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STANDARD ERRORS OF FIT INDICES USING RESIDUALS IN STRUCTURAL
EQUATION MODELING

HARUHIKO OGASAWARA
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The asymptotic standard errors of the correlation residuals and Bentler’s standardized residuals in
covariance structures are derived based on the asymptotic covariance matrix of raw covariance residuals.
Using these results, approximations of the asymptotic standard errors of the root mean square residuals
for unstandardized or standardized residuals are derived by the delta method. Further, in mean structures,
approximations of the asymptotic standard errors of residuals, standardized residuals and their summary
statistics are derived in a similar manner. Simulations are carried out, which show that the asymptotic stan-
dard errors of the various types of residuals and the root mean square residuals in covariance, correlation
and mean structures are close to actual ones.
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In structural equation modeling, various model fit indices have been proposed. This comes
partly from the well-known inappropriateness of the classical likelihood ratio chi-square statistic:
in practical situations, models reasonably close to sample covariance matrices with moderate to
large sample sizes are frequently rejected. Most of the proposed model fit indices are overall
model fit measures (Bollen 1989a, pp. 256-281) which represent model fit by single values. Some
of them are based on residuals in a sample covariance matrix after fitting a covariance model (e.g.,
root mean square residual, RMR, Joreskog & Sorbom, 1981, sec. 1.41; standardized root mean
square residual, SRMR, Bentler, 1989, pp. 90-91; see also Hu & Bentler, 1999). Some indices
use baseline or null models to be compared with posited models (Bentler, 1990; Bentler & Bonett,
1980; Bollen, 1986, 1989b; McDonald & Marsh, 1990). The so-called goodness of fit indices
(GFT; Joreskog & Sorbom, 1981; see also Bentler, 1983; Tanaka & Huba, 1985, 1989) are based
on the discrepancy functions for the estimation of the parameters describing models. Some of the
fit indices using the estimates of the noncentrality parameters adopt baseline models (Bentler,
1990; McDonald & Marsh, 1990) or do not use bascline models (Browne & Cudeck, 1993;
McDonald, 1989; Steiger, 1989, 1990; Steiger & Lind, 1980). The parsimony index (Mulaik,
James, Van Alstine, Bennett, Lind & Stilwell, 1989) can be used with some of the above indices.
Further, we have cross validation indices (Browne & Cudeck, 1993; Cudeck & Browne, 1983),
information based indices (Akaike, 1973; Schwartz, 1978), the critical N (Hoelter, 1983) and so
on.

However, the distributions of most of the above indices are unknown even in large samples
except for some of GFIs (Maiti & Mukherjee, 1990) and the root mean square error of approx-
imation (RMSEA; Browne & Cudeck, 1993; Steiger & Lind, 1980). The properties of these fit
indices have been investigated mainly by simulation (see, ¢.2., Anderson & Gerbing, 1984; Gerb-
ing & Anderson, 1993; Hu & Bentler, 1999; Marsh & Balla, 1994; Marsh, Balla & McDonald,
1988; Marsh & Hau, 1996).

On the other hand, the component fit measures (Bollen, 1989a, pp. 281-289) include pa-
rameter estimates, the asymptotic standard errors of parameter estimates and the asymptotic cor-
relations for parameter estimates. The individual residuals (i.e., the (i, j)-th sample covariance
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minus the corresponding fitted covariance) or their transformations may be classified as compo-
nent fit measures. These residuals and their summary indices are used to see whether a model
is fitted to a sample covariance or correlation matrix, though the individual residuals tend not to
be reported in articles since they often require large amount of space as is the case of sample
covariance matrices and raw data matrices (see Steiger, 1988). If the model is not well fitted to
the sample matrix, then we look for where and how the model does not fit the data. The Lagrange
multiplier (LLM) test performs a similar work, where a relatively restricted model is fitted and the
plausibility of a more unrestricted model with, for example, a new path in the fitted structural
model is tested. When the chi-square value for the test is significant, we see that the new pa-
rameter should be included in the restricted model. It is to be noted that by applying the LM
test, a more unrestricted model should be specified though the parameter estimates in the more
unrestricted model are not required. On the other hand, especially in the initial stage of model
building, we often have to consider many possible alternatives to revise the present model which
has left substantial residuals. In these situations, analysis of residuals would be helpful to clarify
where the model should be revised without confining the ways of revision. In some cases, more
appropriate models may not be found in the nested sequence of models. In such cases, the LM
test is not informative.

