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STANDARD ERRORS OF FIT INDICES USING RESIDUALS IN STRUCTURAL 
EQUATION MODELING 

H A R U H I K O  O G A S A W A R A  

OTARU UNIVERSITY OF C O M M E R C E  

The asymptotic standard errors of the correlation residuals and Bentler's standardized residuals in 
covaxiance structures are derived based on the asymptotic covariance matrix of raw covaxiance residuals. 
Using these results, approximations of the asymptotic standard errors of the root mean square residuals 
for unstandardized or standardized residuals axe derived by the delta method. Further, in mean structures, 
approximations of the asymptotic standard errors of residuals, standardized residuals and their summary 
statistics are derived in a similar manner. Simulations are caxried out, which show that the asymptotic stan- 
dard errors of the various types of residuals and the root mean square residuals in covariance, correlation 
and mean structures axe close to actual ones. 
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In structural equation modeling, various model fit indices have been proposed. This comes 
partly from the well-known inappropriateness of the classical likelihood ratio chi-square statistic: 
in practical situations, models reasonably close to sample covariance matrices with moderate to 
large sample sizes are frequently rejected. Most of the proposed model fit indices are overall 
model fit measures (Bollen 1989a, pp. 256-281) which represent model fit by single values. Some 
of them are based on residuals in a sample covariance matrix after fitting a covariance model (e.g., 
root mean square residual, RMR, JOreskog & S6rbom, 1981, sec. 1.41; standardized root mean 
square residual, SRMR, Bentler, 1989, pp. 90-91; see also Hu & Bentler, 1999). Some indices 
use baseline or null models to be compared with posited models (Bentler, 1990; Bentler & Bonett, 
1980; Bollen, 1986, 1989b; McDonald & Marsh, 1990). The so-called goodness of fit indices 
(GFI; J6reskog & S6rbom, 1981; see also Bentler, 1983; Tanaka & Huba, 1985, 1989) are based 
on the discrepancy functions for the estimation of the parameters describing models. Some of the 
fit indices using the estimates of the noncentrality parameters adopt baseline models (Bentler, 
1990; McDonald & Marsh, 1990) or do not use baseline models (Browne & Cudeck, 1993; 
McDonald, 1989; Steiger, 1989, 1990; Steiger & Lind, 1980). The parsimony index (Mulaik, 
James, Van Alstine, Bennett, Lind & Stilwell, 1989) can be used with some of the above indices. 
Further, we have cross validation indices (Browne & Cudeck, 1993; Cudeck & Browne, 1983), 
information based indices (Akaike, 1973; Schwartz, 1978), the critical N (Hoelter, 1983) and so 
on.  

However, the distributions of most of the above indices are unknown even in large samples 
except for some of GFIs (Maiti & Mukherjee, 1990) and the root mean square error of approx- 
imation (RMSEA; Browne & Cudeck, 1993; Steiger & Lind, 1980). The properties of these fit 
indices have been investigated mainly by simulation (see, e.g., Anderson & Gerbing, 1984; Gerb- 
ing & Anderson, 1993; Hu & Bentler, 1999; Marsh & Balla, 1994; Marsh, Balla & McDonald, 
1988; Marsh & Hau, 1996). 

On the other hand, the component fit measures (Bollen, 1989a, pp. 281-289) include pa- 
rameter estimates, the asymptotic standard errors of parameter estimates and the asymptotic cor- 
relations for parameter estimates. The individual residuals (i.e., the (i, j)-th sample covariance 
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minus the corresponding fitted covariance) or their transformations may be classified as compo- 
nent fit measures. These residuals and their summary indices are used to see whether a model 
is fitted to a sample covariance or correlation matrix, though the individual residuals tend not to 
be reported in articles since they often require large amount of space as is the case of sample 
covariance matrices and raw data matrices (see Steiger, 1988). If the model is not well fitted to 
the sample matrix, then we look for where and how the model does not fit the data. The Lagrange 
multiplier (LM) test performs a similar work, where a relatively restricted model is fitted and the 
plausibility of a more unrestricted model with, for example, a new path in the fitted structural 
model is tested. When the chi-square value for the test is significant, we see that the new pa- 
rameter should be included in the restricted model. It is to be noted that by applying the LM 
test, a more unrestricted model should be specified though the parameter estimates in the more 
unrestricted model are not required. On the other hand, especially in the initial stage of model 
building, we often have to consider many possible alternatives to revise the present model which 
has left substantial residuals. In these situations, analysis of residuals would be helptul to clarify 
where the model should be revised without confining the ways of revision. In some cases, more 
appropriate models may not be found in the nested sequence of models. In such cases, the LM 
test is not informative. 

The purpose of this article is to derive the asymptotic standard errors of transformed residu- 
als and the summary statistics using residuals. If we have the standard errors, we can evaluate the 
sizes of the residuals and their overall statistics from a statistical viewpoint. As was addressed 
earlier, the residuals can be summarized as 

and 

R M R =  
~ i > j  (Sij -- hi j )  2 I 1/2 

p* I 
(1) 

SRMR = 

{ Sij_~oij ~2 11/2 

J p* 

where si j ,  (i, j = 1 . . . . .  p )  is the (i, j)-th unbiased sample covariance; 

(2) 

~ij = aij  (0) ,  (i, j = 1 . . . . .  p )  

is the fitted (i, j)-th covariance with 0 being the estimate of a q-vector of parameters; p* = 
p ( p  + 1)/2; and p is the number of observed variables. In addition to the above residuals used 
in RMR and SRMR the correlation residuals (Bollen, 1989a, p. 258) 

sij ~ij (i, j = 1 . . . . .  p )  (3) 
rij -- Pij --  ( s i i s j j ) l /2  ( 6 i i ~ j j ) l / 2 ,  

may be used. For some of covariance structure models (e.g., the exploratory factor analysis 
model) with typical estimation methods such as maximum likelihood estimation, sii = ~rii  , ( i  = 

1 . . . . .  p) and in this case the standardized residuals (see (2)) mid the correlation residuals (see 
(3)) are equivalent. 

