
PSYCHOMETRIKA--VOL. 58, NO. 1, 53--69 
MARCH 1993 

THE ROWWISE CORRELATION BETWEEN TWO PROXIMITY MATRICES 
AND THE PARTIAL ROWWlSE CORRELATION 

HAN DE VRIES 

PROJECTGROUP OF ETHOLOGY t~ SOCIO-ECOLOGY 

STATE UNIVERSITY OF UTRECHT 

This paper discusses rowwise matrix correlation, based on the weighted sum of correla- 
tions between all pairs of corresponding rows of two proximity matrices, which may both be 
square (symmetric or asymmetric) or rectangular. Using the correlation coefficients usually 
associated with Pearson, Spearman, and Kendall, three different rowwise test statistics and 
their normalized coefficients are discussed, and subsequently compared with their nonrowwise 
alternatives like Mantel 's Z. It is shown that the rowwise matrix correlation coefficient between 
two matrices X and Y is the partial correlation between the entries of X and Y controlled for the 
nominal variable that has the row objects as categories. Given this fact, partial rowwise cor- 
relations (as well as multiple regression extensions in the case of Pearson's approach) can be 
easily developed. 

Key words: matrix permutation tests, rowwise matrix correlation, partial matrix correlation, 
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Introduction 

Matrix association/correlation methods are used increasingly in widely different 
research disciplines, for example in geography, psychometrics (Hubert, 1987), popu- 
lation biology (Smouse, Long, & Sokal, 1986), systematic zoology (Cheverud, Wagner, 
& Dow, 1989), animal behavior (de Waal & Luttrell, 1988; Hemelrijk, 1990a, 1990b; 
Schnell, Watt, & Douglas, 1985). Most applications involve two square matrices con- 
taining for each pair of distinct objects the value of some measure of relationship, such 
as correlation, distance, interaction frequency, flow, and so on. Such matrices will be 
called proximity matrices, following Hubert (p. 121) in his use of the term "proximity" 
as referring to any measure of relationship, symmetric or asymmetric, that is specified 
for object pairs. The correlation between two proximity matrices is assessed using 
Mantel's statistic, defined simply as the sum of all crossproducts between the two 
matrices (Mantel, 1967). To evaluate the significance of the statistic, a permutation test 
is employed, originally described by Mantel. This inferential procedure respects the 
interdependencies of observations within rows and columns of the matrices (see, e.g., 
Krackhardt, 1988). 

Extensions of Mantel's approach have been developed in different directions: (a) 
besides Mantel's statistic, which is really an unnormalized Pearson product-moment 
correlation coefficient, statistics have been introduced based on Spearman and Kendall 
rank-order correlation coefficients (Dietz, 1983); (b) Mantel's bivariate matrix correla- 
tion test has been extended with multiple regression and partial correlation methods 
(Dow, Cheverud, & Friedlaender, 1987; Smouse et al., 1986); (c) matrix correlation 
methods have been developed for rectangular proximity matrices for which the set of 
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row objects is different from the set of column objects (Hemelrijk, 1990a; Hubert, 1987; 
Klauber, 1971). In this paper an alternative matrix correlation coefficient will be dis- 
cussed, based upon a weighted sum of the correlations between all pairs of correspond- 
ing rows of the two matrices. This rowwise  matrix correlation coefficient is similarly 
defined using the indices usually associated with Pearson, Spearman, and Kendall; it 
can be extended with multiple regression and partial correlation methods, and used 
with square (symmetric or asymmetric) or rectangular proximity matrices. 

The basic feature of rowwise correlation measures is that they only involve com- 
parisons of pairs of cells within the same row. They can therefore be applied in cases 
where the data has been obtained in a way that only allows for within-row comparisons, 
such as conditional proximity matrices in the sense of Shepard (1972). Thus, Hubert 
(1987, p. 274) applied a rowwise index based on Kendall's scoring function to the 
Miller-Nicely confusion matrices containing conditional probabilities. As has been 
shown by Hemelrijk (I990a), the application of rowwise statistics is, however, not 
limited to these cases only, but is also useful with matrices containing entries that may 
all be compared to each other, .such as those containing frequencies of interactions 
flowing from the row objects (individuals initiating interactions) to the column objects 
(individuals receiving interactions); see the section on Examples. It will be shown that 
the rowwise correlation coefficient between two matrices X and Y is equal to the partial 
correlation between the entries of X and Y controlled for the nominal variable R that 
has the row objects as categories. This means that whenever one wishes to control for 
the differences among the row objects, a rowwise measure can be profitably used in our 
matrix comparison task. For instance, when there are differences among the individuals 
initiating interactions in their tendencies to interact (showing in different row means), 
these differences can be controlled for by using a rowwise measure (Hemelrijk, 1990a), 
thus partialling out from the total correlation between the two matrices that which is 
due to across-row internal comparisons. A rowwise index based on Kendall's approach 
has been introduced by Hubert (1987). Rowwise indexes based on Kendall's and Spear- 
man's approaches have been introduced by Hemelrijk (1990a, 1990b) in the context of 
models of reciprocity/interchange of behavior. 