The purpose of this article is to derive the asymptotic standard errors of transformed residu-
als and the summary statistics using residuals. If we have the standard errors, we can evaluate the
sizes of the residuals and their overall statistics from a statistical viewpoint. As was addressed
earlier, the residuals can be summarized as

N 1/2
- (517 — 6ij)?
RMR = {Zlii ;9]* Y §))
and
S,’j—a'ij 2 1/2

SRMR = Lizj (W) 2
= o )

where 5;;, (i, j =1, ..., p) is the (i, j)-th unbiased sample covariance;

j

Gij= 0., j=1....,p)

is the fitted (7, j)-th covariance with 0 being the estimate of a g-vector of parameters; p* =
p(p + 13/2; and p is the number of observed variables. In addition to the above residuals used
in RMR and SRMR the correlation residuals (Bollen, 1989a, p. 258)
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may be used. For some of covariance structure models (e.g., the exploratory factor analysis
model) with typical estimation methods such as maximum likelihood estimation, $;; = 65, (i =
1, ..., p) and in this case the standardized residuals (see (2)) and the correlation residuals (see
(3)) are equivalent.

Joreskog and S6rbom (1981, sec. 1.42) proposed normalized residuals

Sij — Oij
(6ii6jj +6) /N2
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where N is the number of observations and the denominator was regarded as an estimate of the
asymptotic standard error of the numerator. However, they found that the estimate of the stan-
dard error was too high and provided more accurate standard errors (Joreskog & Sorbom, 1989,
sec. 1.15; see also Bentler & Dijkstra, 1985, p. 19; Bollen, 1989a, p. 259; Joreskog, Sorbom,
du Toit, & du Toit, Appendix A.1, 1999.) On the other hand, Bentler and Dijkstra (1985, Equa-
tion 1.7.5) gave the exact asymptotic covariance matrix of the residuals in means, covariances
and frequencies etc. based on the generalized least squares (GLS) discrepancy function with or
without restrictions on parameters.

The reason of the use of the denominator of (4) by Joreskog and Sorbom (1981) is appar-
ent: when o;; is replaced with its population counterpart, the estimate of the asymptotic standard
error of the residual with the assumption of multivariate normality is represented by the denomi-
nator. However, 6;; is a random variable depending on sample variances and covariances, and is
generally correlated with s;;. The correlation may be usually positive since when s;; is high, &;;
should be influenced by the high value of s;; as well as other s;;’s, which yields a relatively high
value of &;;.

The asymptotic standard errors of various types of residuals and their summary statistics
will be derived in the following sections, which may be directly used for testing or constructing
confidence intervals. But, more realistic application may be for standardization of residuals as
was first intended by Joreskog and Sorbom’s (1981) normalized residuals. Bentler’s standardized
residuals and the correlation residuals include standardization by the scales of observed variables.
But, these standardization methods do not consider the statistical variability for residuals. We
should note that the same values for residuals with different corresponding standard errors do
not give the same conclusion.

Asymptotic Standard Errors of Covariance Residuals

Let S(p x p) and ¥ = Z(@)(p x p) be an unbiased sample covariance matrix and a
covariance matrix derived by a covariance structure model with the parameter vector @, respec-
tively. We assume that p observed variables are multivariate normally distributed and employ the
maximum Wishart likelihood estimation of the parameters in the model. Then, the discrepancy
function is

=log|X| —log|S|+ tr(ST™H — p. (5)

The maximum likelihood estimate 6 is obtained by minimizing (5), whose necessary conditions
are given by the gradient vector of F' with respect to @ set equal to zero:

F 1o wtsyhs =0, (i=1....9, (©)

8i = 20,

where g; and 6; are the i-th elements of the gradient vector g and the parameter vector 6, respec-
tively; and Y, = 0% /96;. The g equations of (6) represent the relationships between § and 0
though usually 0 is not an explicit function of S.
Letu;; = s;; — 6;;. Then, since 0 is an (implicit) function of S, we see that #;; is a function
of §. Let
s=v(S), o=0c@=v(Z(@®) and u=v(S—X(0),

where v(-) is the vectorizing operator taking nonduplicated elements of a matrix, for example,

7
S = (511, 521, 5225 - - - » Sp, p—1, Spp) -
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Then, using the delta method we have the following results first given by Bentler and Dijkstra
(1985, Equation 1.7.5); see also Satorra, 1989, Lemma 1; Satorra & Bentler, 1990, Equation

2.17):
) (N

where I« is the p* x p* identity matrix and the partial derivative in (7) is obtained as follows.

