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A L T E R N A T I V E  TEST CRITERIA IN COVARIANCE STRU CTU RE 
ANALYSIS:  A UNIFIED  APPROACH 
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In the context of covariance structure analysis, a unified approach to the asymptotic theory 
of alternative test criteria for testing parametric restrictions is provided. The discussion devel- 
ops within a general framework that distinguishes whether or not the fitting function is asymp- 
totically optimal, and allows the null and alternative hypothesis to be only approximations of 
the true model. Also, the equivalent of the information matrix, and the asymptotic covariance 
matrix of the vector of summary statistics, are allowed to be singular. When the fitting function 
is not asymptotically optimal, test statistics which have asymptotically a chi-square distribution 
are developed as a natural generalization of more classical ones. Issues relevant for power 
analysis, and the asymptotic theory of a testing related statistic, are also investigated. 
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1. Introduction 

In covariance structure analysis we often need to assess the validity of  the restric- 
tions .that a model specification H 0, say, imposes on a more general (less restricted) 
model,  say H (see, e.g., Bentler,  1983b; Browne,  1982; J6reskog, 1981; Saris & 
Stronkhorst ,  1984, and references contained therein). To deal with this problem, hy- 
pothesis testing is a standard approach in which the specifications Ho and H are taken 
respectively as the null and the alternative hypothesis of a test. The minimization of  a 
real-valued function F = F(s, ~r), measuring the discrepancy between a vector  s of  
summary statistics and a vector  tr of  parameters satisfying a specific model, generates 
the corresponding test statistics. 

Three  types of  alternative test criteria have already been proposed in covariance 
structure analysis. The first test is the difference (D) type of  test statistic, which is based 
on the difference between the minima of  the fitting function F obtained when analyzing 
respectively Ho and H (e.g., the "chi-square difference" test statistic, used by 
J6reskog, 1977, p. 273, or Lee  & Bentler, 1980, p. 132). This test is by far the most 
frequently applied statistic used to compare nested models. The second test is the score 
(S) type of  test statistic, which is based on a vector  of  derivatives ( " s c o re s " )  and 
requires only that one minimizes the fitting function F under/4o (e.g., the "Modificat ion 
I n d e x "  of  L ISREL,  J6reskog & Sr rbom,  1984, p. 1.42; S6rbom, 1986; and the " L a -  
grange multiplier" of  EQS,  Bentler,  1986). The third test is the Wald (W) type test 
statistic, which only needs to minimize F under H (Bentler, I986; Lee ,  I985). This 
statistic was the latest to be introduced to structural modeling, although, as will be 
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noted, it is a classical one. When F corresponds to a maximum likelihood estimation, 
the D, S and W type of test statistics are, respectively, the (log) likelihood ratio (Wilks, 
1938), score (Rao, 1947) or Lagrange multiplier (Silvey, 1959), and Wald (1943) test 
statistics. 

In the context of maximum likelihood estimation, the asymptotic equuivalence 
between the three types of test statistics is well known from Silvey (1959); for a very 
interesting review of this asymptotic equivalence, see Buse (1982). A unified develop- 
ment of these three principles within the context of maximum likelihood and in relation 
with econometrics is given in Engle (1984). In the context of covariance structure 
analysis, the equivalence between D and W is proven by Lee (1985). Also, the multi- 
variate distribution of a set of D statistics arising from a sequence of nested structural 
models has been studied in Steiger, Shapiro, and Browne (1985). Bentler and Chou 
(1986) propose the use of S and W statistics for model modification in covariance 
structure analysis. The asymptotic equivalence of these alternative test criteria in the 
context of generalized least squares estimation is also noted in Bentler and Dijkstra 
(1985, p. 18). 

A standard assumption of F being asymptotically optimal (in the sense of leading 
to efficient estimators and asymptotic chi-square statistics) is used in all the references 
above. This assumption restricts the possible discrepancy functions to be used in a 
specific application, because a Hessian matrix of F needs to relate in a specific form 
with the asymptotic covariance matrix of the random vector s of summary statistics (see 
Assumption 6, below). For instance, a Wishart maximum likelihood discrepancy func- 
tion (i.e., normal theory), say FML, would not be asymptotically optimal when the 
distribution of the data is not normal. Very often in applications F will not satisfy this 
optimality condition. Additionally, the above references assume that the asymptotic 
covariance matrix of s, and the equivalent of the information matrix of the model, are 
nonsingular. The asymptotic theory of estimators and chi-square goodness of fit sta- 
tistics in those cases where the asymptotic covariance matrix of s may be singular 
and/or the model is overparameterized is investigated in Shapiro (1986). However, 
Shapiro gives no specific attention to the D, S, and W types of test statistics. (In recent 
work, Shapiro, 1987, investigates also conditions for the asymptotic robustness of 
goodness of fit and D type of chi-square statistics.) 

In the practice of covariance structure analysis, power considerations are needed 
for interpreting the values of test statistics (see Saris, Satorra & S6rbom, 1987; Saris & 
Stronkhorst, 1984, chap. 11; Satorra & Saris, 1985). The (nonnull) distribution of the 
above mentioned test statistics when the model Ho (or H) does not hold exactly, and the 
expressions for approximating the corresponding noncentrality parameter (ncp), re- 
quire also specific consideration. 

The purpose of the present paper is two-fold. First, to provide a self contained 
review of asymptotic theory regarding the above referenced test criteria. The review 
develops in a general framework where the models H and Ho may only be approxi- 
mately true, the information matrix and (or) the asymptotic covariance matrix of s may 
be singular, and the standard assumption of F being asymptotically optimal is relaxed 
somewhat. Although part of this review overlaps with existing theory, the general 
framework taken may provide novelty. Also, this review sets the groundwork for 
developing the second purpose of the article, which is to investigate more general 
statistics to deal with the case where the discrepancy function is not asymptotically 
optimal. Asymptotic chi-square statistics, which may be adequate for instance when F 
is normal based and the data are not normal, are derived as natural generalizations of 
standard test statistics. Additionally, asymptotic theory is provided for a testing related 
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statistic proposed recently in Saris et al. (1987) for assessing the substantive signifi- 
cance of the hypothesized restrictions. 

Section 2 starts with the background and notation while section 3 presents the 
assumptions and needed preliminary results. The main results are given in sections 4 
and 5, with section 4 developing the more standard results corresponding to F being 
asymptotically optimal, and section 5 giving new statistics adequate in case of more 
general discrepancy functions. Finally, section 6 develops the corresponding discus- 
sion. 

2. Background and Notation 

Let s denote a p-vector of sample statistics that converges in probability (when 
sample size n ~ ~) to the " t rue"  p-vector, say a-, of population parameters. For 
example, in covariance structure analysis, typically, s and (r contain the nonredundant 
elements of the sample and population covariance matrices, respectively. Also consider 
the two nested models for ~r, H: ~r = (r(0), 0 E ®, and H0: (r = (r(0), 0 E O0, where 
0 is a q-dimensional parameter vector, and ® and 00 are subsets of R q such that O0 C 
®. We assume that qr(0) is a twice continuously differentiable vector-valued function of 
0, and that ®o is the kernel of a continuously differentiable r-dimensional vector-valued 
function of 0, say a = a(0) (i.e., 00 = {0 E O/a(0) = 0}). For instance, when using 
LISREL (J6reskog & S6rbom, 1984), the equality a(0) = 0 may "fix" some of the 
elements of 0 at specific values, and (or) may impose an identity among two or more 
elements of 0. Also, a real-valued function F = F(s, (r) of s and (r is assumed to be 
specified for fitting alternative models. That is, the estimate () (or 0) of O under the 
model H (or H0) is defined as the value of 0 for which F(0) = F(s, (r(0)) attains its 
minimum over ® (or O0). F = F(s, (r) will be called a discrepancy function (Browne, 
1982, 1984; Shapiro 1983, 1986). 