J6reskog and S6rbom (1981, sec. 1.42) proposed normalized residuals 

^ 

Sij -- ~Yij (i, j = 1 . . . . .  p ) ,  
((~rii~rjj + $ ~ ) / N ) U 2 '  

(4) 
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where N is the number of observations and the denominator was regarded as an estimate of the 
asymptotic standard error of the numerator. However, they found that the estimate of the stan- 
dard error was too high and provided more accurate standard errors (J6reskog & S6rbom, 1989, 
sec. 1.15; see also Bentler & Dijkstra, 1985, p. 19; Bollen, 1989a, p. 259; J6reskog, S6rbom, 
du Toit, & du Toit, Appendix A.1, 1999.) On the other hand, Bentler and Dijkstra (1985, Equa- 
tion 1.7.5) gave the exact asymptotic covariance matrix of the residuals in means, covariances 
and frequencies etc. based on the generalized least squares (GLS) discrepancy function with or 
without restrictions on parameters. 

The reason of the use of the denominator of (4) by J6reskog and S6rbom (1981) is appar- 
ent: when ~rij is replaced with its population counterpart, the estimate of the asymptotic standard 
error of the residual with the assumption of multivariate normality is represented by the denomi- 
nator. However, ~rij is a random variable depending on sample variances and covariances, and is 
generally correlated with Sij.  The correlation may be usually positive since when Sij is high, ~rij 
should be influenced by the high value of Sij as well as other Sij 'S, which yields a relatively high 
value of ~rij. 

The asymptotic standard errors of various types of residuals and their summary statistics 
will be derived in the following sections, which may be directly used for testing or constructing 
confidence intervals. But, more realistic application may be for standardization of residuals as 
was first intended by J6reskog and S6rbom's (1981) normalized residuals. Bentler's standardized 
residuals and the correlation residuals include standardization by the scales of observed variables. 
But, these standardization methods do not consider the statistical variability for residuals. We 
should note that the same values for residuals with different corresponding standard errors do 
not give the same conclusion. 

Asymptotic Standard Errors of Covariance Residuals 

Let S ( p  x p) and E = E(0)(p  x p) be an unbiased sample covariance matrix and a 
covariance matrix derived by a covariance structure model with the parameter vector 0, respec- 
tively. We assume that p observed variables are multivariate normally distributed and employ the 
maximum Wishart likelihood estimation of the parameters in the model. Then, the discrepancy 
function is 

F = log IEI - log ISI + t r ( sE  -1) - p. (5) 

The maximum likelihood estimate 0 is obtained by minimizing (5), whose necessary conditions 
are given by the gradient vector of F with respect to 0 set equal to zero: 

OF 
gi -- -- tr{(E -1 - E -1SE-1)E i}  = 0, (i = 1 . . . . .  q), (6) 

00i 

where gi and Oi are the i-th elements of the gradient vector g and the parameter vector 0, respec- 
tively; and Ei = OE/OOi. The q equations of (6) represent the relationships between S and 0, 
though usually 0 is not an explicit function of S. 

Let  ui j  = sij - ~rij. Then, since 0 is an (implicit) function of S, we see that Uij is a function 
of S. Let 

s = v(S), d" = ~r(0) = v(E(0))  and u = v ( S -  E(0)), 

where v (.) is the vectorizing operator taking nonduplicated elements of a matrix, for example, 

S =  (Sll ,S21, S 2 2 , . . . , S p , p - l , S p p )  t. 
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Then, using the delta method we have the following results first given by Bentler and Dijkstra 
(1985, Equation 1.7.5); see also Satorra, 1989, Lemma 1; Satorra & Bentler, 1990, Equation 
2.17): 

acov(u) = acov(s 6) = Ip,  - ~ _ acov(s) I f ,  - (7) 
os s=,, l  ~ s=,,l 

where/1:, is the p* x p* identity matrix and tile partial derivative in (7) is obtained as follows 

(8) 

The derivation of 0o,(i~)/0s: in (8) stems from the formula of partial derivatives in implicit 
functions (see (6)). The partial derivative 0 ~r(~))/0 ~}: is easily obtained since o-(0) is usually an 
explicit function of 0. 

Since E(S) = 2,  3g/a0  ~ in (8) is approximated by 

Ogi O=o ~ tr(2-1~i2-1~J)'  (i, j = 1 . . . . .  q), (9) 
OOj 

which is well-known in covariance structure analysis. From (6), file matrix Og/Os: is 

Og____{_i _ ( 2 -  3 j k ) ( 2 - 1 f g i Z - 1 ) j k ,  (i = 1 . . . . .  q; p >_ j >_ k >_ 1), (10) 
OSjk 

where 3jk is the Kronecker delta and (')jk is the (j, k)-th element of the parenthesized matrix. 

With (8) through (10), the estimate of (7) is obtained by replacing 0 with its estimate 0. 
As an application of (7), we can derive an approximation of the asymptotic variance of 

RMR in the following way. 

avar(RMR) ~ avar(~z_>j u~j) ~ tr[{ac°v(u)}2] -- tr[{ac°v(u)}2] (11) 
(2 x E(RMR) x p,)2 -- E(u:u) x 2p* tr{acov(u)} x 2p*'  

where the expectation is taken in large samples and 

" i>_j : 

is used, whose derivation is provided in Appendix. 