To provide some background terminology that will prove helpful in the way of 
analogy to the matrix comparison context, note that the correlation coefficients of 
Pearson, Spearman, and Kendall are all specific forms of the generalized correlation 
coefficient (see Daniels, 1944; Kendall, 1962): 

ff'~ 3"(xi, x j)3"(Yi ,  Yj) 
F =  

(~ ,  3"(xi, xj)  2 ~ T ( Y i ,  yj)2)l/2' 

where x and y are two numerical measures and 3' is a function that assigns to each pair 
of x-scores, (x  i, x j ) ,  a new value, y ( x i ,  x j ) ,  subject only to the condition that y ( x i ,  x j)  
= - 3"(x j ,  x i)  (and analogously for the y-scores). This pairwise comparison function y 
can have different forms. If 3"(xi, x j)  = xi  - x j ,  Pearson's product-moment correlation 
coefficient results; when 3"(xi, x j)  = ~ank (xi)  - rank (x  j ) ,  F is Spearman's correlation 
coefficient, and with y ( x  i, xj)  = sign (x i  - x j ) ,  one has Kendall's tau b coefficient. In 
the case of two matrices X and Y (with elements Xij  and Yij respectively), 

r(x~j, xkt)3"(Y~i, Y~) 
F =  

( Z  3"(Xij' Ski) 2 Z 3"(Yij, Ykl)2) 1/2' 

can be considered a generalized matrix correlation coefficient for rows i, k and columns 
j ,  /. Note that in this formula the summation is over all pairs of cells within the two 
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matrices (excluding the diagonal cells in the case of square matrices X and Y with 
undefined diagonal). When the summation is restricted to all those pairs of cells that 
belong to the same row, one arrives at the generalized rowwise correlation coefficient 
between two matrices: 

T(Xij, Xik)T(Yij, Yik) 
rrw = ( X  T(Xij, Xik) 2 X T(Yij, Yik)2) t/2' 

for rows i and columns j ,  k. For each of the three different y's, a different rowwise 
correlation coefficient results. (When using Spearman's comparison function, the trans- 
formation to ranks is understood to take place within each row; otherwise, the pairwise 
comparisons in Frw do not depend exclusively on the values of the cells within the same 
row.) In this same type of generalized matrix correlation context, one might also con- 
sider alternative normalizations such as 

Frw,ar~ 
y(Xij, Xi~)Y(Yij, Yik) 

( ~  "r(x~2, xek) 2 ~ "r(Ye2, Y~k)2) ~/2' 
i j,k j,k 

which turns out to be a simple weighted average of correlations between pairs of rows. 
Both of these measures will be discussed in their various specific forms in the sequel. 

In this paper rowwise correlation between two proximity matrices is discussed. Of 
course, by restricting the summation in F to all pairs of cells that belong to the same 
column, one obtains a columnwise correlation. The same can be achieved by transpos- 
ing both matrices and calculating the rowwise correlation between these transposed 
matrices. When comparing two rectangular or asymmetric proximity matrices, one can 
often fruitfully distinguish between two different conjectures of a similar patterning of 
entries across the two matrices: rowwise and columnwise (see Examples). Rowwise 
(and columnwise) correlation measures are pre-eminently the statistics to be used for 
evaluating these two different conjectures. Obviously, when the entries in the matrices 
may only be compared within the same row, there is necessarily only one conjecture of 
similar patterning to be evaluated. 

The Rowwise Correlation Between Two Matrices 

Pearson's Product-Moment Approach 
Several authors (e.g., Dietz, 1983, Hubert, 1987, plus references therein) have 

discussed the raw crossproduct statistic, originally introduced by Mantel (I967), for use 
in assessing the correlation (or association) between two proximity matrices, say X and 
Y. Mantel's statistic, denoted by Z, can be defined as 

Z = X XijYij ,  
i,j 

for rows i = 1, . . .  , n and columns j = 1 . . . .  , n; i # j (if X and Y are square); for 
rows i = 1 . . . . .  p and columnsj = I . . . .  , q (ifX and Y are rectangular). The statistic 
Z is an unnormalized Pearson's product-moment correlation coefficient. For two rect- 
angular matrices each with p rows and q columns, it can be shown (see Kendall, 1962, 
p. 21) that 

X (Xij - X k l ) ( Y i J  -- Ykt) = 2{pq~  XijYij  - ( X  X i j ) ( X  Yij)}, 
i,j,k,l i,j i,j i,j 
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i, k = I,  . . . ,  p;  j ,  l = I,  . . .  , q. Similarly, for two square matrices each with n rows 
and n columns, 

2 (Xij - X k l ) ( Y i j  - Ykl) = 2{n(n - 1) ~ Xi jY i j  - ( 2  X i j ) ( 2  Yij)}, 
i,j,k,l i,j i,j i,j 

i, k = 1, . .  • , n ; j ,  l = I . . . .  , n; i # j and k # I. Thus,  the left-hand statistic is 
equivalent to the Z statistic, each being a constant linear transformation of  the other  
under any permutation of  the rows and the columns of  one of  the two matrices. F rom 
this formula it can be deduced that the Z statistic is based upon all comparisons of  pairs 
of  cells across the two matrices. 

The rowwise statistic Z r  is defined by restricting the summation to those pairs of  
cells that belong to the same row. Thus,  

Zr = 2 (Xij - Xik)(giJ  - gik),  
i,j,k 

i =  1 , . . . , n ; j , k  = 1 . . . .  , n ; j <  k ; i # j a n d i # k ( i f X a n d Y a r e s q u a r e ) ; o r i  
= 1, . . .  , p ;  j ,  k = 1, . . .  , q ; j  < k (if X and Y are rectangular). The  measure Z r can 
be seen to be a weighted sum of  the correlations between all pairs of  corresponding 
rows, with each weight being proportional to the standard deviations of  the two rows. 
In fact,  the weight of  the i-th pair of  rows (w  i) is equal to the product  of  the standard 
deviation of  row i in the X-matrix and the standard deviation of  row i in the Y-matrix 
multiplied by the number of  columns (in case X and Y are rectangular), or  by the 
number  of  columns minus one (in case X and Y are square). Le t  wi = ( Z j , k ( X i j  - 
Xik)2~_.j,k(Yij _ Yik)2)  1/2. Then,  

Zr = 2 w i [ 2  ( X i j -  X I k ) ( Y u -  Yik)/Wi] : ~'~ w i r i ,  
i j,k i 

where r i is the product-moment  correlation of  the i-th pair of  rows (see Kendall ,  1962, 
sec. 2.5). The value of  w i r  i is the contribution of  the i-th pair of  rows to the total value 
of  Z r. 