We shall make use of the p-vectors 6- ~- a-(()) and O - (r(0); the values ~' - F(s, 6-) 
and P -~ F(s, dr); the (1/2 gradient) q-dimensional vector-valued function d(s, 0) = 
(1~2)OF (0)/00 of s and 0; the q x q matrix-valued function J(s, 0) =-- (I/2)OzF(O)/O000 ' of 
s and 0 and the p x q and r × q, respectively, matrix-valued functions-~(0) = Otr(O)/O0' 
and A(O) --- Oa(O)/O0' of O. 

The-following statistics are a main focus of this study: 

and 

D--n(P- 

s =- n d ' ( 2 )  - la ,  

w =- n '[A(53 - I A ' ]  - 

(i) 

(2) 

(3) 

-= - A ( ) )  - l d ,  (4)  

where d = d(s, 0), J - J(O, 0), J ~- J(O, (i), ~ -= a(O) and A ---- A(0). Often, Twill be used 
to denote any one of'fife test statistics (I), (2) and (3). 

It shall be noted that expression (2) can be replaced by an equivalent one in which 
a vector of Lagrange multipliers i, instead of the "score"  vector a, is involved. Con- 
sider the Lagrangian function L = (1/2)F - l'a, where ! is a r-vector of Lagrange 
multipliers. The first order conditions for the constrained estimator 6 yield a = A'|,  
where i is the Lagrange multiplier vector associated with ~. Substituting a in (2), 
produces 
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S = ni'A0) -1A'i, (5) 

which is the alternative form of S, introduced in Silvey (1959), that inspires the alter- 
native notation for S as a "Lagrange multiplier" statistic. 

Note that when F is (-2/n) times the log of the likelihood function, then D, S and 
W are, respectively, the typical (log) likelihood ratio, score and Wald test statistics (see, 
e.g., Cox & Hinkley, 1974, chap. 9). In covariance structure analysis, D is known as the 
"chi-square difference" test statistic (Jrreskog, 1970, 1981). Note that when 
a(0) =- 0j, a component of the parameter vector 0, then the statistic W in (3) can easily 
recognized to be the square of the parameter estimate divided by the standard error, 
that is, the square of the typical "t-value" used to test "whether the true parameter is 
zero" (Jrreskog & S6rbom, 1984, p. 111.12); thus, the typical "t- test" is equivalent 
(i.e., gives exactly the same answer) to a Wald test. 

In the context of statistics used for assessing the validity of the restrictions a(0) = 
0, the statistic i is also worth considering (see Saris et al., 1987, for the motivation and 
theory of such statistic in its univariate version). The statistics "estimated change" and 
"parameter change" implemented in the newest versions of the computer programs 
LISREL (J/Sreskog & SOrbom, 1984) and EQS (Bentler, 1986), respectively, are exam- 
ples of the statistic i. It will be shown below that i is asymptotically equal to a({)), being 
then the "change" in a(0) as a result of dropping the restriction a(0) = 0. For instance, 
in the case where a(0) = 0 is just restricting an element of 0 at the value zero, i equals 
(asymptotically) the estimated value of such an element when it is treated as a free 
parameter. Notice that for obtaining i, only the restricted model H0 needs to be ana- 
lyzed. 

When H specifies that ~r is unrestricted, the corresponding statistic D is the typical 
chi-square goodness of fit statistic used for assessing the validity of the model H 0. The 
statistics nF and n/" are also chi-square goodness of fit statistics for testing the speci- 
fications H and Ho, respectively (e.g., Browne, 1982, p. 97). 

This paper will review test statistics that have asymptotically a central (noncentral) 
chi-square distribution when the null hypothesis holds exactly (approximately). Typi- 
cally, the rejection region of the (nominal)a-level test is [T >~ c j ,  where T denotes the 
"chi-square" test statistic and c~ is a ("critical") value such that Pr {×2 ~> co3 = ix, 
where r is the associated degrees of freedom (df) of the test statistics and ×3 denotes a 
central chi-square distribution with r df. The noncentral chi-square distribution with 
noncentrality parameter (ncp) h, and df r, will be denoted as ×2(h). The power of the test 
associated to a specific true vector o- will be approximated by Pr {×200 >/co3, where the 
ncp X will depend on ~r. 

3. Assumptions and Preliminary Results 

The following assumptions will be referred to throughout. 

Assumption 1. F is such that 

(i) F(s, o)  I> 0 for all s and o ;  
(ii) F(s, o)  = 0 if s = er; 
(iii) F is twice continuously differentiable in s and {r. 

This is a typical condition satisfied for all the discrepancy functions currently in use 
(Browne, 1982, p. 81; Shapiro, 1986). An example is the following generalized least 
squares (GLS) discrepancy function 
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F ( s ,  ,r )  = (s  - or) '  r ( s  - ~r), (6) 

where Yis ap  × p nonnegative weight matrix (Browne, 1974). Note that unlike Browne 
(1982), the condition that F(s, tr) = 0 only if s = cr is not used. 

Remark  3.1. Often the weight matrix Y is stochastic, being also a function of the 
data and possibly depending on other statistics than s (e.g., when using the GLS 
asymptotically distribution free methods, Y will be a function also of the fourth order 
moments of the data). When that occurs, we need to strengthen Assumption I with the 
condition that, as sample size n ~ ~, Y is of constant rank and converges in probability 
to a nonnegative definite matrix. (This point will be pursued in Remark 3.2.) 

Assumpt ion 2. There exists a vector o0 such that o" 0 = tr(0o), where 0o is an inner 
point of O satisfying a(0o) = 0 and nl/Z(s - % )  L N (it, F), where ,,L,, indicates 
convergence in distribution, It is a (finite) p-vector and F is a nonnegative definite 
p × p matrix. 

Usually a central limit theorem can be invoked to ensure the asymptotic normality 
of s under very mild regularity conditions of the data (see, e.g., van Praag, Dijkstra & 
Van Velzen, 1985). The condition of n~/2(s - tr 0) to have asymptotic mean equal to It, 
possibly a nonnull vector, amounts to saying that the true tr, say o "°, changes with n in 
the following form: 

o o - 1/21x; ir ~ trn = tr0+ n 

that is, the deviation n-l/2it, between the true tr and %, decreases with n at the rate 
n-  1/2. This assumption of a sequence of "local alternatives" is a technical device that 
prevents the (nonnull) distributions of the test statistics to be degenerate at the limit, 
while it allows for certain degree of ("structural") misspecification of the model. In- 
tuitively, one has to view It ~ 0 as allowing for H 0 (or H) to be only "approximately" 
true. However, it must be stressed that when tr ° highly deviates from Ho, then this 
assumption may be unrealistic and the terms that are ignored in the asymptotic expan- 
sions used below may become nonnegligible; that is, the asymptotic theory developed 
below does not apply when H 0 is grossly misspecified. For a similar assumption, see 
Browne (1984), Shapiro (1983), Satorra and Saris (1985), Steiger et al. (1985), and 
Bentler and Dijkstra (1985). 

An interesting case to consider is when H is true, but H® is not. This can be 
formalized by saying that o "° = ~r(00 + 8n-1/2), where 8 is a nonnull q-vector. Obvi- 
ously, this implies that: 

= a ( O o ) 8 .  ( 7 )  

The case where the form (7) for It holds will be frequently referred to in the present 
paper. 

The following is an identification condition for the model Ho. 

Assumpt ion 3. O® is a compact subset of R q and 0 o is the unique minimizer of 
F(~0, tr(- )) in ®o. 

In fact, the compactness assumption of 0o could be substituted by the less strin- 
gent "level condition" of Shapiro (1983, Definition 2.2). 