Asymptotic Standard E1Tors of Standardized Residuals 

Let bij be Bentler's (1989) standardized residual, that is, 

uij (i, j = 1 . . . .  , p ) .  (12) 
b i j -  (siisjj)l/2 , 

Noting that in large samples E(u i j  ) ~ O, we have the lbllowing simple result: 

acov(b i j ,  bla) = acov (u i j ,  Ulcl) 
(criicrjjtYkkO.ll)l/2, (p > i > j > 1; p > k > I > 1). (13) 

which is easily obtained when acov(u) is given (see (7) and associated equations). Also, an 
approximation of the asymptotic variance of SRMR is derived similarly to (11): 
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avar(SRMR) -- 

where b = (b11, b21,/)22 . . . . .  bp,p-1, bpp) I. 

tr[{acov(b)} 2] 

tr{acov(b)} x 2p* '  
(14) 

(p > i  > j  > l ; p > k > l >  1). (19) 

One of the advantages of the correlation residuals is that Ifiijl < 1 while I~ij/(siisj j)l /21 in the 
standardized residual can be more than one. ~Ilm second advantage of the correlation residual 
is that when the covariance structure model is for standardized observed variables, fiij becomes 
somewhat simpler, because in this case 

aij -- Pij (0),  (20) 
fiij - -  (6liar j j )1~2 

where  Pij  (0) is the estimate of the (i, j)- th element of a fitted correlation matrix. When (20) 

holds, (18) and (19) become simpler: for example, (19) is simply (OPij/OOt)acov(O)(Opki/O0). 
The correlation root mean square residual, an overall fit index using the correlation residu- 

als, similar to RMR and SRMR (see (1) and (2)), is defined by 

\ ( s i i s j j ) ' / 2  ( a i i ~ ) , / 2 ]  / p  j , (21) 

where p -  = p ( p  - 1)/2. Let v = (v21, v31, . . . ,  vp,p_l)C Then, an approximation of the asymp- 
totic variance of CRMR is obtained similarly to those for RMR and SRMR: 

tr[{acov(v)} 2] 
avar(CRMR) g tr{acov(v)} x 2 p -  (22) 

Asymptotic Standard Errors of Correlation Residuals 

Let vii be the correlation residual corresponding to the (i, j)- th element of a covariance 
matrix (see (3)). Then, the asymptotic variance of vij is obtained by 

avar(vu) = avar(rij - ~ij) 

= avar(rij) - 2acov(Dij, rij) 4- avar([Sij), (p >_ i > j > 1), (15) 

where the values for i = j = 1 . . . . .  p are not included since they are always zero. The three 
terms on the right-hand side of (15) are given from (3) and the following results using the delta 
method. Let 

, -- , Sij* = ( S i j , S i i , S j j )  ! and o ' , *  ' 2-@i 2ajj  u = (o i j  , oi i  , o j j )  ¢, (16) 

then 

aCOV (rij  , rkl ) = iOij iOkl ¢¥i+j t acov (sij  *, ~kl" * !)" ~rkl--+ (17) 

(see also Girshick, 1939; Steiger & Hakstian, 1982), 

+: amj*  00 s=,~ , ~k~ )O'ks, (18) acov ( f i i j  r k l ) =  ioijPklO'ij  ~ t  ~ ac0v( s ,o  , t .  + 

~100"i i*  ^ O{)rkl *! . 
acov@ij, Pkl) = PijPklO'~j ~ a c o v ( 0 ) - - o - ~ / ,  

00 00 
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Asymptotic Standard Errors of  Mean Residuals 

While structural models are mainly concerned with covarianee or correlation structures, the 
means of  observed variable are sometimes assumed to have structured forms in structural equa- 
tion modeling. A typical model with structured means is the model with factor means (see, e.g., 
S6rbom, 1974; also J0reskog & S6rbom, 1996, chap. 10; Yung & Bentler, 1999). In such mod- 
els, the sample means of  Observed variables are not necessarily equal to the corresponding means 
reproduced by the models, which yields mean residuals (the vector of  sample means minus the 
corresponding means from a model). In usual covariance structure models, the means are uncon- 
strained: we have always zero mean residuals. When the means are structured, the mean residuals 
become component fit measures, which have meanings similar to covarianee/correlation residu- 
als to evaluate the goodness-of-fit of  a model in means. ~Ib assess the sizes of  mean residuals, the 
distributions of  the residuals will be helpful. In this section we give the asymptotic standard er- 
rors of  the mean residuals with the assumption of  multivariate normality for observed variables. 
Note that the results of  Bentler and Dijkstra (1985, Equation 1.7.5) in GLS estimation cover the 
residuals in means and gives the asymptotically equivalent ones to those given in this section. 
However, since their formulas are somewhat abstract, we present the following results which can 
be used in actual computation. 

When the model means are saturated, the Wishart likelihood is utilized. On the other hand, in 
case with structured or restricted means, we have to use the likelihood of  the original multivariate 
normal distribution. Let t~(p x 1) = ix(0) and I ] (p  x p)  = ~2(0) be the structured mean vector 
and the structured covariance matrix, respectively, where O(q x 1) is the vector of  parameters. 
The vector tx and the matrix ~ may or may not have common parameters in 0. Then, the log 
likelihood of  0 is 

N 
I = --}-{In I)21 + t r (S  ]~2-1) -~- ( x -  ~ ) i ~ - 1 ( ~ _  I t )  -~- p ln(2rc)}, (23) 

where 

1 N 
= ~ ~ (xi - ~)(xi - ~)'; x/(p x 1) 

i=1 

is the vector of  the i-th Observation; and 

= X i . 
i=1 

Note that S = ((N - 1)/N)S. The maximum likelihood estimator 0 of 0 is obtained by maxi- 
mizing (23), which is given from the following equations: 