The Z r  statistic can be normalized to lie between - 1 and 1 in at least two possible 
ways,  giving rise to two different coefficients that only differ in the denominator:  

2 (Xij - Xik ) ( Yij - Yik ) 
i,j,k 

rrw,av = ~ ( ~  (Xi j  - X i k )  2 ~ ( r i j  -- Yik)2) 1/2' 

i j,k j,k 

2 (Xij - X ik ) (Y i j  - Yik) 
i,j ,k 

rrw =(2  ( X i j - - X i k ) 2  2 ( Y i j - Y i k ) 2 )  1/2" 
i,j,k i,j,k 

The first is a w e i g h t e d  ave rage  o f  the  corre la t ions  between all pairs of  corresponding 
rows. With w i defined as above,  

wiri  
Zr  i 

rrw'av = 2 Wi 2 Wi 
i i 



HAN DE VRIES 57 

which is the Pearson form of the generalized coefficient Frw,a v of the introduction. The 
second, called the rowwise  ma t r i x  corre la t ion  coef f ic ient ,  is the Pearson form of the 
generalized rowwise correlation coefficient Frw of the introduction. 

Each of these two normalizations is a particular type of partial correlation coeffi- 
cient between the entries of X and Y controlled for the nominal variable R that has 
values as the row categories (i.e., the row objects). As noted by Quade (1974), the most 
basic concept of control is to actually hold the control variable constant and define 
partial correlation as the (weighted) average of conditional correlations, where a con- 
ditional correlation is the correlation between values of X and Y for which the control 
variable is constant. The first normalization rrw,a v fits this definition of partial corre- 
lation perfectly, with the nominal variable R as the control variable. A second concept 
of control, also discussed by Quade, involves adjusting for the control variable, and as 
shown below, rrw is the partial correlation between the entries of X and Y controlled for 
the nominal variable R by adjusting for it. 

r,~ as  a Par t ia l  Corre la t ion  

By way of background to the demonstration that rrw is a partial correlation, sup- 
pose there are three interval scaled variables X, Y, and Z; the partial correlation 
between X and Y controlled for Z can be defined as the correlation between X' and Y', 
where X' is the residual X - f ( Z )  and Y' is the residual Y - 9 ( Z )  with f and 9 
prediction functions. I f f  and 9 are the usual linear regression functions, the partial 
correlation based on this concept of control can also be obtained from the well-known 
formula: 

r x y . z  = 
r x y  -- r x z r y z  

((1 - r2z)(1 - r2z))112" 

In the case the control variable Z is nominal having p categories, one can introduce p 
- 1 dummy variables Di ,  each of which is a binary variable taking on only the values 
0 and 1: D i = 1 i fZ  = category i, otherwise D i = 0 (see Dunn & Clark, 1987, pp. 344 
if). The partial correlation between X and Y controlled for Z can then be written as 
r x r . m D 2 . . . D p - ]  and calculated in the following way: determine the residual X '  = X - 
f (  D 1, D2 . . . .  , D p_ 1 ), wheref is  the multiple linear regression function obtained from 
regressing X on the variables D 1, • • • ,  D p _  ] ; similarly, determine the residual Y' = 
Y - 9 ( D  1, D2 . . . .  , D p _  1 ) ,  where 9 is the multiple linear regression function obtained 
from regressing Y on the variables D1 . . . . .  D p - l .  T h e  partial correlation 
r x r . m D 2 . . . n p - 1  is then the correlation between X' and Y', denoted by r x ' r '  or r ( X ' ,  
Y'). 

An alternative, but equivalent method to partial out the nominal Z using the second 
concept of control, is by directly adjusting the values of the observations on X and Y 
for the nominal variable Z (without introducing a set of dummy variables) by subtract- 
ing the respective category means (Xi or I7 i, being the mean X-value (Y-value) of all 
observations with Z = category i) from each X-value or each Y-value. Explicitly, since 
f ( D  1, D 2 . . . .  , D p _  1) = a + b i D  1 + . . .  + b p _ l D p _ l ,  where a = .~p, b I = ,I~" 1 

- . (p  . . . .  , bp_ l = V,p_ 1 - .~p,  f ( Z )  = .'(i if Z = category i. A similar equivalence 
holds for 9 ( D t ,  D 2 ,  . . .  , D p _ l ) .  

To show that the second normalization, rrw, is the partial correlation between the 
entries of the two rectangular p × q matrices X and Y controlled for the nominal 
variable R, it is proven that rrw = r(X', Y'), where X' is the residual X - f ( R )  and Y' 
is the residual Y - y ( R ) ;  f ( R )  and .q(R) are defined for the nominal variable R similarly 
as done above for the nominal Z, where R is now the nominal variable with the p row 
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objects as categories. For each category i (i.e., for each row object i) there are q 
observations on X and on Y, the total number of  observations N = p q ,  and X i ( Y i )  
denotes the mean X-value (Y-value) of all the q observations with R = category i. 
Note,  that for each category i, the mean of the residuals is equal to zero, X~ = 0 and 
Y} = 0; therefore, the mean of all the residuals is also zero, X'  = 0 and Y' = 0. 

For each category i the following identities hold (see Kendall, 1962, p. 21): 

1 q q q 
k~, (X[y - X}k)(Y[j - Y}k) ---- q ~, X}jY} j  - E X}J Y}k 

2 j ,  = 1  j = l  j , k=l  

and 

l q  q 
k~, (X}j - X~) 2 = q ~ ( X ~ j )  2 - X}j  . 