Clearly a nonrestrictive assumption, ensuring that the constraints are not linearly 
dependent, is the following. 
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Assumption 4. The r × q matri___x A - 0a(0)/00'l o = 00 has full row rank. 

Note that by Assumption 1 the following Hessian matrix 

02F(s, o_) = 2V, 

0~r0tr '  (s, cr)=(cr 0, o0) 
(8) 

say, is nonnegative definite; thus, the matrix 

a2F(o'0, (r(0)) = 2A'VA 

where J =- J(Gro, 0o) and A - A(0o), is also a nonnegative definite matrix. (Note that 
Assumptions 1 and 2 imply that OF(or o, (r)/Ocr~,, = ,,o is zero, which yields the above 
expression 2A'VA for the matrix of second derivatives of F.) 

Remark 3.2. It has to be noted that the matrix 02F(s, cr)/Oo0o"l(s, ~,) = (,,o, Oo) may 
be a stochastic matrix, as for instance when F is a GLS discrepancy function with a 
stochastic weight matrix Y (see (6)); when this is the case, V will be taken to be the 
corresponding probability limit of Y, which is assumed to be a non-negative matrix 
(recall Remark 3.1). 

An assumption that is needed to ensure that a(0) = 0 implies, at least, a set of 
"just-identifying" restrictions on 0 (usually H0 will overidentify 0) is the following. 

Assumption 5. There exists a partition [A~, A6] of A' such that: A1 is a t x q matrix, 
t = q-rank (J) and [J, A ~] has rank q. 

Note that in case of maximum likelihood estimation, the matrix J is (I/n) times the 
("Hessian" form of the) Fisher information matrix (see, e.g., Satorra & Saris 1985, p. 
85), and the condition that J be nonsingular is a standard one. However, exactly as it 
happens in restricted maximum likelihood estimation (Silvey 1959), an adjustment is 
needed when J is singular but Assumption 5 holds: one substitutes J -  1 by (J + A ~A 1)-- 1, 
and rank (A) by rank (Az), whenever the inverse of J is required and rank (A) is used. 
This adjustment will be assumed to hold throughout the present article, even when no 
explicit discussion of this point is made. 

The following assumption relates the (1/2) Hessian matrix V, defined in (8), with 
the asymptotic covariance matrix F of s. 

Assumption 6. VFV = V. 

Note that when V is nonsingular, Assumption 6 impffes that F = V -1, a condition 
which has been highly exploited to derive optimal asymptotic properties of estimators 
and test statistics (Browne, 1984; Shapiro, 1983; Bentler & Dijkstra, 1985). 

It will be seen below that the use of a discrepancy function F for which Assumption 
6 is satisfied guarantees the asymptotic optimality of the statistics. We will follow the 
convention of calling a F for which Assumption 6 is verified an asymptotically optimal 
(AO) discrepancy function. In contrast with Assumptions 1 to 5, which are not very 
restrictive in practice. Assumption 6 is likely to be violated in applications. Results of 
this paper address discrepancy functions which are not AO. 

It will be seen below that the standard theory for the statistics D, W and S will hold 
under the following somewhat less restrictive version of Assumption 6. 
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A s s u m p t i o n  6" .  A'VFVA = A'VA. 

The following temma provides some symptotic equalities that will be needed when 
proving the theorems of the sections below (for the proof of this lemma, see Appendix 
A). 

L e m m a  1: Assumptions 1 to 5 guarantee that: 

(i) nl/2(t) -- 00) a (j .A)A,Vnl/2(s _tro) ' 

(ii) nl~2fl ~= A ( J .  A l ) A ' V n l / 2 ( s  - tro), 

(iii) nl/2d=_~a- - J J - 1 A ~ ( A 2 ( J "  A j ) A ~ ) -  1A2(J" A1)A 'VnV2(s  - ~ro), 

(iv) n/~ _~_._n(s - tro)'(V - V A ( J .  A)A'V)(s - tro), 

(v) nt/2~ ~= A ( J .  A1)A' VnlrZ(s - tro), 

(vi) nl/2(6. _ tr0) a A ( j . A ) A , V n l r Z ( s  _ ~o) 

where u~ ~ v, means that u ,  - v n --~ 0 as n ~ ~ (the convergence is in probability when 
one or both sides of the equality are stochastic quantities) and 

( J .  A )  - J - l _ j - 1 A , ( A J  - lA ' )  - 1AJ - 1, (9) 

with (J .  A 0 of the form (9) with A replaced by A1. Note that, as pointed in the discus- 
sion of Assumption 5, whenever J is singular, J-~ is defined as (J + A ~A1) -~ . (Note that 
in the fight side of (iii) J J - ~  is not simplified due to the possibility of J being singular.) 
Obviously, when J is nonsingular, A 2 ~ A and ( J . A  0 = j - l .  

R e m a r k  3 .3 .  When J is singular the model H is said to be overparameterized 
(Shapiro, 1986) and B is not uniquely defined. In the Lemma 1 above, 0 is chosen to be 
the estimator (uniquely) determined when imposing to H the ("just identifying") re- 
strictions al(O) = 0. Hence, the Results (i) and (iv) of Lemma 1 will hold also when 
changing 0, F and A to t),/~ and A 1 respectively. 

The next section gives results corresponding to the most typical case of F satis- 
fying Assumptions 1 to 6. 

4. Results for Asymptotically Optimal Discrepancy Functions 

The following theorem states the asymptotic equivalence of D, S and W and gives 
their common asymptotic distribution. Also, whenever a true covariance cr ° is speci- 
fied, explicit expressions for approximating the corresponding ncp are provided. For 
similar and closely related results, see Silvey (1959), Satorra and Saris (1985), Lee 
(1985), Steiger et al. (1985) and Bentler and Dijkstra (1985). 

T h e o r e m  4.1 .  Let Assumptions 1 to 5 hold, then 

(a) D_a S ~ W. 
(b) When additionally Assumption 6* holds, 

T I Xr (X), 

where T is any one of the statistics D, S and W, r is rank (A2) and 
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k = IX' VA(J .  AOA~(A2(J" A t)A~) - IA2(J" A 0A' VIX. (10) 

(c) k a T °, where T O is any of the (nonstochastic) values of D, S or W obtained when 
tr ° substitutes s. 

Proof. By subtracting the asymptotic expressions of n/~ and n/e obtained from (iv) 
of Lemma I (see Remark 3.3), and using Lemma 2 of the appendix, it is obtained that 

D~ n(s - t ro) 'VA(J 'A1)A~(A2(J 'AOA~)-  IA2(J 'AOA'V(s  - tr0). (11) 

Then, substituting in (2) and (3) the terms nt/2fi and nl/2d by their equivalent expressions 
given in (ii) and (iii) of Lemma I, it follows that S and W equal the right hand side of 
( l l) ;  thus, proving (a) of the theorem. To prove (b), note first that Assumption 2, 
combined with standard asymptotic arguments, implies that the quadratic form of (11) 
is asymptotically distributed as z' Uz, where z - N(IX, F) and 

U = VA(J .  AOA~(A2(J" A1)A~) - 1AE(J" AOA'V.  

Now, straightforward algebra shows that the sufficient condition UFU = U for z' Uz to 
be (noncentral) chi-square distributed, with df and ncp equal to trace (UF) and Ix' UIX 
respectively (see, e.g., Theorem 9.2.1 of Rao & Mitra, 1971), holds when A'VFVA = 
A' VA (i.e:, Assumption 6*). Finally, (c) follows by noting that the arguments used in (a) 
apply also when tr ° substitutes s, with ~ denoting now that the difference between the 
left and right side of the equality converges to 0 as n --~ oo (here convergence in 
probability is not needed as one deals with nonstochastic quantities). [ ]  

Remark  4.1. Assumption 6* was needed only when proving that UFU = U; with- 
out that assumption, and using also standard results of distribution of quadratic forms 
in normal variables, it can still be guaranteed that T is asymptotically distributed as a 
weighted sum of independent chi-square distributions with 1 df, with the weights being 
determined by the eigenvalues of the matrix UF (see Satorra & Bentler, 1988b, where 
this point is exploited and a specific scaling correction based on the trace of UF is 
proposed). Note that (a) of Theorem 4.1 guarantees that this asymptotic distribution is 
the same for the three statistics D, S and W. 