~
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The derivation of 80(9} /3s’ in (8) stems frgm tl3e formula of partial derivatives in implicit
functions (see (6)). The partial derivative dor(0)/38 1s easily obtained since o(8) is usually an
explicit function of 6. .
Since E(S) = £, ag/00' in (8) is approximated by

agi ~ —1g gl ..
%0, ézo_tr(E LETED, Gj=1...,9, ©

which is well-known in covariance structure analysis. From (6), the matrix dg/ds’ is

02; . . ,
% = Q-5 Y V=1 .qip= k=1, (10)
J

where &y is the Kronecker delta and (-) j 18 the (j, k)-th element of the parenthesized matrix.
With (8) through (10), the estimate of (7) is obtained by replacing @ with its estimate 0.
As an application of (7), we can derive an approximation of the asymptotic variance of

RMR in the following way.

avar( Y uf)  ulfacovw}’]  trifacov(w)}’]

avar(RMR) 2 2 x E(RMR) x p9)2  E(Wu) x 2p* _ triacov(w)} x 2p*’

D

where the expectation is taken in large samples and
avar( Z u,21> = 2tr[{acov(u)}2]
izj

is used, whose derivation is provided in Appendix.

Asymptotic Standard Errors of Standardized Residuals
Let b;; be Bentler's (1989) standardized residual, that is,

Uij o
bij=—2—. G, j=1....p. 12
i s @] p) 12

Noting that in large samples E(u;;) = 0, we have the following simple result:

acov(u;;, ig)

acov(bij, bu) = pzizj=zlLpzk=1>1. (13)

L TR
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which is easily obtained when acov(u) is given (see (7) and associated equations). Also, an
approximation of the asymptotic variance of SRMR is derived similarly to (11):
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tr[{acov(b)}?]

SRMR) = ,
avat( ) tr{acov(b)} x 2p*

(14)

where b = (bn, b21, bzz, ey bp7p_1, bpp)/.

Asymptotic Standard Errors of Correlation Residuals

Let v;; be the correlation residual corresponding to the (7, j)-th element of a covariance
matrix (se¢ (3)). Then, the asymptotic variance of v;; is obtained by

avar(v;;) = avar(r; — pij)
= avar(ryj) — 2acov(py;, rij) +avar(p;), (p=i>j=1, 15

where the values fori = j = 1, ..., p are not included since they are always zero. The three
terms on the right-hand side of (15) are given from (3) and the following results using the delta
method. Let

1 1 1Y
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then
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acov(rij, rkt) = pij o acov(si;*, s ™o, (17)

(see also Girshick, 1939; Steiger & Hakstian, 1982),

. + 00 - gt
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One of the advantages of the correlation residuals is that |5;;| < 1 while |6;; /(siis;;)"/?| in the
standardized residual can be more than one. The second advantage of the correlation residual
is that when the covariance structure model is for standardized observed variables, p;; becomes
somewhat simpler, because in this case

. Gij P
L E———— 1 20
Pij (6ii5jj)1/2 pij(0) 20

where p; j(é) is the estimate of the (7, j)-th element of a fitted correlation matrix. When (20)
holds, (18) and (19) become simpler: for example, (19) is simply (3p;; /06 )acov(f;l)(apkg /08).

The correlation root mean square residual, an overall fit index using the correlation residu-
als, similar to RMR and SRMR (see (1) and (2)), is defined by

. 2 172
Sij Oij —
CRMR = - » 2
{;((Susy)l/z (8ii&jj)l/2> /p } e

where p~ = p(p—1)/2. Letv = (vyy, V31, .. -, vpvp_l)’. Then, an approximation of the asymp-
totic variance of CRMR is obtained similarly to those for RMR and SRMR:

tr[{acov(v)}?]
tr{acov(v)} x 2p~"

avar(CRMR) = (22)
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Asymptotic Standard Errors of Mean Residuals

While structural models are mainly concerned with covariance or correlation structures, the
means of observed variable are sometimes assumed to have structured forms in structural equa-
tion modeling. A typical model with structured means is the model with factor means (see, e.2.,
Sorbom, 1974; also Joreskog & Sorbom, 1996, chap. 10; Yung & Bentler, 1999). In such mod-
els, the sample means of observed variables are not necessarily equal to the corresponding means
reproduced by the models, which yields mean residuals (the vector of sample means minus the
corresponding means from a model). In usual covariance structure models, the means are uncon-
strained: we have always zero mean residuals. When the means are structured, the mean residuals
become component fit measures, which have meanings similar to covariance/correlation residu-
als to evaluate the goodness-of-fit of a model in means. To assess the sizes of mean residuals, the
distributions of the residuals will be helpful. In this section we give the asymptotic standard er-
rors of the mean residuals with the assumption of multivariate normality for observed variables.
Note that the results of Bentler and Dijkstra (1985, Equation 1.7.5) in GLS estimation cover the
residuals in means and gives the asymptotically equivalent ones to those given in this section.
However, since their formulas are somewhat abstract, we present the following results which can
be used in actual computation.