2 j ,  = 1  j = l  j = l  

For both equations the last right-hand term is equal to zero, because X~j and Y~k are 
residuals from their respective means in category i. Now,  using these identities and the 
fact that .,Y' = Y' = 0. 

r(X',  Y')  = 

P q 
E E  

i = l j = l  
(X~j - X')CY~;i - Y") 

i=1y=1 

1/2 
P q 

E E (Y~J - ~ , ) 2 )  
i = l j  -~-'1 

1 P q 

2q i j, 1 ' - X i k ) ( Y i j  - Y~k ) 

]) P q P q 
~. ~, ( X ; ' j - X ; k )  2 ~ ~ (Y~y-Y~k) 2 

i= l j ,k= l i= lj ,k= 1 

Because X)y  - X~k = X i j  - .X'i - (X ik  -- X' i )  = X i j  - X i k ,  and similarly, Y~j - Y~k 
= Yij  - Y ik ,  one can drop the quotes and rewrite as: 

P q 
E E  

i = l j < k  
(x i i  - x i k  )(Yij  - Yik ) 

E (x i j  - x i k )  2 
i l j < k  

1/2 
P q 

E E (Yij - Y ik)  2) 
i = l j < k  

-~. r r w .  

The derivation is exactly the same for the case that X and Y are square n x n matrices 
with undefined diagonals. The number of observations for row category i excluding the 
diagonal, equals n - 1 for every i, and the total number of observations N equals n (n 
- 1 ) .  
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S p e a r m a n  a n d  K e n d a l l  R a n k - C o r r e l a t i o n  A p p r o a c h e s  

Within Spearman's approach the following rowwise correlation statistic can be 
introduced: 

Rr : Z (Sij - Sik)(Tij - Zik), 
i,j,k 

i = 1 . . . .  , n ; j ,  k = 1 . . . .  , n ; j  < k; i ¢ j  and i ~ k ( i fX  and Y are square), or i 
= 1, . . .  , p ; j ,  k = 1, . . .  , q ; j  < k (ifX and Y are rectangular). S i j ( T i j )  is the rank 
number o f X i j  (Y i j )  ranked within row i, and thus, R r is identical to Z r calculated on the 
matrices S and T. 

If R r is divided by the normalization factor, Y. i (Y . j ,k (S i j  - S i k ) 2 ~ . j  k (T i j  - 
Tik)  2) 1/2, one arrives at the coefficient Prw,av, which is a w e i g h t e d  a v e r a g e  off'the r a n k  
corre la t ions  between all pairs of matching rows, and equal to the partial rank-correla- 
tion coefficient between the entries of X and Y controlling for the nominal variable R by 
holding it constant (a special case of Frw av in the introduction). I f R r  is divided by the 
normalization factor (Y.i,j,k(Sij -- Sik ) 2~j ,k(Ti j  - Tik ) 2) 1/2, one obtains the r o w w i s e  
rank -corre la t ion  coe f f i c ien t  Prw, which can be shown as in the last section to be the 
partial correlation between the rank-transformed entries of S and T controlled for R by 
adjusting for it (and a special case of Frw in the introduction). 

In an analogous way using the Kendall scoring function, one obtains 

Kr = ~ sign ( X  0 - -Xik  ) sign (Yij - Yik), 
i,j,k 

i = 1 . . . . .  n ; j ,  k = I . . . .  , n ; j  < k; i # j  and i # k ( i fX and Yare square) or i 
= 1, . . .  , p ; j ,  k = 1 . . . .  , q ; j  < k (ifX and Y are rectangular) (see Hemelrijk, 1990a, 
and Hubert, 1987, pp. 267 ft.). K r  can be seen to be a weighted sum of the correlations 
between allpairs of corresponding rows. Let w i = (~j ,k  sign (Xij - Xik)  2 ~-j,k sign 
(Y i j  - Yik)  2) 1/2 Then 

g r  : Z W i [ ~ ,  sign (Xi j  - X i k )  sign (Yi j  - Y i k ) / W i  : Z WiTi, 
i LJ,k i 

where ~'i is Kendall's tau b for the i-th pair of rows (see Kendall, 1962, sec. 2.3). The 
value of w i t  i is the contribution of the i-th pair of rows to the total value of K r. 

The first type of normalization (7"rw,av) of K r is equal to 

sign (Xi j  - X i k )  sign ( Y o  - Yik) 
i,j,k 

~i (J~',k s i g n ( X i j - X i k ) 2 Z  s i g n ( Y i J -  Yik)2) j,k 

and is, just as in the Z r and R r case, a w e i g h t e d  a v e r a g e  o f  cond i t i ona l  corre la t ions ,  
and therefore a partial correlation coefficient based on the concept of control of holding 
the control variable constant. As for the second normalization of K r, Zrw, which is 
equal to 

sign (Xi j  - X i k )  sign (Yij - Yik) 
i,j ,k 

~ sign (Xi] - X i k )  2 ~ .  sign (gi] - Yik) 2 
i,j,k i,j,k 
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it appears impossible to give a natural adjustment interpretation similar to the one 
demonstrated above for the second normalization of Zr, given the absence of a way of 
defining a Kendall partial correlation between two ordinal variables X and Y controlling 
for a nominal variable Z by adjusting for it. 

Significance Testing 
For the case of square matrices, Mantel (1967) has described a method to assess 

the significance of a matrix correlation statistic by means of a permutational method 
(also, see Dietz, 1983; and Hubert, 1987). The reference distribution of the statistic 
under the conjecture of an absence of a similar patterning between the entries of X and 
Y is found by generating a set of permutations of the rows (and simultaneously of the 
columns) for one of the two matrices and calculating for each permutation the value of 
the statistic. The significance of the observed value of the statistic is then assessed by 
calculating the proportion of values as large as or larger than the observed value (i.e., 
the right-tail probability Pr) and the proportion of values as small as or smaller than the 
observed value (i.e., the left-tail probability Pt). For square matrices this same per- 
mutational method can be used to assess the significance of the rowwise statistics Zr (or 
equivalently rrw), R r (or equivalently Prw) and Kr (or equivalently "Crw). With this 
permutation method, however, Z~ is not (necessarily) equivalent to rrw,av, because the 
denominator of rrw,a v c a n  vary across the permutations. Therefore, if one wishes to 
assess the significance of this weighted average of conditional correlations, rrw,av, o n e  

has to use this coefficient itself instead of the raw statistic Zr. The same is true for the 
normalized coefficient Prw,av and the raw statistic R r, and also for Zrw,av and Kr. 