When H holds then IX = A8 (see (7)), and if in addition J is nonsingular, then the 
ncp h of (10) reduces to 

k = g ' A ' ( A J -  1A') - lAg. (I2) 

Using this expression, the power of the test against different 8 characterizing different 
"directions" of misspecification of Ho within H can be investigated. 

For the completeness of this paper, the asymptotic distribution of nF will be given 
(Bentler & Dijkstra, 1985; Browne, 1982, 1984; Satorra & Bentler, 1988b; Satorra & 
Saris, 1985; Shapiro, 1983, 1986). This asymptotic distribution and the relations be- 
tween D, S, W and the goodness of fit statistics n/~ and nF are reviewed in the next 
theorem (see also Steiger et al., 1985). 

Theorem 4.2. Let Assumptions I to 6 hold, then 

(a) nF __.L Xr2.(h,), where r* = rank (V) - q + r and 

k* = lx'(V - VA(J .  A) - 1A'V)IX. 

(b) nF ° g h*, where F ° = Min o e ooF(tr °, tr(0)). 

(13) 
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(c) nF is asymptotically independent of T, where T denotes any of the statistics D, 
S o r  W. 

(d) The asymptotic covariance between n/~ and T is equal to 2 × rank(A2) + 4h, 
where h is given in (10). 

Proof. The theorem follows easily when combining (iv) of Lemma 1, and (1 I), with 
standard theory of distribution of quadratic forms in normal variables. Here Assump- 
tion 6 is needed. (We recall that r is the number of components of a(0).) [ ]  

Consider next the case that H holds (i.e. Ix = AS) and J is nonsingular. In that case, 
it can easily be seen that the expressions of X and X* of (10) and (13), respectively, are 
identical; thus the following result applies. 

Corollary 4.1. Let Assumptions 1 to 6 and the model H hold, with J being nonsin- 
gular, then 

where h is given in (10), and r* equals rank (A) whenever T is D, S or W, and equals 
rank(V) - q + r when T is nP. 

An important observation is the following. When H holds the use of D, S or W 
instead of nF, for testing H0, leads to a decrease in the df of the corresponding chi- 
square distribution, while the ncp remains the same. Thus, whenever the model H is 
known a priori to be true, there is a clear increase of power of the test by using D, S or 
W instead of nP. 

Test statistics which are asymptotically equivalent to T (D, W or S) will be obtained 
when in (2) and (3) the matrices ) and 3, and the vectors nl/2fi and nl/2a, are replaced 
by asymptotically equivalent statistics. For instance, a root-n consistent estimator 6+ 
of 00 (i.e., nU2(l}+ - 0o) is bounded in probability as n ~ oo) that satisfies Ho produces 
the "linearized" estimator 6 t  = 6+ + (J.A)+A~.V+(s - or(t~+)) (Bentler & Dijkstra, 
1985), where the subindex ''-"+ indicates evaluation at 0+. It can be verified that 
nUZrL a= nl/2~, where 6 is the minimum discrepancy function estimator as defined in 
section 2. Thus, if in (2) dL --= d(s, 0L) and J+ substitute a and 3 respectively, a 
"linearized" score test statistic, say SL, that is asymptotically equivalent to S is ob- 
tained. In the same way, if 0+ is a root-n consistent estimator of 0 in H, a "linearized" 
Wald statistic, say W t, that has the same asymptotic distribution as W, is obtained by 
changing in (3) fi and 3 to aL = a(rL) and J+, respectively, with 6L -- 0 f  + 
(J- A)_~ IA~ V+(s - or(t)+)) (now, the subindex " + "  indicates evaluation at 1~+). Linear- 
ized score and Wald statistics are available in EOS (Bentler, 1986). 

Often in practice the researcher cast doubts just on the validity of a subset of the 
restrictions implied by a(0) = 0, having certainty on the validity of the others. Consider 
the case of a partition a' = [b~, b~] of a -= a(0) such that the matrix A of derivatives 
partitions accordingly as X r" - [B~, B~] (when J is singular, also assume that A l of 
Assumption 5 is contained in B~). Consider the model H~, say, defined by H and the 
additional restrictions of b~(0) = 0. Then, one may just be interested in the test of 
b2(0) = 0 when the adopted model is H1 (i.e., the model H with the restriction b~(0) = 
0); that is, the interest centers on the restricted test of H o against H~ (see Aitchison, 
1962, for the theory and motivation of the restricted test in the case of maximum 
likelihood). Denote by To any one of the statistics D, S and W corresponding to the 
restricted test of rio against H~; and denote by 7"1 the test statistics (D 1, S~ and W 1) when 
testing H 1 against H. As in all above, T still corresponds to the (unrestricted) test of rio 



140 PSYCHOMETRIKA 

against H. The following Corollary 4.2 shows that there are a variety of asymptotically 
equivalent test statistics for the test of the subset of restrictions h2(0) = 0 (i.e., the test 
of Ho against H 0. 

C o r o l l a r y  4 .2 .  Let Assumptions 1 to 5 hold, then 

(a) T O ~ T - T~, where T - T1 can be any of the nine statistics arising from the 
different choices of T and Tt (T and Tl are chosen among D, S and W, and D1, St and 
Wt respectively). 

(b) When additionally Assumption 6* holds, then 

R L 2 * *  
.~ x : , ( x  ), 

where R denotes either To or T - Tl, r** is the rank of Bz and 

x** = ~t' VA(J .  BI)B~(B2(J" B1)B~) - ~B2a 'V~ 

= I x ' V A J -  I [ A ' ( A J -  JA')  - JA - B ~ ( B l J -  IB{) - 1BI ]J -  1A'VI~. (14) 

(Here (J.  B0 is defined as in (9) with A changed to Bl.) 
(c) R ° ~= h**, where R ° is the nonstochastic value of R when cr ° substitutes s. 

P r o o f .  Using (a) of Theorem 4.1, we get 

T a D = n/~ - n~" = (n/¢ - nlCl) + ( n / ~ l  - n/') = D1 + Do a TI + To 

(here nP t is used to denote the chi-square goodness of fit statistic associated with H0,  
which implies (a) and (c) of Corollary 4.2. The result (b) follows directly from (b) of 
Theorem 4.1, after an obvious (local) reparameterization is applied to Hi, and the 
matrix equality stated in Lemma 2 of the appendix (note that here the matrix equality 
of Lemma 2 is applied with A t and A2 changed to B~ and B z, respectively). [ ]  

Note that attending to the specific kind of departure from H0 (or H) we can simplify 
the expression of the ncp of (14). Effectively, if H holds then tL = AS, and h** reduces 
to 

k** = ~ ' [ A ' ( A J -  1A') - IA - B ~ ( B l J -  tB~) - lBt]8; (15) 

if in addition H1 holds, then B~8 = 0 and we get 

k**= a 8 ' [ A ' ( A J -  1A') - 1A]~, 

which gives the same ncp as in (12), where the (nonrestricted) test of/40 against H was 
considered. Therefore, when H~ holds there is clearly an increase in the power of the 
test as a result of using a restricted test of Ho against Hi, due to the fact that the ncp 
remains the same while the df's are reduced. Note, however, that when H~ does not 
hold, and the test of b2(0) = 0 is carried out by a restricted test of Ho within H1, the ncp 
k** may still be different from zero even though b2(0) = 0 (as bt(0) may not be zero and 
hence the right hand side of (15) does not vanish). See Satorra and Saris (1983) for some 
Monte Carlo evidence on this point. 

