of acute bronchitis. All patients had 
coughing complaints, had fever or not, had audible rhonchi or not, and coughed up 
purulent sputum or not. Each practitioner was asked whether he or she would prescribe 
an antibiotic to each of the patients. 

There is lack of agreement among practitioners with respect to the definition and 
the treatment of acute bronchitis. To obtain insight into this lack of agreement, we 
modeled the prescription probabilities according to the model specified in (4). The 
patients varied in seriousness as a function of the number and the kind of  symptoms. 
The parameter a represented this variation. The practitioners varied with respect to 
their inclination to use antibiotics. The inclination to use antibiotics was a latent vari- 
able denoted by 0. The relation between the inclination to use antibiotics and several 
variables was studied with the model as specified in (4). 

As predictor variables, we used (I) age, (2) sex (0 - male, 1 = female), (3) expe- 
rience as a general practitioner, (4) the kind of practice in which the practitioner works, 
(5) the university where the general practitioner was trained, and (6) whether or not the 
practitioner had a pharmacy. There were 391 male practitioners, and 43 female. The 
mean age (standard deviation) of the practitioners was 43.4 (9.1). The average number 
of  years experience was 14.9 (9.2). There were 223 practitioners working alone, 147 
were associated with another specialty, and 64 worked in a group practice. This vari- 
able was recoded into two binary variables. There were practitioners of 8 Dutch uni- 
versities, abbreviated as follows: UVA (61), VU (34), RUG (84), RUL (66), RUM (6), 
KUN (50), EUR (53), and RUU (80). This variable was recoded into seven binary 
variables. There were 83 practitioners who had a pharmacy. 

The seriousness parameters of the patients were estimated according to the Rasch 
model with conditional maximum likelihood estimation. The CML estimates of OL were 
used as constants in the remainder. The standard deviation of 0 was estimated as 1.68 
using the approach of Andersen and Madsen (1977). The fit of  the Rasch model was 
tested with Glas' CML-RI test statistic (Glas, 1988, 1989), Molenaar's Ui item statistic 
(Molenaar, 1983), and Andersen's conditional likelihood ratio statistic (Andersen, 1973) 
for the group of practitioners older than 40 and younger than 40. R 1 was 105 with 90 
degrees of freedom (p = 0.13), the likelihood ratio statistic was 29 with 20 degrees of  
freedom (p = 0.47). For two patients, I Uil was larger than 2 (2.14 and 2.06). These test 
data showed that the Rasch model fit satisfactory. 

The relation between the inclination to prescribe antibiotics and the predictor 
variables was estimated according to the model as specified in (4). The estimated 
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TABLE 2 

Estimates of the Parameters of the Logistic Regression Model 
on the Inclination to Prescribe Antibiotics 

Predictors ~ se(~) z 

Intercept -0.35 .204 -1.72 

Sex -0.09 .044 -2.05 

Age -0.20 .154 -1.30 

Experience 0.ii .153 0.72 

Practice 
Alone 0.00 - 
Associated -0.05 .045 -i.ii 
Group 0.02 .046 0.43 

Pharmacy 0.18 .044 4.09 

Training 
UvA 0.00 - 
VU -0.09 .050 1.80 
RUG 0.14 .059 2.37 
RUL 0.09 .056 1.61 
RUM -0.17 .044 -3.86 
KUN -0.03 .054 -0.56 
EUR 0.08 .054 1.48 
RUU 0.11 .057 1.93 

oe 1.65 .19 

regression parameters are given in Table 2. For  each parameter, the ratio (z) between 
the estimate and its standard error was calculated to test whether the parameter could 
be considered zero. 

It appeared that female practitioners were less inclined to prescribe antibiotics than 
male practitioners, and those who had a pharmacy were more inclined to prescribe 
antibiotics. Several differences between practitioners trained at different universities 
were found. The multiple correlation between 0 and I~'x was estimated as (1 - o-2/ 
o.2) 1/2 = 0.19. 

Conclusion 

In general, ability parameters of latent trait models are not estimated consistently, 
and should not be used as a dependent variable in regression models. Direct estimation 
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of the regression parameters with the logistic model yields better results in terms of 
accuracy and efficiency at least with small number of items. The logistic regression 
model is flexible and few assumptions concerning the predictors are needed. It can be 
readily applied in conjunction with any logistic latent trait model. 

The structure of the Rasch model permits a set of items to be calibrated indepen- 
dently of the individuals in the calibration sample. This means that the item difficulties 
can be estimated independently of the regression model with conditional maximum 
likelihood estimation (CML). When the CML estimates of the item difficulties are used 
as known constants in the regression model, the computational effort is greatly re- 
duced. Furthermore, most aspects of the regression model can thus be tested in the 
framework of the Rasch model. For any other latent trait model, the regression model 
cannot be estimated or tested independently of the calibration of the set of items. The 
measurement scale depends upon the regression model, and conversely. 

In this paper it was assumed that all items were dichotomous and measured the 
same latent trait. The model as specified in (4) can be generalized to polytomous items 
in the same way as latent trait models can be generalized to polytomous items. For 
ordered categorical responses, the generalization remains a unidimensional model. For 
nominal responses, the generalization is a model with two or more dependent variables. 
The logistic regression model can also be generalized to sets of items that measure two 
or more different latent traits, also leading to a model with two or more dependent 
variables (see Zwinderman, in press). 

Appendix 

This appendix includes a derivation of the information matrix of the maximum 
likelihood estimators (6t, ~, and 6") of the parameters of the logistic regression model as 
specified in (4). 

If &, I~, and 6" are the maximum likelihood estimators of og 13, and o', the inverse 
of the information matrix evaluated at ~ 13, and & is a consistent estimate of the 
covariance matrix of the parameter estimates. The information matrix is defined as the 
negative matrix with the second order partial derivatives of the logarithm of the con- 
ditional marginal likelihood as specified in (5). The entries of the information matrix are 
given by the following seven formulas. For a concise notation, we denote the posterior 
density function of e given (xv, Yv), Pv (elx~, Yv), byPv.  The integrals run from minus 
infinity to infinity. 

d 2 log Lm N 
= E XvjXvl 

d•j d#t  v = 1 

× 
f__~Pv(i=l ~ (hvi)2- ~, hvi(1 - h v i )  de Pv de - ~ hvi de 

i=1 i=1 
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d 2 log L m  N 

dflj do" 2 = ~ Xvj 
vffil 

- pv ~, hvi ~--~ de Pv de + ~, hvi de p~ ~-~ de 
i=1  i=1  

d 2 log L m  1 
dZo. z = ~ No"-4 

N 
+X 

v = l  

d 2 log Lm N 
d2oti = X 

v---1 

~?~  E 2 ( 1  E 2 [ff= 1 E 2 ]2 
- -  de Pv ~ O" 4 

f?pv(hvZ-hvi(1-hvi)) de ff®Pv de-[f~_® pvhvi de ] 

d 2 log Lm N =X 
d a  i d a j  ~ = 1 

d 2 log L m  N =y. 
do t i  d f l y  v = 1 

× 
f ?® xvjp~ hvi(1 - hvi) - hvi X hvi de 

i=1  
p ~  d e  

+ 

k 
f~®Pvhvi de f~oXvJpv ~, hv~ de 

i=1  
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d 2 log L m N 

dog do "2 - ~ 
v = l  

f?~  l e 2  f;® f~_~ f~® l e 2  Pvhvi ~ --~ de  pv  de  - pvh~i de  p~ ~ ~ de  
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