2 01 
gi = --tr{()2 -1 - ~ - I S Z - 1 ) ~ i } - 2 ( ~ - / t ) ' I ] - I / k i  = 0 ,  (i = 1 , . . . , q ) ,  (24) 

N OOi 

where/ki = Olt/OOi. 
Let mj = -~j - fij be the j-t11 mean residual, where Zj and fij are the j-th elements of  

and V(0),  respectively. Then, the asymptotic covariance of  mj and mk is obtained as follows: 

acov(mj,  ink) = cov(2-j, ~-k) - acov(~-j, ilk) - acov(gk, / ) j )  + acov(/2j, ilk) 

-i 00I I.~=t~ OtzkO.._O cov(gk, i 00I ~=t OIqO0 (25) _ o-~k c o v ( ~ j  x ) - - ~ -  - ~ ) - 5 - / -  
N 

0/+j ~2~. Ol2k 
+ -Sff-acovt~)--~- ,  (p > j > 1; p > k > 1), 
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where acov(2"j, g~) = 0 ~ with g = v(S) is used; 

cov(~j, ~)  = (crjl, a j 2 , . . . ,  a jp ) /N ,  (j = 1 . . . . .  p); and O#j/'O0 ~, ( j  = 1 . . . . .  p) 

are easily obtained since # j ,  (j = 1 . . . . .  p) are usually explicit functions of 0. The remaining 
partial derivatives in (25) are given by 

( a0 ag ag at'- \ ~ /  ~ with t = ( g ' , 2 ' ) '  and g = ( g l , . . . , g q ) ' .  (26) 

For covariance residuals in the case of structured means, 0O/0g' in (26) is the same in form as 
the corresponding term in (8). However, we should note that 0g/001 is m be obtained fi'om (24), 
which is generally different from (6). That is, 

Ogi . . . .  O=o ~ t r ( ~ ' - l z i z - 1 Z J ) +  2 [ x ~ - l [ z J '  ( i , j  = 1, ,q )  (27) 
OOj 

and other partial derivatives in (26) are 

Ogi 
b = O = - - ( 2 - - 3 j k ) ( N - l ~ i N - 1 ) j k ,  ( i = 1  . . . . .  q ; p > j > k > l ) ,  (28) 

OSjk 

3gio2 b=O = - 2 2 - 1 [ x i '  (i = 1 . . . . .  q). (29) 

To derive (27), we used the relationships S ~ N and 2 ~ tu in large samples. The summary fit 
index for mean residuals (root mean square of mean residuals, RMMR) is defined similarly to 
RMR: 

RMMR = , (30) 

whose asymptotic variance is approximated by 

tr[{acov(m)} 2] 
avar(RMMR) ~ tr{acov(m)} x 2p with m = (m~ . . . . .  rap) ~, (31) 

which is obtained in a manner similar to (11). 
The mean residuals m j,  ( j  = 1 . . . . .  p) depend on scales and cannot directly be compared. 

Therefore, the standardized mean residuals and their summary statistics are defined by 

mj 
cj - (@j)1/2' (J = 1 . . . .  , p) and SRMMR (standardized RMMR) = , (32) 

j=l 

where @j may be replaced by sjj. Their asymptotic standard errors can be obtained m a manner 
similar to the previous lbrmulas. 

Numerical Examples 

Numerical examples are based on two real correlation matrices. One is from Harman's 
(1976, p. 22) eight physical variables (N = 305). Another is also from Harman's (1976, p. 401) 
twelve psychological tests (N = 355). We assumed that the correlation matrices were sample 
covariance matrices. In the first stage, unrestricted orthogonal factor analysis models for unstan- 
dardized observed variables were fitted with 2 and 3 common factors to the two (assumed) sample 



428 PS YCHOMETRIKA 

covariance matrices, respectively, by the maximum likelihood method. In the second stage, which 

will be explained later, we fitted restricted factor analysis models to these data. Because we have 

the rotational indeterminacy for the models in the first stage, we set (k 2 - k ) / 2  elements of  the 

factor loading matrices equal to zero without loss of generality, where k is the number of  common 

factors. From the property of  the maximum likelihood estimates for the unrestricted factor analy- 

sis model, we have sii = ~ii ,  (i = 1 . . . . .  p) and from the assumption o f  sit = 1, (i = 1 . . . . .  p )  

for these data, it follows that btij = b i j  = Vij and S E ( u i j )  = S E ( b i j )  = SE(vij) .  

Tables 1 and 2 show the results for the first stage. For file twelve psychological tests, 

Table 2 shows file results for every other observed variables to save space. The tables contain 

LISREL5 SEs obtained from the denominator of  (8) multiplied by ( N / ( N  - 1)) 1/2 without 

changing the asymplotic properts; and the theoretical SEs which are the estimated standard er- 

rors (i.e., S E ( u i j ) ,  St~2(bij) and S E ( v i j )  from (7), (13) and (15)). The tables also contain simu- 

lated results, which have been obtained in the following way. First, file fitted covariance matri- 

ces were regarded as population covariance matrices. (Consequently, the theoretical SEs in the 

tables become population ones in this simulation study.) Then, with the assumption of  multivari- 

TABLE 1. 
Unrestricted factor analysis for the eight physical baxiables (N = 305; ttarman, 1976, p. 22) 