When assessing model modification, the researcher may be faced with the choice 
between two different sets of restrictions, say a(0) = 0 and e(0) = 0. Let Ta and 7",.. be 
any of the D, S or W test statistics corresponding to the restrictions a(0) = 0 and 
e(0) = 0, respectively. (The function e = e(0) is assumed to be continuously differen- 
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tiable with the matrix C - 0c(0)/o0't 0 = o0 of full row rank; when J is singular, we also 
assume that C' -= [A~, C~], where A 1 is the same matrix as in Assumption 5.) A typical 
example appears, for instance, when using LISREL (JSreskog & SSrbom, 1984) and the 
modification indexes of two different fixed parameters are considered. One can also 
consider the statistic Tat., say, that corresponds to the simultaneous test of both sets of 
restrictions a(0) = 0 and c(0) = 0. By just applying standard results of independence of 
quadratic forms in normal variables (see e.g., Rao & Mitra, 1971) to the asymptotic 
expressions of Ta and Tc implied by (11), and using simple algebra, we get the following 
result. 

Theorem 4.3. Let Assumptions 1 to 5 and Assumption 6* hold, and 

a(J .  AOC'=O, (16) 

then T a and T c are asymptotically independent and T a ~  T a + T~.. 

Remark 4.3. Note that under the assumptions of the theorem, T a and T¢ are also 
asymptotically chi-square distributed (see (b) of Theorem 4. I). It can easily be seen that 
just under Assumptions 1 to 5, the equality 

A(J.  Al)A'VFVA(J. A OC' = 0 (17) 

guarantees the asymptotic independence of T, and T b whether they have a chi-square 
distribution or not; now, however, the asymptotic decomposition of Tac as a sum of Ta 
and T c will not hold in general. 

In practice it may be interesting to have available test statistics for which an 
asymptotic chi-square distribution can be guaranteed without the discrepancy function 
F being asymptotically optimal. The next section presents such statistics. 

5. Generalized Score and Wald Statistics 

Generalized score and Wald test statistics, say GS and GW, which will be proven 
to be asymptotically chi-square statistics even when the discrepancy function F is not 
AO, are defined as follows: 

GS = nd ' ) -1A ' [ (A) -  lA'v)I~(Vz~ - lA')]- ~A3- ld, (18) 

where I TM denotes a consistent estimate of F; and 

GW = na'[(A)-1A'V)I~(VA) - ~A')]- la. (19) 

For the sake of simplicity, in (18) and (19) it is assumed that J, V and F are nonsingular 
matrices. (If this condition were not met, A J-1A'V would be changed to (A(J. A 0A'V) 
and the condition of [Az(J. A I)A' VFVA(J. A I)A~] to be nonsingular would be added.) 

The following theorem gives the asymptotic distribution of such test statistics. 

Theorem 5.1. Let Assumptions 1 to 5 hold, with J,  V and F being nonsingular 
matrices, then 

(a) GS ~= GW, 
T L (b) G __, ×,z(k***) with r = rank (A), 

k *** = I , t 'VAJ-  I A ' [ A J -  I A ' V F V / ~ r -  I A ' ] -  I A J -  IA'VI~ , (20) 

and GT denoting either GS or GW. 
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(c) GT ° a h***, 
where GT ° "~ the corresponding value of GT when tr ° substitutes s. 

Proof. Using (ii) and (iii) of Lemma 1, it is easily obtained that 

GTa-_ n (S -Oo) 'VZLI - tA ' [AJ - IA 'VFVAJ  - 1 A ' ] - I A J - I A ' V ( s - o o ) ,  (21) 

which proves (a). The results (b) and (c) follow easily from (21), and the stated as- 
sumptions, after applying the above used typical results on quadratic forms in normal 
variables. [ ]  

By comparing the quadratic forms on the right hand side of (21) and (11), the 
following corrollary is obvious, 

Corollary 5.1: With the conditions of Theorem 5.1, if the equality 

A J -  lA 'VFV~J-  lA' = A(A'VA) - ~A' (22) 

holds, then GT (GS or GW) is asymptotically equal to T (D, S or W). (Thus, GT and T 
have the same asymptotic chi-square distribution.) 

Remark 5.1. This corollary implies that the condition (22) (together with Assump- 
tions 1 to 5) is a sufficient condition for T to be asymptotically chi-square distributed. 
Note that condition (22) depends on the model and the restrictions being tested, and 
that is implied by Assumption 6, or just by Assumption 6*. 

A sufficient condition for the goodness of fit statistic n/~ to be asymptotically 
chi-square distributed is implied, also, by the corollary above. Effectively, nF" can be 
represented as a statistic T for an appropriate set of restrictions imposed on the ele- 
ments of o-, which may be viewed as p functionally independent parameters (see, e.g., 
Satorra & Saris, 1985, p. 87). It can easily be seen that, for such representation of nF 
as a statistic T the equality (22) reduces to (recall that here V is non singular) 

PFP' = P V -  lp,, (23) 

where P is a full row rank (p - q) × p matrix such that pA = 0 (P' is an orthogonal 
complement of the Jacobian matrix A; basically, the argument is that the restrictions 
a(cr) = 0 imposed on ~r need to be such that a(~r(0)) = 0, in a neighborhood of 0o; thus, 
the rule for a derivative of a composite function gives the stated orthogonality between 
P and A). This is in agreement with Shapiro (1986), where the equality (23) is stated as 
a sutficient (and when F is nonsingular, also a necessary) condition for n/~ to be as- 
ymptotically chi-square distributed (provided that conditions similar to Assumptions 1 
to 5 hold). 

Furthermore, with respect to the above reparameterization of H, the right hand 
side of (21) becomes 

n(s - Oo)'P'[PFP']- lP(s - o0) a n(s - (r)'P'[PFP']- 1P(s - O') = 

n ( s  - a ) ' [ F -  ~ - F -  ~ A ( A ' F -  ~ a )  - ~ A ' F  - q ( s  - 0)__" 

n ( s  - O ) ' [ 1  ~ - 1 _ f ,  - l ~ ( ~ , f ,  - l ~ )  - l ~ , f , -  1] (  s _ O )  ------ GF, 

say, (the first asymptotic equality used (vi) of Lemma 1 combined with the fact that 
pA = O; the second equality uses a typical result on matrix algebra stated, for example, 
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in Rao (1965, p. 77). The statistic GF is proposed in Browne (1982, p. 99; 1984, p. 69) 
as a (asymptotically chi-square) goodness of fit statistic for the model H, to be used in 
conjunction with GLS estimators in general. Clearly, under the conditions of Theorem 
5.1, the generalized goodness of fit statistic GF will be asymptotically chi-square dis- 
tributed with df = rank (P) = (p - q) (Browne 1982, 1984). 

Note that when H holds, then h*** in (20) simplifies to 

k*** = 8'A'(AJ- 1A'VFVAJ- 1A') - lA8, (24) 

which value may change among different non AO discrepancy functions (as h*** de- 
pends on F, through V); thus, the (asymptotic) power of the associated test may change 
also. 