The permutational method to be used for rectangular matrices depends on the type 
of data these matrices contain and, in the case of proximity data, on whether the row 
and column categories are considered fixed or random. First, if the rows correspond to 
p objects and the columns correspond to q variables (or vice versa), the rectangular 
matrices contain profile data (Shepard, 1972). In this case either only the rows or only 
the columns, whichever contain the profiles, should be permuted (see also Hubert, 
1987, sec. 2.3.2). 

If the rectangular matrices are proximity matrices, then the pairs of objects (i.e., 
the dyads) are the observational units. In any randomization test the measurements 
made on the observational units have to be randomized. In case of proximity matrices 
therefore, the observations on the dyads must be randomized, but under the restriction 
that the interdependence existing among these observations is respected. That is to say, 
only those random assignments of the observations to the dyads are allowed that keep 
the rows and columns intact. So, for rectangular proximity matrices each randomiza- 
tion can be obtained by randomly permuting the rows and independently the columns. 
In this way, a random subset (possibly containing replications) of the total p !q ! allowed 
randomizations is constructed. By giving consideration to a specific aspect of the row 
and column objects, the set of allowed randomizations may have to be restricted even 
more. Thus, several authors (Hemelrijk, 1990a; Hubert, 1987; Klauber, 1971) have 
stated that the permutational method depends on whether the row and column catego- 
ries are considered fixed or random. If the row objects as well as the column objects are 
considered random, both rows and columns should be permuted independently. If, on 
the other hand, the row objects are considered fixed and the column objects random (or 
vice versa), only the columns (or only the rows) should be permuted. Finally, according 
to Shepard (1972), a proximitymattix can also be treated as a matrix of profile data. So, 
if the columns are regarded as containing the profiles, these should be permuted and not 
the rows. 

If the permutational method is used in which only the columns are permuted, then 
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each of the raw statistics Zr, R r and K r is equivalent to its corresponding normaliza- 
tions under this permutation scheme: Z r is equivalent to both rrw,a v and rrw; R r is 
equivalent to both Prw,av and Prw ; and K r is equivalent to both Trw,a v and ~'rw, because 
all of the respective denominators in the normalized coefficients are constant under any 
permutation of the columns. If, on the other hand, rows as well as columns are per- 
muted, then the same restrictions as discussed above for square matrices are imposed 
on the use of the raw and normalized statistics. 

Examples 

To show the usefulness of rowwise indexes in matrix comparison tasks, some 
examples will be presented and the rowwise indexes will be compared with the non- 
rowwise alternatives Z, R, and K. R is Mantel's statistic calculated on the within- 
matrix ranks of the two matrices, and K = Y. sign (Xi j  -- X k l  ) sign (Yi j  - Ykt) ,  where 
summation is over all distinct pairs of cells (i < k or (i = k and j < l)), excluding the 
diagonal cells when the matrices are square with undefined diagonal (see Dietz, 1983). 
It is helpful to distinguish between the following types of proximity data (slightly 
modified from Shepard, 1972): 

I. Proximity data, based on a symmetric measure. 
A. Square matrix; rows and columns correspond to the same n objects. The 

matrix is symmetric. 
B. Rectangular matrix; rows and columns correspond to different objects. 

II. Proximity data, based on an asymmetric measure. (Shepard used the term 
"dominance data" for this category; Hubert, 1987, p. 121 is followed in the use 
of the term "proximity" as referring to any measure of relationship for object 
pairs.) 
A. Square matrix; rows and columns correspond to the same n objects. The 

matrix is in general asymmetric. 
B. Rectangular matrix; rows and columns correspond to different objects. 

(This category is not distinguished by Shepard.) 
The rowwise approach is especially useful if both matrices belong to one of the 

categories IB, IIA, or IIB, or if one of the two matrices belongs to category IIA and the 
other to category IA, because in all these cases we can fruitfully distinguish between a 
rowwise conjecture of similar patterning and one specified columnwise. 

R e c t a n g u l a r  matr ices .  It is instructive to start with an example in which both 
matrices belong to category liB. Suppose we are studying the social behavior of nine 
monkeys living in a social group comprising five males a, . . . ,  e, and four females 
f, • • • ,  i. Let X denote the artificial matrix containing frequencies of aggressive acts 
directed from the males a , . . . ,  e towards the females f . . . . .  i. Similarly, matrix Y 
contains the frequencies of grooming acts. Consider two possible conjectures of a 
similar patterning of the matrix entries: (a) whether aggressive behavior shown by each 
of the males towards the females correlates with the grooming behavior shown by these 
males towards the females (i.e., whether the rows of X are correlated with the corre- 
sponding rows of Y). This is the rowwise conjecture. (b) Whether aggressive behavior 
received by each of the females from the males correlates with the grooming behavior 
received by these females from the males (i.e., whether the columns of X are correlated 
with the corresponding columns of Y). This is the columnwise conjecture. To test the 
rowwise conjecture, the three different test statistics (Zr ,  R r ,  and Kr) have been 
applied to the matrices X and Y: 
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X = 

f g h i 

a 1 1 3  6 7 
b 20 1 10 15 
c 2 2 2  1 3 
d 6 1 5  2 
e 12 0 11 10 

y = 

f g h i  

a 1 3 1 2 3  
b 1 0 1 1 5  
c 8 2 1 6  
d 1 1 3 4 7  
e 1 2 4 0 5  

To apply the R r test, the matrices X and Y are 
ranked within the rows, giving the matrices S and 
to this pair of matrices. 

S = 

f g h i  

a 4 1 2 3  
b 4 1 2 3  
c 4 2 1 3  
d 4 1 3 2  
e 4 1 3 2  

a 

b 
, T =  c 

d 
e 

first transformed to rank numbers, 
T. Subsequently a Z r  test is applied 

f g h i 

4 1 2 3 
4 1.5 1.5 3 
4 2 1 3 
4 1 2 3 
4 2 1 3 

The results of the Zr, R r ,  and K r test are presented in Table 1. Calculated for each pair 
of corresponding rows in the two matrices is the weight, the correlation, and the 
product of weight and correlation, which is the contribution of this pair of rows to the 
statistic. Thus, it is directly visible how much each row subject contributes to the total 
value of the statistic. (~'rw,av and ~'rw coincidentally have the same value; this is not true 
in general). 