When the model means are saturated, the Wishart likelihood is utilized. On the other hand, in
case with structured or restricted means, we have to use the likelihood of the original multivariate
normal distribution. Let p(p x 1) = p(8) and Z(p x p) = 2(8) be the structured mean vector
and the structured covariance matrix, respectively, where 8(g x 1) is the vector of parameters.
The vector i and the matrix X may or may not have common parameters in 8. Then, the log
likelihood of 0 is

I= —%[-{lﬂ 12+ @Y+ ®— w2 X — ) + pln@2a)), (23)

where

N
S= Y -0 - Dix(px D
i=1

=|

is the vector of the {-th observation; and

Note that § = (N — 1) /N)§. The maximum likelihood estimator 0 of 9 is obtained by maxi-
mizing (23), which is given from the following equations:

2 9l _ Ee ] — 1. .
g =—ggy =@ -3 IS O} 2@ -w'E M =0, (=1,....¢9), 24
i

where fx; = dp/30;.
Letm; = X; — j1; be the j-th mean residual, where X; and ji; are the j-th elements of X
and p(@), respectively. Then, the asymptotic covariance of m; and my is obtained as follows:

acov(m;, my) = cov(X;, Xx) — acov(X;, fix) — acov(Xg, ft;) + acov{ii;, jik)

ik — - 20 Ik _ 20 8/Lj
= X ) == A X == —_— 25
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where acov(X;,§) = 0 with § = v(S) is used;
COV(fj,i/)Z(Ujl,ajg,“.,ajp)/N, (G=1,...,p); anda/,cj/ao/, (j=1,...,p)

are easily obtained since 15, (j = 1,..., p) are usually explicit functions of €. The remaining
partial derivatives in (25) are given by

30 og ! og . N : ’
8—t7=—<d—é—/’) @ with t=(s,X) and gz(gl,...,gq). (26)
For covariance residuals in the case of structured means, 20 /38 in (26) is the same in form as

the corresponding term in (8). However, we should note that 3g/9 @ is to be obtained from (24),
which is generally different from (6). That is,

og; e et
D =TSy 2w E iy, Gi=1....q) @7

and other partial derivatives in (26) are

do: . . .
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Sjk 0=0

8 A
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To derive (27), we used the relationships S = ¥ and X = p in large samples. The summary fit
index for mean residuals (root mean square of mean residuals, RMMR) is defined similarly to
RMR:

P2\ 172
RMMR = (Z—f) . (30)
=P

whose asymptotic variance is approximated by

ul{acovim)}’] ,
avar(RMMR) & —mMM—— ith = My, ..., My, 31
var( ) tr{acov(m)} x 2p W m = (n; P (31
which is obtained in a manner similar to (11).
The mean residuals m, (j =1, ..., p) depend on scales and cannot directly be compared.
Therefore, the standardized mean residuals and their summary statistics are defined by

172
m; X ) P C? /
¢j = =5 (j = 1..... p) and SRMMR (standardized RMMR) = Y2, 3
(G jj ) j=1 P
where 6;; may be replaced by s;;. Their asymptotic standard errors can be obtained in a manner
similar to the previous formulas.

Numerical Examples

Numerical examples are based on two real correlation matrices. One is from Harman’s
(1976, p. 22) eight physical variables (N = 305). Another is also from Harman’s (1976, p. 401)
twelve psychological tests (N = 355). We assumed that the correlation matrices were sample
covariance matrices. In the first stage, unrestricted orthogonal factor analysis models for unstan-
dardized observed variables were fitted with 2 and 3 common factors to the two (assumed) sample
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covariance matrices, respectively, by the maximum likelihood method. In the second stage, which
will be explained later, we fitted restricted factor analysis models to these data. Because we have
the rotational indeterminacy for the models in the first stage, we set (k> — k)/2 elements of the
factor loading matrices equal to zero without loss of generality, where £ is the number of common
factors. From the property of the maximum likelihood estimates for the unrestricted factor analy-
sis model, we have s;; == &;;, (. = 1, ..., p) and from the assumption of 5;; = 1, (i = 1,..., p)
for these data, it follows that u;; = b;; = v;; and SE(u;;) = SE(bi;) = SE(v;).