The above corollary says that, in case F is AO (or, less restrictively, (22) holds), 
T and GT can not be distinguished asymptotically; however, when F is not AO, T is not 
necessarily a chi-square statistic. If FAO denotes an alternative AO discrepancy func- 
tion, the statistic GT competes asymptotically with the statistic TAO (D, S and W), say, 
associated with FAO. When F is not AO, the point of comparison of the power of the 
test associated with the use of GT instead of TAO arises. If VAO and JAO denotes, 
respectively, the matrices V and J associated with FAO, then it has to be compared the 
ncp given by (10), 

p.'(VAOAJAdA'(AJA~A ') -IAJAoIA'VAo)IX = hAO, say, 

with the ncp given in (20). Consider the simplest case, where V is nonsingular and H 
holds. Then, as the following matrix 

j -  tA,VI, VA J -  1 _ JAO ~ (25) 

is a positive semidefinite matrix (see Bentler & Dijkstra, 1985, p. 17), the difference 
(hAO -- h***) is a nonnegative number. When J and JAO are nonsingular matrices, (25) 
is equal to zero if and only if the estimator 6, based on F, is asymptotically efficient (see 
Shapiro, 1986). Thus, when 6 does not have minimum asymptotic variance, GT is not 
an asymptotically optimal test statistic; that is, the test induced by TAO may have, 
asymptotically, greater power than the one induced by GT. 

For the sake of completeness of this paper, we give next the asymptotic distribu- 
tion of the (restricted) estimator 6 in the general case where F is not necessarily AO. 
This is a result which can be traced back to Ferguson (1958, Theorem 1). (See also 
Bentler & Dijkstra, 1985; Browne 1982, 1984; Satorra & Bentler, 1988b; and Shapiro 
1983, 1986.) 

Theorem 5.2. Suppose Assumptions 1-5 hold, then 

nil2(6 - 0o) L N((J" A) -  IA'VI~, (J" A)A'VFVA(J" A)) 

Proof. It is obvious when considering (i) of Lemma 1 and Assumption 2. [ ]  

Thus, the covariance matrix of 6 will be estimated by 

n - l ( j .  A)A' VFVA(J. A), (26) 

substituting consistent estimates for population matrices (i.e., evaluating (J. A)-IA'V 
at 6 and changing F to f'). Note that Theorem 5.2 allows one to obtain asymptotically 
correct standard errors of the estimators under fairly general conditions; for instance, 
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one may obtain asymptotically correct standard errors for the (maximum likelihood) 
normal theory estimators even when the distribution of the data is not normal. 

Note also that when Assumption 6* is verified, the above asymptotic covariance 
matrix reduces to n-~(J . A), which is the typical form of the covariance matrix of the 
restricted estimator t} under standard assumptions (Browne, 1982; Shapiro, 1983; 
Bentler & Dijkstra, 1985). Furthermore, when V is nonsingular, 

(J. A) - (J. A)A'VFVA(J. A) = (J. A)A 'V(V-  1 _ F)VA(J. A); 

thus, when Assumption 6* is not verified, the typical standard errors associated with 
(J .  A) may be asymptotically biased. This bias does not need to be systematically 
positive, or negative, as (V-i _ F) is not in general a positive (negative) definite matrix. 

Obviously, when considering the asymptotic distribution of the unrestricted esti- 
mator 6, (J .  A) need to change to (J- A0 (i.e., to j - l ,  when J is nonsingular). Note that 
when a(0) = 0 amounts to fix a single component of 0 to zero, the statistic GW in (19) 
can easily be recognized as the square of the ratio between an estimate and its standard 
error (i.e., a square of a "t-value"), where now the standard error is the asymptotically 
correct one extracted from (26). (Recall that the t-value associated with W uses the 
standard error extracted from j - l ;  that is, the correct standard error when Assumption 
6 hold.) 

Finally, we will consider the asymptotic distribution of the ("parameter change") 
statistic ~ defined in (4). This statistic is proposed in Saris et al. (1987) as a tool for 
assessing the substantive significance of dropping the restrictions a(0) = 0. The next 
theorem states, first, the asymptotic equality of nl/Zz and nVZa(0); then gives the as- 
ymptotic distribution of n~/2~; finally, provides an approximation to the asymptotic 
mean of nl/2L 

Theorem 5.3. Let Assumptions 1 through 5 hold, then 

(a) nl/2z a nl/2a(0)" 
(b) nV2~-L~ N(A(J" AOA'VI~, A(J" AI)A'VFVA(J" A1)A'). 
(C) nl/2z ° a A(J" A1)/x~ VIJ,, 

where z ° be the value of ~, obtained when o "° substitutes s. 

Proof. (a) is a trivial consequence of (i) and (v) of Lemma I; while (b) and (c) 
follows immediately from (v) of Lemma 1 and Assumption 2. [ ]  

6. Discussion 

The sections above provide insights of practical relevance. Result (a) of Theorem 
4.I suggests that, as n ----> 0% the values of the alternative test statistics D, S and W get 
closer to each other and have the same asymptotic distribution, even if that asymptotic 
distribution is not chi-square (which may be the case when Assumption 6* does not 
hold; see also Remark 4.1). This asymptotic equality between D, S and W justifies the 
practice of interpreting the statistic S (or W) as the approximate decrease (increase) on 
the value of the goodness of fit statistic n/~ (n/eL of the fitted model H o (or H), when 
dropping (adding) the restriction a(0) = 0. Note that this equivalence is ensured just by 
Assumptions 1 to 5; that is, it will hold regardless of F being AO or not (e.g., it will hold 
even when in a LISREL or EQS analysis one uses the "unweighted least squares" 
discrepancy function). The (asymptotic) equality, hence equivalence with respect to 
asymptotic performance (e.g., they will lead to tests with the same asymptotic size and 
power), extends also to the statistics GS and GW whenever Assumption 6", or the less 
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restrictive condition (22), holds. However, the (asymptotic) equality between GT (GS 
and GW) and D may break down when (22) does not hold; which means, for instance, 
that when D is not asymptotically a chi-square statistic, the (asymptotically chi-square) 
statistic GS (GW) can be a "poor  predictor" of the change on nP (n[-) as a result of 
dropping (adding) the restriction a(0) = 0. 

When F is AO (or just when equality (22) holds), the common asymptotic distri- 
bution of  the statistics D, S and W is chi-square. Under "nonrestrictive" conditions 
(just Assumptions 1 to 5), GS and GW are also asymptotically chi-square distributed. 
As mentioned in section 2, to each of the above asymptotic chi-square statistics cor- 
responds an a-level test of H0 against H, with rejection region [T I> c j .  The (asymp- 
totic) noncentral chi-square behavior of the test statistic when the model is not exactly 
true suggest the approximation Pr {×,~y(h) >I c j  for the power of the test associated with 
a specific alternative tr °, with h being determined by tr °. The theorems of sections 4 and 
5 provide alternative asymptotically equivalent expressions for the ncp ~, to be used in 
practice. For instance, result (c) of Theorem 4.I shows that if ~r ° is chosen as the 
alternative value to which the power value is referred, the noncentrality parameter h 
can be approximated by using any one of the (nonstochastic) values of D, S and W 
obtained when ~r ° is "analysed" instead of s (e.g., in a maximum likelihood LISREL 
analysis of o "° under the specification H0, the modification indexes, the square of the 
t-values and also the chi-square statistic can be viewed as asymptotic approximations 
of ncp's). 

The relative merits of the variety of tests defined above, and alternative approxi- 
mations of h, with respect to small sample size performance (in having the predicted 
size and power) is a topic which remains to be investigated (by using, e.g., Monte Carlo 
methods, or higher order asymptotics). A Monte Carlo study of the accuracy of D O as 
a noncentrality parameter for fitting the finite sample size distribution of D, in case of 
normality, maximum likelihood and a specific model context, is reported in Satorra and 
Saris (1983). Satorra and Saris (1985) advocate the use of nF ° = n{MinoF(tr °, ~r(0))} 
when approximating the power of the chi-square goodness of fit test associated with nF 
(in case of maximum likelihood and normal data). Satorra et al. (1987) compare in a 
small sample size study, and different "degrees" of the incorrectness of the model, 
alternative approximations for the ncp h. Recently, the small sample size behavior, and 
comparative performance in model modification, of some of the above statistics has 
been investigated, using Monte Carlo methods, by Luijben, Boomsma and Molenaar 
(1987), and Chou and Bentler (1987). 