Comparing the different tests, the following can be noted. The weights w i  in the Kr 
test are more or less proportional to the weights in the R r  test, the last being about 3.3 
times as large as the former. Oppositely, the Z r  weights are clearly disproportional to 
those in the R r and K r test. These differences reflect the ways in which the different 
statistics incorporate the variabilities in the pairs of rows. It is up to the investigator to 
judge the plausibility of the different weightings employed implicitly by the statistics. 
Note, for instance, that with the Z r  test, and in spite of the correlation between the 
e-rows being much smaller than the one between the d-rows, female e contributes more 
to the value of Z r than female d, since the weight (the variance) of the e-rows is much 
higher than for the d-rows. Based on the outcomes of the R r and K r test, a positive 
rowwise correlation is established at a one-tailed significance level of .04 (two-tailed: 
.08), and one may thus conclude (if the test was one-tailed): males show more fre- 
quently aggression towards those females whom they groom more often. 

The columnwise conjecture was also evaluated: the values of the three columnwise 
statistics and their respective right-tail and left-tail probabilities (based on 2000 permu- 
tations of the rows and columns) are: Z c = -332  ( e r  = 0.99, e l  = .010); R c = 
-128.75 (Pr  = 1.00, P1 = .006); K c = - 2 2  (Pr  = 1.00, Pt = .005). All three 
statistics indicate a negative columnwise correlation at a one-tailed significance level 
smaller than .01 (two-tailed: .02), thus allowing us to conclude: females receive more 
aggression from those males by whom they are less frequently groomed. 

How does this application of rowwise (and columnwise) indices compare to the use 
of the nonrowwise indices Z, R, and K? If the permutational method is used in which 
only the columns are permuted, the Z index is equivalent to the Z r  index, because Z is 
a linear transformation of Z r under any permutation of the columns, which can be 
shown as follows. For each row i, the following identity holds (see Kendall, 1962, p. 
21): 
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TABLE 1 

Results of Three Different Rowwise Matrix Correlation Tests Applied to the 
Matrices X and Y in the Text. All Significance Levels are Based on 2000 

Permutations of the Rows and Columns Independently. 

Zr tes t  Rr tes t  Kr tes t  

rows wi r i w ir i w i Pi w iP i wi "~i w i'Ci 

a 220.5 .92 203 20 1.00 20  6 1.00 6 
b 415.4  .87 362  19 .95 18 5.5 .91 5 
e 397.8 .80 320  20 1.00 20  6 1.00 6 
d 102.7 .60 62  20 .80 16 6 .67 4 
e 333.1 .25 83 20 .40 8 6 .33 2 

Sum of the 
contr ibut ions Zr =1030 R, =82 Kr= 23 

Weighted average 
of the correlations rrw,av =0.701 prw,av =0.829 "Crw,av = 0.780 

Rowwise matrix 
correlat ion r,w =0.593 prw =0.828 "Crw= 0.780 

Right-tail  
p robabi l i ty  Pr =0.153 Pr =0.035 Pr = 0.037 

Left-tai l  
p robabi l i ty  Pt =0.848 Pt =0.979 Pt= 1.00 

(Xij  - X i k ) (Y i j  - Yik) = q~_~ Xi j  Yij - Xi. Yi. ,  
j < k  j 

where Xi .  is the total of  row i. By summing across  all rows,  

~_~ (X i j  - X i k ) ( Y i j  - Y i k ) =  q ~  ~ X i j Y i j  - ~_~ X i .  Y L ,  
i j < k  i j i 

which can be rewrit ten as 

Zr  = q Z  - Zrtot,  

where Zrtot denotes  the sum of  crossproducts  of  the row totals (i.e., the unnormalized 
Pearson correlat ion be tween the row totals). The equivalence be tween  Z and Z r  fol- 
lows f rom the observat ion that the last right-hand te rm is constant  under  any permu- 
tation of  the columns.  It  follows directly that Z is not equivalent with Zr  when both the 
rows and columns are permuted.  When this permutat ional  procedure  is used in assess-  
ing the significance of  Z,  two different types of  correlational information that can be 
extracted f rom the two matrices are confounded,  because  Z = 1 / q ( Z  r + Z r t o t ) ,  
namely the rowwise correlation, Z r, and the correlation be tween the row totals, Z r t o t .  
In fact, at the same time, the columnwise correlation, Z c ,  is confounded with the 
correlation be tween the column totals, Zctot, because  Z = 1/p (Z¢ + Zctot ). Thus,  Z 
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TABLE 2 

Results of Three Different Rowwise and Columnwise Matrix 
Correlation Tests Applied to Two Asymmetric Matrices. 

R o w w i s e  Zr= 1159 Rr= 86 Kr= 25 
conjec ture  .164 .840 .007 1.00 .007 1.00 

Columnwise Zc = 365 Rc = -36 Kc = -11 
conjecture  .233 .771 .933 .082 .989 .042 

Note: the right-tail and left-tail probabilities are given below the 
value of each statistic. 

confounds four different types of correlational information when the permutational 
method of permuting both rows and columns is Used. 

For R and K, similar identities as shown for Z above do not hold, and therefore, these 
indexes are not equivalent with their rowwise counterparts even when only the columns 
are permuted. For instance, when the significance of R is assessed (which is equal to 
2492.75) by generating 2000 permutations of the columns, a pr-value of.  143 results, which 
clearly differs from the pr-value of .039 resulting from the R r test. Other examples of 
applying the K r index to rectangular matrices can be found in Hemelrijk (1990a). 