LISREL5 Theoretical Simulated 
i j s i j  ~r i j s i j - 6 i j  SE SE SE z 

2 1 .846 .854 - .008 .0754 .0037 .0037 -2 .2  
3 1 .805 .826 -.021 .0744 .0060 .0061 -3.5 
3 2 .881 .863 .018 .0758 .0033 .0034 5.5 
4 1 .859 .815 .044 .0740 .0074 .0075 5.9 
4 2 .826 .842 - .016 .0750 .0043 .(~44 -3 .7  
4 3 .801 .814 -.013 .0739 .0069 .(~)71 -1 .9  
5 1 .473 .467 .006 .0633 .0033 .(~)33 1.8 
5 2 .376 .384 - .008 .0614 .0023 .0023 -3 .4  
5 3 .380 .375 .005 .0612 .0032 .0033 1.7 
5 4 .436 .433 .003 .0625 .0037 .0036 .8 
6 1 .398 .390 .008 .0616 .0118 .0115 .7 
6 2 .326 .320 .006 .0602 .0082 .0079 .7 
6 3 .319 .313 .006 .0601 .0115 .0113 .6 
6 4 .329 .362 -.033 .0610 .0131 .0131 -2.5 
6 5 .762 .761 .001 .0721 .0022 .0023 .3 
7 1 .301 .332 -.031 .0604 .0128 .0128 -2 .4  
7 2 .277 .260 .017 .0593 .0089 .0091 1.9 
7 3 .237 .255 - .018 .0592 .0124 .0127 -1 .4  
7 4 .327 .304 .023 .0600 .0142 .0143 1.6 
7 5 .730 .727 .003 .0709 .0027 .0029 1.0 
7 6 .583 .608 -.025 .0671 .0143 .0145 -1 .7  
8 1 .382 .418 - .036 .0622 .0150 .0153 -2 .4  
8 2 .415 .370 .045 .0612 .0104 .0105 4.3 
8 3 .345 .360 -.015 .0610 .0146 .0148 -1 .0  
8 4 .365 .395 - .030 .0617 .0166 .0163 -1 .8  
8 5 .629 .640 -.011 .0681 .0048 .~)51 -2 .2  
8 6 .577 .535 .042 .0650 .0209 .0209 2.0 
8 7 .539 .505 .034 .0642 .0231 .0233 1.5 

RMR = .0230 .00252 .00253 9.1 
SRMR/CRMR = .0230 .00252 .00262 9.1 

Note: z = (st j - 6i j ) /  Theoretical SE, SE = Standard Error, RMR = Root Mean Square Residual, SRMR = 
Standardized RMR, CRMR = Correlation RMR. 
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TABLE 2. 
Unrestricted factor analysis for the twelve psychological tests (N = 355; Harman, 1976, p. 401) 

429 

LISREL5 Theoretical Simulated 

i j s i j  6 i j  s i j  - 6 i j  SE SE NE z 

4 2 .557 .583 --.026 .0615 .0118 .0118 - 2 . 2  

6 2 .300 .314 --.014 .0557 .0148 .0147 - 1 . 0  

6 4 .200 .212 --.012 .0543 .0232 .0225 - . 5  

8 2 .448 .423 .025 .0577 .0103 .0103 2.4 

8 4 .310 .292 .018 .0554 .0161 .0157 1.1 

8 6 .545 .591 --.046 .0617 .0143 .0135 --3.2 

10 2 .377 .371 .006 .0567 .0167 .0169 .4 

10 4 .286 .289 --.003 .0553 .0264 .0253 --.1 

10 6 .407 .356 .051 .0564 .0262 .0260 2.0 

10 8 .385 .411 --.026 .0575 .0183 .0183 --1.4 

12 2 .200 .189 .011 .0541 .0168 .0166 .7 

12 4 .145 .150 - . 0 0 5  .0537 .0264 .0256 --.2 

12 6 .236 .252 - . 0 1 6  .0548 .0261 .0253 - . 6  

12 8 .285 .265 .020 .0550 .0182 .0180 1.1 

12 10 .213 .281 - . 0 6 8  .0552 .0268 .0272 - 2 . 6  

RMR = .0257 .00228 .00240 11.3 

SRMR/CRMR = .0257 .00228 .00243 11.3 

Note: z = (si j - 6i j ) /  Theoretical SE, SE = Standard Error, RMR = Root Mean Square Residual, SRMR = 
Standardized RMR, CRMR = Correlation RMR. 

ate normality, independent observations with the sample sizes equal to the real ones (N = 305 
and N = 355 for the two data sets, respectively) were generated. Based on these observations, 
the parameters of the factor models were estimated, and the residuals were calculated. From 
the residuals, we had RMR, SRMR and CRMR. Note that sample variances are not necessarily 
unities in simulated data and hence RMR and SRMR/CRMR are not necessarily equal in sim- 
ulation. On the other hand, SRMR and CRMR are equal even in simulation because we always 
have ~rii = S i i ,  ( i  = 1 . . . . .  p )  for the unrestricted factor analysis model in case of the maximum 
likelihood estimation. The asymptotic standard errors of the residuals, RMR and SRMR/CRMR 
were estimated by our methods. As was explained above, since the diagonal elements of fitted 
covariance matrices are always equal to the corresponding elements of sample covariance matri- 
ces in Tables 1 and 2, the values p* in (1) and (2) were tentatively replaced by the numbers of 
the nonduplicated off-diagonal elements p -  of the covariance matrices. 

The above procedure was replicated until 1,000 regular sets of parameter estimates were 
obtained, where the Heywood cases (one case each for the first and second examples) had been 
excluded from the regular sets of estimates. Then, we had 1,000 values for each (i, j)-th resudual, 
RMR and SRMR/CRMR. The simulated SEs in the tables show the standard deviations of the 
residuals, RMR and SRMR/CRMR over 1,000 replications, which are regarded as true or actual 
standard errors. The z's in the tables are the values o f u i j  ( =  bi j  = Vij) ,  RMR and SRMR/CRMR 
divided by their corresponding theoretical SEs in the tables. It can be shown that the correspond- 
ing z-values in the three types of residuals become equal even when sii ,  (i = 1 . . . . .  p )  are not 
unities if ~ i  = sii and  associated parameters are scale-free. 