Although Assumptions 1 to 5 are quite plausible in applications, the assumption of 
F being AO will often be violated in practice. The Corollary 5. I can be seen as providing 
sufficient conditions for the statistics D, S and W to be asymptotically chi-square 
distributed when F is not AO; see, especially, Remark 5.1. Clearly, when F is not AO, 
or the equality (22) does not hold, the statistics D, S and W can be misleading, as they 
are not necessarily asymptotic chi-square statistics. An alternative is, of course, to use 
a more appropriate discrepancy function F in order to reach this AO condition. How- 
ever, the use of an AO discrepancy function F may imply extensive computations. A 
sensible alternative is to use the GS and GW statistics; after all, when F is AO, the 
generalized statistic GT has the same asymptotic distribution as the statistic T (Corol- 
lary 5.1), and will lead to test of the same characteristics with respect to (asymptotic) 
size and power. One may argue, however, that test statistics which are asymptotic 
chi-square variates, and do not require heavy computations, can be obtained via lin- 
earized estimators (see Bentler & Dijkstra 1985, and the statistics SL and W L discussed 
in section 4). It has also been shown (section 5) that a statistic T associated with an AO 
discrepancy function may even have greater power than a statistic GT associated with 
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a non AO discrepancy function. Clearly additional research that studies the robustness 
against small sample size, and performance with respect to power, of these competing 
test statistics is required. 

Notice that Assumptions 1 to 5 guarantee (see (a) of Theorem 4.1) 

n P  = n F  + T, (27) 

asymptotically, which implies (using e.g., Theorem 9.3.6 of Rao & Mitra, 1971) that 
whenever the asymptotic distribution of n F  and n/~ (or -q-ln/¢ and "q-ln#, for some 
positive real-value -q) is chi-square, so will be the asymptotic distribution of the statistic 
T (or -q-iT). Also, when a scaling correction factor applies to the chi-square goodness 
of fit statistics nF and nF, then the same scaling correction factor applies to the sta- 
tistics S and W (i.e., the elliptical corrections of Browne, 1982, 1984, and Bentler, 
1983b, extend also to the statistics D, S and B0. Nonstandard conditions under which 
n F  (n~)  is asymptotically chi-square distributed, and conditions under which a specific 
scaling correction factor apply (in an asymptotically exact form, or approximately) are 
investigated in Satorra and Bentier (1988a, 1988b). Satorra and Bentler (1988b) propose 
a scaling correction to the D, S and W statistics that may induce an approximate 
chi-square behavior of the resulting statistics under general conditions. The correction 
consists of dividing the statistics D, S and W by (1/df)trace(UF), with consistent esti- 
mates replacing U and F (recall that U was defined in section 4). For further non 
standard conditions guaranteeing the asymptotic chi-squaredness of test statistics, see 
the recent papers of Shapiro (1987) and Browne (1987). 

Note the asymptotic independence between the goodness of fit statistic nF and T, 
which contrasts with the nonzero (asymptotic) covariance between T and n/~ (see (c) 
and (d) of Theorem 4.2 in Steiger et al., 1985). In practice this implies that once the 
goodness'of fit of a model has been assessed by the chi-square goodness of fit statistic, 
there are still available (asymptotically) independent statistics for testing if some addi- 
tional restrictions hold; however, when testing if some restrictions should be dropped 
(typically using a score statistic), stochastic dependence with the chi-square goodness 
of fit test arises (i.e., the role of the chi-square goodness of fit statistic in a process of 
modifying the model by dropping restrictions, may be very different than when the 
process of model modification consists in adding restrictions). 

When a sequence of models is considered, Corollary 4.2 expands the number of 
asymptotically equivalent statistics in a useful way. For instance, point (a) of the 
corollary implies that when testing the restrictions that distinguish H 0 from H t (where 
H l can be any model nested "between" H 0 and H), it is not needed in the computations 
to change the adopted model from H to Hi, as one can just use the difference between 
the statistics T and T~, which both use H as the adopted model. (The HAPRIORI 
procedure of EQS (Bentler, 1986) implements the testing of the restrictions associated 
with a nested sequence of hypotheses.) 

When F is AO (or just Assumption 6* holds), (16) of Theorem 4.3 ensures the 
asymptotic independence between the tests statistics T a and T b and defines the hypoth- 
esis (restrictions) a(e) = 0 and b(e) = 0 to be separable  (Aitchison, 1962, p. 238); in that 
case, the test statistic Tac, of the combined hypothesis a(9) = 0 and b(0) = 0, decom- 
poses (asymptotically) as the sum of T a and T b. When F is not AO, the asymptotic 
independence of Ta and T b is ensured by (17) even when they are not chi-square 
distributed. It can easily be shown that (17) assures also the separability of a(0) = 0 and 
b(0) = 0 with respect to the G T  statistics; that is, (17) implies the independence of th e 
G T  statistics and the corresponding decomposition GTac ~= G T  a + G T  c (obvious nota- 
tion is used). 
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The expressions for calculating S and GS (W and GW) involve vectors and matrices 
evaluated at the restricted (unrestricted) estimate 6 (or 6); thus, S and GS (W and GW) 
have the computational advantage compared with D (D requires the fit of the restricted 
and unrestricted models) in requiring just the fit of one model. Obviously, to compute 
GS and GW a consistent estimate of F needs to be available also. Although for large 
models F may be a matrix of high dimension, the fact that it does not get involved in any 
iterative process (and does not even need to be inverted), implies that the computations 
of GW and GS will not be of substantively higher "cos t"  than the computations of S or 
W. Clearly, the above statistics are obtained just by matrix algebra when one has 
available a consistent estimate of F and the vector of derivatives d, and matrices A and 
V, evaluated at specified values (0 or 6). Note that for both statistics, S and W (GS and 
GW), the expressions for d and A correspond with the same adopted model H. (The 
above "intermediate" statisticS--F, d, A and V, will be available as technical output in 
the latest version of EQS; Bentler, 1985.) 

Note that the misspecification on the model allowed by Assumption 2 (i.e., it 
allows the true or ° not to satisfy the model H0 (H), and a nonnull value for Ix), produces 
the nonzero values of the ncp's. It can also be seen to induce to 6 a "bias" ,  with respect 
to 0o, that is of order of magnitude n -v2. (Substituting in (i) of Lemma 1, nV2(s - t r o )  
for ~, it is obtained that this "bias term" equals (J.A)A'V(tr ° - t r o ) ,  which is zero 
when i~ = 0, that is, when a "° - tr 0. Of course, in a strict sense, even when V- ~ 0, 6 
remains consistent due to the fact that the assumption of a sequence of local alterna- 
tives guarantees that (~r ° - ~ro)--~0 as n ~ ~.). However, this type of misspecification 
has no effect on the asymptotic distribution of the statistics, nor does it bias the esti- 
mates of the,standard errors (see section 4). This contrast sharply with the effects of F 
not being AO, which may distort the typical asymptotic distribution of  the statistics and 
biases (asymptotically) the typical estimates of the standard errors. 