Square ,  a symmet r i c  matr ices .  A second example involves two proximity matri- 
ces that both belong to category IIA. For the same group of monkeys as above, com- 
pare aggressive with grooming behavior among all the males. Matrices X and Y are now 
two square, asymmetric proximity matrices containing interaction frequencies of the 
two types of behavior performed by each male (the row individuals) towards all other 
males (the column individuals). 

a b c  d e a b c d e 

X = 

a " 1 2 3 4  
b 40 * 4 20 12 
c 8 2 * 6 7  
d 5 3 4 * 5  
e 1 2 4 0  5 * 

y = 

a 

b 20 
c 22 
d 23 
e 12 

3 6 7 8 
* 10 15 13 
2 * 3 4 
1 5 * 6 
0 1 1  10 * 

Again, two different conjectures can be distinguished: (a) rowwise: is aggressive be- 
havior shown by each of the males towards the other males correlated with the groom- 
ing behavior shown by these males towards the other males; and (b) columnwise: is 
aggressive behavior received by each of the males from the other males correlated with 
the grooming behavior received by these males from the other males. Table 2 presents 
the p-values for the different test statistics, based on 2000 permutations of the rows and 
columns simultaneously. 

As noted above in the former example, when the permutational method is used in 
which both the rows and the columns are permuted, Z confounds four different types 
of correlational information: the rowwise correlation Zr,  the correlation between the 
row totals Zrtot, the columnwise correlation Z c , and the correlation between the col- 
umn totals Zctot. Indeed, for square n × n matrices, a multiple of Z is equal to the sum 
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TABLE 3 

and Probabilities of Z and Four Different Types of Correlational 
Information Extracted From Two Asymmetric Matrices. 

Z Zr Zrtot Zc Zctot 

65 

Value 1952 1159 6649 365 7443 

Pr .041 .164 .051 .233 .049 

Note: right-tail probabilities are based on 2000 permutations of rows and 
columns simultaneously. 

of these four different indices: 2(n - I)Z = Zr + Zrtot + Z c + Zctot. Table 3 presents 
the values and right-tail probabilities for all these statistics. The relatively extreme 
value of Z is seen to be due to the strong correlation between the row totals as well as 
between the column totals. 

It is worth noting that there are yet other types of information that can be extracted 
from two square proximity matrices. Each square matrix, say X, can be decomposed 
into the sum of a symmetric and skew-symmetric matrix: 

X = X + + X  -,  

where Xi] = (Xij + Xji)/2 and Xi j  = (Xij - Xji)/2 for all i and j  (see Hubert, 1987). 
As shown by Hubert (p. 229), 

Zxv =Zx~v+ + Z x - v - ,  

from which it follows that Zxv confounds the symmetric and skew-symmetric infor- 
mation when X and Y are both asymmetric. In that case, the symmetric and skew- 
symmetric components should be dealt with separately, just as for the rowwise and 
columnwise components. 

Square matrices one o f  which is asymmetric. Our next example is quite similar to 
the one presented by Hubert (1987, pp. 130-131) and involves two proximity matrices, 
one of which belongs to category IIA and the other to category IA. Matrix X contains 
the frequencies of initiating an interaction among five :persons seated around a table. 
This matrix is to be compared with the hypothesized structure matrix Y, in which O's 
identify adjacencies and l 's identify nonadjacencies. The (artificial) matrix X shows 
fairly large differences in tendencies among the five persons to initiate an interaction; 
these differences can be controlled for by using a rowwise statistic. 

Person receiving interaction 

Person initiating interaction 

1 2 3 4 5 

* 21 22 24 23 [ 1 

22 * 23 24 25 I 2 
45 34 * 30 46 ' 3 
13 14 15 * 14 4 
22 23 24 19 * 5 

1 2 3 4 5  

* 0 I l l  
0 " 0 1 1  
1 0 " 0 1  
1 1 0 " 0  
1 1 1 0 "  
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TABLE 4 

Results of Three Different Tests to Evaluate Three Types of 
Conjectures of Similar Patterning of Entries Across Two Square 

Matrices One of Which is Asymmetric. 

R o w w i s e  Zr = 76 Rr = 44 Kr = 11 
conjecture  .011 1.00 .043 1.00 .043 1.00 

C o l u m n w i s e  Zc= 44 Rc= 12 Kc= 3 
conjec ture  .288 .738 .308 .804 .308 .804 

Symmet r i c  Zx+v+ = Zxv =305 
conjec ture  .215 .820 

Rx+y+ = 2345 Kx+y+ = 28 
.213 .860 .222 .837 

Note: the right-tail and left-tail probabilities are given below the 
value of each statistic. 

Here also, one can distinguish between a rowwise and a columnwise conjecture: (a) 
persons initiating interactions will do so more to persons who sit opposite than to 
persons next to them; and (b) persons receiving interactions will receive more interac- 
tions from persons who sit opposite than from persons next to them. A third conjecture, 
which will be called symmetr ic  to distinguish it from the rowwise and columnwise 
conjectures, states that persons interacting with each other will more often sit opposite 
than next to each other, and can be tested with the Z statistic if the matrix X contains 
the frequencies of interactions without taking the direction of the interaction into ac- 
count. Of course, this matrix can easily be computed by summing all pairs of corre- 
sponding entries across the main diagonal and thus, equals twice the X + matrix. To 
evaluate this symmetric conjecture one may as well calculate the Z index on the original 
matrices (as did Hubert, 1987), because Zxv is equal to Zx+v+ for pairs of matrices, one 
of which is symmetric (Hubert, 1987, p. 229). Analogous identities for R and K do not 
hold: Rxy ~ Rx+v+ and Kxv # Kx+v+ (for the two matrices above: Rxv = 2330, 
Rx+y÷ = 2345; Kxy = 25, Kx÷y+ = 28). To test the symmetric conjecture using one 
of these indexes calculate R and K on the matrices X + and Y +, but not on the original 
matrices X and Y. Table 4 presents the outcomes'of the different statistics used to test 
each of these three different conjectures. 