It is apparent that the LISREL5 SEs are too high by comparison with the actual SEs and 
that the theoretical standard errors of the residuals are close to the actual SEs, which supports the 
appropriateness of our method. The z values for the raw residuals have the asymptotic standard 
normal distributions and some of the absolute z values show the significant values such as greater 
than 1.96 with the two-tailed probability less than 0.05. These values may be associated with the 
fact that the likelihood ratio )~2 values are 78.0 (d.f. = 13, p < 0.001) and 73.7 (d.f. = 33, p < 
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0.001) for the results for Tables 1 and 2, respectively. We should note that the summary statistics 
of the residuals (e.g., RMR) take only nonnegative values and are not normally distributed even in 

large samples. However, in some cases, we can use variable transformations such as a logarithmic 
transformation, which may yield less skewed distributions. The asymptotic standard error of the 
transformed statistic is easily obtained (see e.g., Browne, 1982, p. 96). 

In the second stage, the restricted factor models with equal uniquenesses (the variances of 
unique factors) were fitted to the same (assumed) sample covariance matrices used in the first 
stage. The numbers of the common factors are the same as those in the first stage. Note that 
even with the restriction for the unique factors, we still have the rotational indeterminacy for the 
common factors. So, we used the same parameter pattel-ns (i.e., (k 2 - k ) / 2  fixed zero loadings) 
for the identification of the loading matrices as those in the first stage. Tables 3 and 4 show the 
results for every other observed variables. Note that with the restriction for the unique factors, 
?rii's are no longer equal to the corresponding sii 's. Therefore, RMR and SRMR in the second 
stage were defined over p* elements as in the original definitions. 

The tables contain the estimates of the asymptotic standard errors of the three types of 
residuals, which are accompanied by their corresponding simulated standard errors. The simu- 
lated values have been obtained similarly as in the first stage with 1,000 replications, where the 
reproduced covariance matrices (~rij 'S) were regarded as population ones. The simulation in the 
second stage had no Heywood case until 1,000 regular samples were generated. 

From the tables, we find that the standard errors of correlation residuals tend to be larger than 
those of the corresponding residuals or standardized residuals in these data. (The equivalence 
of RMR and SRMR except in simulation comes from sii = 1, (i = 1 . . . . .  p).) This can be 
seen both in theoretical and simulated values, which also supports the appropriateness of our 
procedure of estimating the standard errors. 

A numerical example for the model with structural means is based on a factor analysis 
model with nonzero factor means for six unstandardized observed variables: 

/ x = A T ,  N = A A  I + ~ p w i t h y = ( 1 , 1 )  I, 
! E°1 44 ] 

A = 543321 ' q~ = diag(2, 2, 2, 2, 2, 2), (33) 

TABLE3. 
Restricted ~ctoranMysisfortheeightphysicN vai~les(N = 305;Harman, 1976, p.22) 

S E  of Residual SE of Stand. Resi. SE of Corr. Resi. 
i j si j - -  d i  j Theor. Simul. Theor. Simul. Theor. Simul. 

2 2 - .094 .0142 .0141 .0130 .0131 * * 
4 2 .010 .0116 .0118 .(i)107 .0110 .0159 .0165 
4 4 - .059 .0146 .0149 .(i)138 .0142 * * 
6 2 - .009 .0110 .0107 .0109 .0107 .0112 .0112 
6 4 - .026 .0112 .0109 .0113 .0110 .0117 .0114 
6 6 .069 .0143 .0148 .0153 .0161 * * 
8 2 .039 .0115 .0115 .0120 .0122 .0128 .0130 
8 4 -.026 .0116 .0114 .0124 .0123 .0134 .0133 
8 6 -.041 .0118 .0119 .0134 .0137 .0189 .019 
8 8 .166 .0155 .0154 .0185 .0188 * * 

RMR = .0510 
SRMR = .0510 
CRMR = .0652 

.00196 .00196 
.00200 .00214 

.00240 .00251 

Note: S E  = Standard Error, RMR = Root Mean Square Residual, SRMR = Standardized RMR, CRMR = 

Correlation RMR. The values denoted by asterisks are zero by definition. 
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TABLE 4. 
Restricted factor analysis for the twelve psychological tests (N = 355; Harman, 1976, p. 401) 
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SE of Residual SE of Stand. Resi. SE of Corr. Resi. 

i j si j - 6i j Theor. Simul. Theor. Simul. Theor. Simul. 

2 2 - .096  .0244 .0257 .0222 .0237 * * 
4 2 - .017  .0187 .0182 .0180 .0176 .0245 .0240 
4 4 .011 .0235 .0232 .0238 .0238 * * 
6 2 - .018  .0186 .0184 .0177 .0176 .0181 .0181 
6 4 .004 .0183 .0181 .0184 .0184 .0180 .0181 
6 6 - .003  .0251 .0250 .0250 .0251 * * 
8 2 .029 .0187 .0189 .0171 .0174 .0184 .0187 
8 4 .020 .0184 .0180 .0177 .0174 .0179 .0176 
8 6 - .038  .0195 .0190 .0187 .0182 .0247 .0244 
8 8 - .088  .0255 .0257 .0234 .0239 * * 

10 2 .002 .0199 .0203 .0209 .0216 .0232 .0241 
10 4 - . 010  .0195 .0188 .0216 .0209 .0233 .0224 
10 6 .021 .0202 .0199 .0222 .0219 .0250 .0246 
10 8 - .049  .0203 .0203 .0215 .0215 .0246 .0253 
10 10 .174 .0287 .0278 .0347 .0339 * * 
12 2 .015 .0151 .0149 .0152 .0152 .0153 .0154 
12 4 - . 004  .0148 .0145 .0157 .0155 .0160 .0160 
12 6 .002 .0153 .0151 .0161 .0160 .0162 .0162 
12 8 .035 .0154 .0157 .0156 .0160 .0156 .0161 
12 10 - .099  .0168 .0170 .0195 .0198 .0235 .0237 
12 12 .101 .0166 .0171 .0184 .0193 * * 