Tables 1 and 2 show the results for the first stage. For the twelve psychological tests,
Table 2 shows the results for every other observed variables to save space. The tables contain
LISRELS SEs obtained from the denominator of (8) multiplied by (N/(N — 1)/2 without
changing the asymptotic property, and the theoretical SEs which are the estimated standard er-
rors (ie., Sﬁ(ui i), SE(b;;) and Sﬁ(vgj) from (7), (13) and (15)). The tables also contain simu-
lated results, which have been obtained in the following way. First, the fitted covariance matri-
ces were regarded as population covariance matrices. (Consequently, the theoretical SEs in the
tables become population ones in this simulation study.) Then, with the assumption of multivari-

TABLE 1.
Unrestricted factor analysis for the eight physical bariables (N = 305; Harman, 1976, p. 22)

LISRELS Theoretical Simulated

i ] sij fflj sij —51']' SE SE SE Z
2 1 846 854 —.008 0754 .0037 .0037 —2.2
3 1 .805 826 —.021 0744 .0060 .0061 —-3.5
3 2 881 .863 .018 0758 0033 .0034 5.5
4 1 .859 815 044 0740 0074 0075 59
4 2 826 842 —.016 0750 0043 .0044 —-3.7
4 3 801 814 —.013 0739 .0069 0071 —-1.9
5 1 473 467 .006 0633 .0033 .0033 1.8
5 2 376 384 —.008 0614 .0023 .0023 —34
5 3 380 375 005 0612 0032 0033 1.7
5 4 436 433 003 0625 0037 0036 8
6 1 398 .390 008 0616 0118 0115 7
6 2 326 320 .006 0602 .0082 0079 7
6 3 319 313 .006 .0601 0115 0113 .6
6 4 329 362 —.033 0610 0131 0131 -2.5
6 5 762 761 .001 0721 .0022 .0023 3
7 1 301 332 —.031 .0604 .0128 .0128 —2.4
7 2 277 260 .017 .0593 .0089 .0091 1.9
7 3 237 255 —.018 0592 .0124 0127 —1.4
7 4 327 304 .023 .0600 .0142 0143 1.6
7 5 730 727 .003 .0709 .0027 .0029 1.0
7 6 583 .608 —.025 0671 .0143 0145 —-1.7
8 1 .382 418 —.036 0622 0150 0153 —2.4
8 2 415 370 045 0612 0104 0105 4.3
8 3 345 360 —.015 0610 0146 0148 —1.0
8 4 365 395 —.030 0617 0166 0163 —1.8
8 5 629 640 —.011 0681 .0048 0051 —2.2
8 6 577 535 042 0650 0209 0209 2.0
8 7 539 505 034 0642 0231 0233 1.5
RMR = .0230 00252 00253 9.1
SRMR/CRMR = .0230 00252 00262 9.1

Note: z = (s; j — 6; j)/ Theoretical SE, SE = Standard Error, RMR = Root Mean Square Residual, SRMR =
Standardized RMR, CRMR == Correlation RMR.
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TABLE 2.
Unrestricted factor analysis for the twelve psychological tests (N = 355; Harman, 1976, p. 401)

LISRELS Theoretical Simulated

i j i 61']' 8ij — 6i]' SE SE SE z
4 2 557 .583 —.026 0615 0118 0118 —2.2
6 2 300 314 —.014 0557 0148 0147 —-1.0
6 4 200 212 —.012 0543 0232 0225 -5
8 2 448 423 025 0577 0103 0103 24
8 4 310 292 018 0554 0161 0157 1.1
8 6 545 591 —.046 0617 0143 0135 —-3.2
10 2 377 371 006 0567 0167 0169 4
10 4 286 .289 —.003 0553 0264 0253 -1
10 6 407 356 .051 0564 0262 0260 2.0
10 8 385 411 —.026 0875 0183 0183 —14
12 2 200 189 011 0541 0168 0166 v
12 4 145 150 —.005 0537 0264 0256 -2
12 6 236 252 —.016 0548 0261 0253 —.6
12 8 285 .265 020 0550 0182 0180 11
12 10 213 281 —.068 0552 0268 0272 —2.6
RMR = .0257 00228 .00240 11.3
SRMR/CRMR = .0257 00228 00243 11.3