Square,  symmetr ic  matrices.  In the final example we apply rowwise statistics to 
a pair of square, symmetric matrices. Dietz (1983) applied several matrix association 
tests to a pair of genetic and anthropometric distance matrices presented by Spielman 
(1973). Besides the Z, R, and K tests, she also applied the g r test (in fact, she used a 
statistic called Kc ,  that is equivalent to K r because the matrices are symmetric), and 
established a large difference between the p-value of the g r test (0.006) and the p-value 
of the K test (0.077). This difference is apparently due to the fact that the K r test deals 
with the large differences that exist among the row means, which the K test does not. 
We performed tests employing the two other rowwise statistics, yielding also significant 
outcomes: the estimated p-values for Zr and R r were 0.041 and 0.004, respectively. 
Here also, we note large differences with the outcomes of the nonrowwise Z and R tests 
(p-values of 0.201 and 0.065, respectively). An improved matrix correlation method 
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that controls for the differences among the object totals, while explicitly reckoning with 
the symmetry of the matrices, is proposed in de Vries (1992). 

The Partial Rowwise Correlation Between Two Matrices Controlled for a Third 

Smouse et al. (1986) have recently developed multiple regression and correlation 
extensions of Mantel's statistic Z, utilizing the concept of control of "adjusting for the 
control variable". All these extensions apply to the rowwise Zr as well, because the 
rowwise matrix correlation rrw is equal to r(X', Y'), which is in fact the normalized 
Mantel's Z calculated on the matrices X' and Y' containing the deviates from the 
row-means (X[j = X 6 - X i ;  Y"'q = Yi j  - Yi )"  

With Mantel's Z approach, the partial correlation between the matrices X and Y 
controlling for the matrix Q can be calculated according to the usual partial correlation 
formula, and the same is true for the partial rowwise correlation rrw;XY. Q . Moreover, 
this partial rowwise correlation can easily be seen to be the partial correlation between 
the entries of X and Y controlling for both R and Q (R being the nominal variable with 
the row objects as categories): 

rrw;X¥ -- rrw;XQrrw;YQ 
2 2 1/2 rrw;XY'Q ( (1  rrw;XQ)(1 _ _ rrw;YQ) ) 

rXY.R  -- rXQ.R ryQ.R  

((1 - r 2 Q . R ) ( 1  _ r y Q . R )  ) 2  1/2 

= rXY.R Q . 

From this observation we can conclude that the partial rowwise correlation coefficient 
is indeed appropriately defined, and can be generalized when additional matrices have 
to be partialled out. 

Because the rowwise rank-correlation Prw is identical to rrw calculated on the 
matrices S and T (which contain the rank-transformed values of X and Y, ranked within 
the rows), the partial rowwise correlation coefficient Prw;XY.Q is identical to rrw;ST. U 
(with U being the rowwise rank-transformed matrix of Q), and is thus appropriately 
defined. Continuing, the formula for Kendall's rowwise correlation ~'rw is similar in 
form to the one for Pearson's rowwise correlation rrw (in fact, both are special forms 
of the generalized correlation coefficient Frw of the Introduction), and because Ken- 
dall's partial correlation formula is identical in form to Pearson's partial correlation 
formula, Kendall's partial rowwise correlation coefficient, "/'rw;XY.Q, is also identical in 
form to Pearson's; thus: 

"/'rw;XY --  'Trw;XQ ~'rw;YQ 
Zrw;XV.Q ((1 2 2 ~, 1/2 " 

- -  r r w ; x O ) ( 1  - ,l'rw;YQ) ) 

Significance Testing 

To evaluate the significance of the different partial rowwise correlations, the pro- 
cedure described by Hemelrijk (1990b, appendix; see also Maghsoodloo, 1975) can be 
used. Thus, for each random permutation of the columns and, depending on the type of 
the matrices (see above), possibly also the rows of X and independently also of Y, while 
keeping the control matrix Q fixed, the values of the correlation coefficients rrw;X v ,  
rrw;X Q and r rw ,YQ are computed and entered into the partial correlation formula. When- 
ever rraw;XQ = '1 or r2w;VQ = 1 the partial correlation is undefined and therefore cannot 
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be included into the reference set of partial correlation values. Finally, the significance 
of the observed value of the partial correlation is evaluated in the usual way by deter- 
mining how extreme this value is relative to the values in the reference set. Exactly the 
same procedure can be used for the other two partial rowwise correlation coefficients 

Rrw;XY.Q and '/'rw;XY.Q" 

Conclusion 

In this paper three rowwise matrix correlation coefficients (rrw, Prw and ~'rw), each 
a specific form of the generalized rowwise correlation coefficient Frw, are proposed as 
alternatives to the nonrowwise indexes Z, R, and K in matrix comparison tasks in- 
volving two proximity matrices. (square or rectangular). For testing purposes, the raw 
indexes Zr, Rr, and Kr, being the numerators of the respective rowwise correlation 
coefficients, may be used as well, because the denominators of the coefficients are 
constant under the permutation procedures applied (the simultaneous permutation of 
rows and columns for square matrices and the permutation of columns or the indepen- 
dent permutation of rows and columns for rectangular matrices). 

In contrast with the nonrowwise indices Z, R, and K, which are based on all 
comparisons of pairs of cells across the two matrices, their rowwise alternatives are 
based on comparisons of pairs of cells within the rows only, and as such provide a 
means of partialling out from the total correlation between the entries of the two 
matrices that which is due to across-row comparisons of pairs of cells. Thus, rowwise 
correlation measures provide a means to control for the differences among the row 
objects reflected in their row totals. When applied to asymmetric or rectangular prox- 
imity matrices, rowwise and columnwise (i.e., rowwise in the transposed matrices) 
indexes extract two different types of information from the pair of matrices, each 
referring to a clearly distinct conjecture of a similar patterning of entries across the two 
matrices. Rowwise and columnwise indices are pre-eminently suited for evaluating 
these two different types of conjectures. 
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