RMR = .0455 
SRMR = .0455 
CRMR = .0490 

.00211 .00215 
.00217 .00226 

.00232 .00238 

Note: SE = Standard Error, RMR = Root Mean Square Residual, SRMR = Standardized RMR, CRMR = 
Correlation RMR. The values denoted by asterisks are zero by definition. 

whe re  "y is a popula t ion  factor  m e a n  vector;  A is a popula t ion  loading matr ix;  and ~P is a d iagonal  

mat r ix  wi th  the d iagonal  e l ement s  be ing the popula t ion  var iances  o f  unique  factors.  The zero ele- 

m e n t  in A is a f ixed loading.  No te  that  the loading matr ix  A appears  both  in the m e a n  vec tor  and 

the covar iance  matrix.  Table 5 shows  the theoret ical  and  s imula ted  s tandard  errors o f  the m e a n  

TABLE 5. 
Standard errors of mean residuals (N = 400) 

SE ofZi - / z i  SE of ('Yi - ~ i ) / ~ i  
i Theor. Simul. Theor. Simul. 

1 .0274 .0279 .0053 .0054 
2 .0343 .0353 .0079 .0081 
3 .0374 .0371 .0108 .0107 
4 .0339 .0340 .0065 .0066 
5 .0343 .0347 .0073 .0074 
6 .0287 .0290 .0054 .0055 

RMMR .0116 .0113 
SRMMR .00276 .00263 

Note SE = Srandard Error, RMMR = Root Mean Square of Mean Residuals, 
SRMMR = Standardized RMMR. 
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TABLE 6. 
Correlations between mean residuals (N = 400) 

1 1.00 --.66 --.27 --.06 .04 .26 

2 --.63 1.00 --.38 --.23 --.07 .20 

3 --.36 --.30 1.00 --.15 --.07 .03 

4 --.17 --.15 --.13 1.00 --.48 --.52 

5 .06 --.12 --.03 --.39 1.00 --.46 

6 .35 .09 --.02 --.49 --.55 1.00 

N o t e :  T h e  elements above and below the main diagonal of the matrix 
indicate the theoretical and simulated correlations, respectively. 

residuals, the standardized mean residuals and their summary indices. The theoretical standard 
errors were obtained by using the above population values with the assumption of N = 400. The 
simulated standard errors were obtained using the population values in a manner similar to the 
simulation in the previous examples. The number of replications in the simulation was 1,000. 
From Table 5, we see that the theoretical values are close to their corresponding simulated val- 
ues. It is to be noted that while the standard errors of raw mean residuals are similar to each other 
though they depend on scales, the standard errors of the standardized mean residuals are substan- 
tially different. Table 6 shows the theoretical and simulated correlations between the raw mean 
residuals. The theoretical correlations are similar to their corresponding simulated correlations, 
which also shows the appropriateness of our procedure. 

Discussion 

In this article, we used the maximum likelihood method with the assumption of multivari- 
ate normality for the estimation of the parameters in mean and covariance structure models. 
However, it is to be noted that in principle, the assumption and the procedure can be relaxed 
or replaced by other ones. For instance, the basic equation (7) for covariance structure models 
without structured means holds irrespective of different distributional assumptions and different 
estimation methods. The normal theory discrepancy function (5) may be replaced by other ones, 
for example, those for elliptical distributions, if necessary. When we use the GLS estimation 
method and the unweighted least squares (LS) method, we have typical elements of the gradient 
vectors corresponding to (6) in the following way: 

OFGLs S_ 1 
gGLSi - -  - -  - -  t r{ (S  - 1 •  - S-1)5~i} = 0 (34) 

O0~ 

and 

aFLs 
gLSi -- - -  -- tr{(E -- S)Ei} = 0, (i = 1 . . . . .  q), (35) 

O0~ 

with fit functions FGLS and FLS for the GLS and LS estimations, respectively. The equations (34) 
and (35) evaluated at 0 = 0 represent (implicit) functions between S and 0. It is to be noted that 
the asymptotic distribution of the residuals in covariances by the GLS method is equivalent to 
that by the ML method since the GLS estimator is asymptotically equivalent to the ML estimator 
(Browne, 1974/1977). 

In case with structured means, we can use the minimum chi-square estimation with or with- 
out normality assumption for observed variables (see Ferguson, 1958; also Bentler, 1989; Kano, 
Bentler & Mooijaart, 1993). The discrepancy function to be minimized is 

FMC = {t' -- (v'(Z(0)), t z ' ( 0 ) ) } V - l { t -  (v'(Z(0)),  tz'(0))'}, (36) 
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where r~ is a consistent estimator of the asymptotic covariance matrix of t. (Note that t = (g~, ~)~ 
may be replaced by (s ~, ~)~ without changing the asymptotic property of the estimator of 0. See, 
e.g., Bentler, 1989, p. 224.) Let 

v l l  VI2 I (37) 
V = V21 V2 2 , 

where the submatrices correspond to the subvectors in t = (g~, ~)~. In the asymptotically 
distribution-free case, Vll and V12 consist of the fourth- and third-order moments, respectively 
(Browne, 1984). For the nolxnal distribution, we have the well-known simple results: a typical 
element of Vii is (c~ikcr F + oitCr jk ) / N and V12 = 0 (V22 = {eij / N} is unchanged). The implicit 

function between t and the estimate ~} is obtained from OISMc/O0 = 0 evaluated at 0 = 0. 
In the case of structured means, overall statistics for the residuals in covariances/correlations 

and means may be constructed to evaluate the overall goodness-of-fit of a model. For instance, 
T = WT1RMR 47 u~2RMMR or ST = wslSRMR 47 ws2SRMMR may be used for such indices, 
where t,OWi , Wsi, (i = 1, 2) are the relative weights to be determined by researchers. The asymp- 
totic standard errors of T and ST are derived stralghtlbrwardly by using again the delta method. 
However, in this case the asymptotic covariances between the mean and covariance residuals are 
required. With the assumption of normality, they are given in the following way. 