In practice it is very likely that the model is slightly misspecified (if not grossly) and 
that F is not AO. For small misspecification of the model, the asymptotic theory given 
above can provide sensible approximations to the actual distribution of the statistics of 
interest. For grossly misspecified models the above theory does not hold. Unfortu- 
nately, here the term "small" ("grossly") has a similar loose meaning as the "large" 
("small") of the jargon of asymptotic theory (when referring to sample size): given a 
specific context, "small" ("grossly") will be a matter of empirical evaluation, typically 
using Monte Carlo methods. On theoretical grounds, it can be said that, for given data, 
a conflict among alternative statistics that are asymptotically equivalent under certain 
assumptions should be interpreted as that, either the sample size is "still" small, or 
some assumption is violated. Thus, a conflict among the alternative statistics T (D, S 
and W) may indicate that Ho (or H) can be grossly misspecified, while a conflict among 
T and GT may indicate that F is not AO. However, the above interpretation need to be 
mediated by considerations of how much negligible are, given the actual finite sample 
size and possible values of the parameters, the quantities being ignored by the first 
order asymptotic approximations of, for example, Lemma 1. Different parameteriza- 
tions may also lead to substantial changes on the quality of these approximations (and 
note that in general W and GW are not invariant under such reparameterizations). (In 
the context of logistic regression and maximum likelihood, the inadequacy of  the qua- 
dratic approximation to the likelihood contour, causing finite sample size conflict 
among asymptotic equivalent statistics, has been investigated, for exsample, by Lust- 
bader, Moolgavkar, and Venzon, 1984; and Jennings, 1986.) 

It has to be noted that GS and GW can be related with test statistics introduced in 
White (1982), and Burguete, Gallant and Souza (I982), in the context of quasi-maximum 
likelihood estimation and nonlinear econometric models, respectively. In these refer- 
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ences a distinction is being made between the "outer"  and "hessian" form of the 
information matrix, which are assumed not to be equal as a result of some type of 
"distribution misspecification" (that is, the typical information matrix equality is not 
assumed to hold); then, score and Wald statistics are defined accordingly. The simi- 
larity of White's and Burguete et. al's score and Wald statistics with the statistics GS 
and GW introduced in section 5 becomes apparent when one regards A' VFVA and A' VA 
as the "outer"  and "hessian" form, respectively, of the "information matrix" (note 
that, in general, neither of these matrices is strictly the information matrix, as no full 
specification of the likelihood function of the data is involved). Then, Assumption 6* 
would play the role of the "information matrix equality" which is a sufficient condition 
for T (D, S or W) to be asymptotically a chi-square statistic, and n -1 j - i  to be the 
"correct"  matrix of (asymptotic) variances and covariances of (~. Note, however, that 
a less restrictive condition than Assumption 6", namely (22), is a sufficient condition for 
T to be asymptotically chi-square distributed. Therefore, in order to assess the ade- 
quacy of T as a chi-square statistic, an "information matrix test" of the type introduced 
in White (1982) could be based on (22), involving matrices of much lower dimension 
than when based on the equality stated in Assumption 6*. 

We will also mention that the results of this paper are valid in a more general 
context than covariance structure analysis. The vector s, and the vector of parameters 
~r that is modeled, may contain many types of moments: means, product-moment, 
frequencies (proportions), and so forth. Thus, such an approach includes a great variety 
of techniques as factor analysis, simultaneous equations for continuous variables, log 
linear or multinomial parametric models, and so forth. Of course, in order for the above 
results to apply, caution must be exerted with the assumptions fully stated in section 2. 
In practice, the observance of those assumptions will boil down to just taking care of 
using an appropriate consistent estimate of F, and distinguishing whether or not As- 
sumption 6 is verified. (In van Praag et. al., 1985, it is shown that also a specific type 
of the "incomplete observations problem" can be "modeled" by a specific form of F; 
also, for the structure of F in the case of "controlled" or "repeated" sampling exper- 
iments, see van Praag, de Leeuw and Kloek, 1986.) 

The case of a "multisample analysis" (JOreskog & Srrbom, 1984; see also Lee & 
Tsui, I982; and section 4 of Lee, 1985) is also encompassed by the theory above. In 
such a case, the vectors s and or are partitioned in (stochastically independent) sub- 
vectors, sg and org (g = 1, 2, - . - ,  G); thus, the matrix F is block diagonal, with diagonal 
blocks, Fg, conformable with the Sg'S. Typically V will also be block diagonal (with the 
Vg'S in the diagonal) and thus the assumption of F being AO (Assumption 6) will be 
ensured when VgFgVg = Vg holds for each group g. 

In conclusion, a variety of competing test statistics, some of which are classical 
ones and others are new statistics, have been reviewed in a unified framework using 
asymptotics. Under a restrictive assumption (which restricts the fitting function to 
satisfy an optimality condition), all the above statistics can not be distinguished as- 
ymptotically, as far as first order asymptotics are used. Under very general assump- 
tions (Assumptions 1 to 5), some of the statistics may be inadequate as not being 
asymptotically chi-square distributed, some may lead to tests with greater power than 
others, but some are still (asymptotically) chi-square statistics. The review identifies 
basic assumptions for their asymptotic behavior and sets a theoretical ground for their 
comparative performance (as far as asymptotic theory can be a guide). It has to be 
expected, however, that computational convenience, and small sample size perfor- 
mance, will be the key factors when assessing the comparative usefulness of the sta- 
tistics reviewed above, when used in a practical context. Clearly, those are topics for 
further research that go beyond the purpose of the present paper. 
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Appendix 

P r o o f  o f  L e m m a  1. The result (i) follows from the Assumptions 1 through 5 and the 
application of the implicit function theorem to aL/O,t = 0, where 

L = F(s, or(0)) - i'a(0), 

I is a r-vector of Lagrangian multipliers, and a- = (0', i')' (see Lemma 2 of Dijkstra, 1983, 
p. 70; also Shapiro, 1983, 1985b, 1986). (Here the result 02F/Ocrds ' = -OZF/Oerd~r ', see 
e.g. Shapiro, 1985a, was needed.) Note that when J is singular the (unrestricted) esti- 
mator t} has been defined to be the estimator associated with the restriction al(0) = 0. 

The results (ii) and (iii) follows from a first order Taylor expansion of a(0) around 
0o, and 0F/00 around 6, respectively. 

To prove (iv), consider the function of s 

f(s) = min~L(s, ~r), 

for which fls) = P, and which under the Assumptions 1 to 5 is twice continuously 
differentiable (see, e.g., Theorem 4.2 of Shapiro, 1983). Then, consider the following 
Taylor expansion: 

_ 

s ( s )  = s( 0) + ( s - : 0 )  + - (s - : 0 ) ,  

where (to is between s and o" o. As the first and second term of the right hand side of the 
above equality are zero, and nl/2(s - Oro) is bounded in probability, we get: 

nf(s) ~ n(s - o'0)'(V - V a ( J .  a )  - 1A'V)(s - ~r0), 

where azf((ro)/OsOs ' has been appropriately substituted (see, e.g., (4.4) of Shapiro, 1983, 
p. 48). See also Shapiro (1985b, 1986). 

The result (v) follows directly from the definition of i (see (4)) and (iii). 
Finally, (vi) results from the following Taylor series expansion of the function (r = 

or(0) at O0: 

nliZo ~ nl/2o'o + Ani/2(l} - 00), 

and then applying (i) of the Lemma. In all these derivations the obvious equalities fi~ g 
A, .4 =a A, ) a j and ) ~ J have been used. [ ]  

The next lemma follows using simple matrix algebra. The proof will not be repro- 
duced here and is available from the author when requested. 

L e m m a  2. Let J be a nonnegative definite matrix, and [J, A~] and [A~, A~]' well 
defined partitioned matrices of full row rank, and (J .  A) and (J .  AI) as in (9), then 

(J" A)  = (J" AO - (J" AI)A~(A2(J" AI)A~) - 1A2(J" AO. (AI) 

R e m a r k  A1.  Using (9), (A1) is easily seen to be equivalent to: 

j -  1A,(A J -  1A, ) - I A j -  1 = j -  1A~(AIJ- tA~ ) - 1Al J -  l 

+ (J" AI)A~(Az(J" AI)A~) - Ia2(J. A1). 
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