acov(mi, Ujk) = COV(~i, Sjk) -- acov(x'i, c)jk) -- acov(/.).i, sj)t) 47 acov(/.i, @k) 

~=t* acov(L O#i ~a, Oc~jk = -cov(~-i ~') a@k a~i ~jk) + 7-~Tacovt~) a0 
' ~ a~ ~ ~=,~ 

(all . . . . .  alp) O0 ~ ~=t* aa:jk 
= H 03 ao 

Oftiogl ~=o- (2Crlj°'lk' °'2jO~lk 47 °'2k°'lJN . . . . .  2°~pJ°'Pk)I 

O#i ~a, Oajk (i, j ,  k = 1 . . . .  p),  
+ -a--07ac°vt~*) O0 ' "" (38) 

where cov(gi, g~) = 0 ~ is used. 
The objective of the present paper was to derive the asymptotic standard errors of the various 

types of residuals and their summary indices, and not to choose appropriate type(s) of residuals 
for model evaluation. However, from the limited numerical examples, it seems that Bentler's 
standardized residuals in covariances are more stable than the correlation residuals though the 
correlation residuals have some advantages mentioned earlier. (Recall that we cannot directly 
compare raw residuals with standardized and correlation residuals because of the scale depen- 
dency of the raw residuals.) 

In previous sections, we assumed that a model was true. However, in practice, structural 
models may be at most approximations to realities as is often discussed in structural equation 
modeling. In such cases, the asymptotic results derived in this article may be meaningless. But, 
our results can be extended to such cases, when a model is slightly misspecified in the sense that 
E(xij) -- O'ij = O ( 1 / v / - N )  (see, e.g., Bentler & Dijkstra, 1985; Samrra, 1989). When the relaxed 
assumption holds, it can be shown that u2j/avar(uij) has the asymptotic noncentral chi-square 

distribution with df = 1 and the noncentrality parameter being say, ?~ij =- {E(uij )}2/avar(uij ). In 
this case, the asymptotic variance of fit indices using residuals e.g., RMR can also be derived by 
replacing asymptotic expectation of RMR and acov(u) by corresponding appropriate ones. The 
former, E(RMR), is easily obtained as follows: 
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( [  I l l - ] / \ l ~ 2  
i>_j 

The latter, acov(u), is provided in file Appendix. 

Appendix 

The Asymptotic Variance of  the Sum of  Squared Residuals 

In this appendix, we deal with the case in which models are slightly misspecified in the 
sense that 

E(uij) = O(1/~,/N). 

Let  u* (u121 ' u21 '/,/222 ' 2 2 -' Then, we have = • • • , Up,p__ l ,  Upp)  • 

av  u'u  ' = = lp,aCov(u ) lp ,  
' / "  i ~ j  

(A1) 

(A2) 

where lp,  is the p* x 1 vector consisting of ones. The (i j, kl)-th element of acov(u*), 
acov(u2j, u21), (p _> i _> j _> 1; p > k > I > 1), is obtained as follows. 

Let Zl = ul/ase(ul) and z2 = u2/ase(u2), where the subscripts 1 and 2 denote pairs 
(i, j )  and (k, l), respectively, and ase(.) denotes the asymptotic standard error of the parenthe- 
sized variable. Then, from (A1) zl and ze are asymptotically distributed according to N(31, 1) 
and N(3e, 1) respectively, where 31 and 32 are of order O(1). We assume that the asymptotic 
correlation between Zl and z2 is P12. 

First we derive the asymptotic covariance between u 2 and u 2. Write ze as 

z2 = pl2(zl - 31) + ~ -  p22e12 + 32, (A3) 

where ele has the asymptotic distribution N(0, 1) and acov(el2, Zl) = 0. Then, 

acov(u 2, u22 ) = E(u2u22) - E(u2)E(u22 ) 

= avar(ul)avar(ue)[E[{(zl - 31) 2 + 2(Zl - 31)31 + 32 } 

× { 122(z, - + - - 3 1 ) e 1 2  + ( 1  - 12f 12 

+ 2p12(Zl -- 31)32 "4- 2(1 - P 29~l/2e1939L; ~ -  + 32}] -- (1 + 312)(1 + 32)] 

= 2 a v a r ( u l ) a v a r ( u 2 ) P l 2 ( P l 2  q- 25132) 

= 2{acov(ul, u2)} 2 + 4acov(u~, ue)ase(u1)ase(u2)a132, (A4) 

where E{(Zl -- 31) 4} = 3, E{(Zl - 31)3e12} = 0 and E{(Zl - ~1)2e22} = 1 are used. 
From (A2) and (A4), 

avar(/>Za u i 2 ) ) .  . = 21~ , (acov(u)@acov(u) ) lp ,  + 4 ( a s e ( u ) Q  8 ) ' a cov (u ) ( a se (u )QS)  

= 2tr[acov(u){acov(u) + 2(ase(u) @ a)(ase(u) ® a)'}], (A5) 

where (i) denotes a Hadamard (elementwise) product, 

ase(u) = (ase(u 11), ase(u21 ), ase(u22) . . . . .  ase(up,p_ 1), ase(upp))' 
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and 

When a model is true, 

~ = 0  and a v a r ( ~ u 2 j )  = 2tr[{acov(u)}2]. 
k - -  j 
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