Note: z = (s; j — 6; j)/ Theoretical SE, SE = Standard Error, RMR = Root Mean Square Residual, SRMR =
Standardized RMR, CRMR = Correlation RMR.

ate normality, independent observations with the sample sizes equal to the real ones (N = 305
and N = 355 for the two data sets, respectively) were generated. Based on these observations,
the parameters of the factor models were estimated, and the residuals were calculated. From
the residuals, we had RMR, SRMR and CRMR. Note that sample variances are not necessarily
unities in simulated data and hence RMR and SRMR/CRMR are not necessarily equal in sim-
ulation. On the other hand, SRMR and CRMR are equal even in simulation because we always
have 6;; = 5;;, (i = 1, ..., p) for the unrestricted factor analysis model in case of the maximum
likelihood estimation. The asymptotic standard errors of the residuals, RMR and SRMR/CRMR
were estimated by our methods. As was explained above, since the diagonal elements of fitted
covariance matrices are always equal to the corresponding elements of sample covariance matri-
ces in Tables 1 and 2, the values p* in (1) and (2) were tentatively replaced by the numbers of
the nonduplicated off-diagonal elements p™ of the covariance matrices.

The above procedure was replicated until 1,000 regular sets of parameter estimates were
obtained, where the Heywood cases (one case each for the first and second examples) had been
excluded from the regular sets of estimates. Then, we had 1,000 values for each (i, j)-th resudual,
RMR and SRMR/CRMR. The simulated SEs in the tables show the standard deviations of the
residuals, RMR and SRMR/CRMR over 1,000 replications, which are regarded as true or actual
standard errors. The z’s in the tables are the values of u;; (= b;j = v;;), RMR and SRMR/CRMR
divided by their corresponding theoretical SEs in the tables. It can be shown that the correspond-
ing z-values in the three types of residuals become equal even when s;;, (i = 1, ..., p) are not
unities if 6;; = s5;; and associated parameters are scale-free.

It is apparent that the LISRELS SEs are too high by comparison with the actual SEs and
that the theoretical standard errors of the residuals are close to the actual SEs, which supports the
appropriateness of our method. The z values for the raw residuals have the asymptotic standard
normal distributions and some of the absolute z values show the significant values such as greater
than 1.96 with the two-tailed probability less than 0.05. These values may be associated with the
fact that the likelihood ratio x 2 values are 78.0 (d.f. = 13, p < 0.001) and 73.7 (d.f. = 33, p <
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0.001) for the results for Tables 1 and 2, respectively. We should note that the summary statistics
of the residuals (e.g2., RMR) take only nonnegative values and are not normally distributed even in
large samples. However, in some cases, we can use variable transformations such as a logarithmic
transformation, which may yield less skewed distributions. The asymptotic standard error of the
transformed statistic is easily obtained (see ¢.g., Browne, 1982, p. 96).

In the second stage, the restricted factor models with equal uniquenesses (the variances of
unique factors) were fitted to the same (assumed) sample covariance matrices used in the first
stage. The numbers of the common factors are the same as those in the first stage. Note that
even with the restriction for the unique factors, we still have the rotational indeterminacy for the
common factors. So, we used the same parameter patterns (i.e., (k? — k) /2 fixed zero loadings)
for the identification of the loading matrices as those in the first stage. Tables 3 and 4 show the
results for every other observed variables. Note that with the restriction for the unique factors,
6;;’s are no longer equal to the corresponding s;;’s. Therefore, RMR and SRMR in the second
stage were defined over p* elements as in the original definitions.

The tables contain the estimates of the asymptotic standard errors of the three types of
residuals, which are accompanied by their corresponding simulated standard errors. The simu-
lated values have been obtained similarly as in the first stage with 1,000 replications, where the
reproduced covariance matrices (6;;°s) were regarded as population ones. The simulation in the
second stage had no Heywood case until 1,000 regular samples were generated.

From the tables, we find that the standard errors of correlation residuals tend to be larger than
those of the corresponding residuals or standardized residuals in these data. (The equivalence
of RMR and SRMR except in simulation comes from 5;; = 1, = 1,..., p).) This can be
seen both in theoretical and simulated values, which also supports the appropriateness of our
procedure of estimating the standard errors.

A numerical example for the model with structural means is based on a factor analysis
model with nonzero factor means for six unstandardized observed variables:

p=Ay, X =AN+ ¥ withy=(1,1),

011445
A= [ 543321

} W = diag(2,2,2,2.2,2), (33)

TABLE 3.
Restricted factor analysis for the eight physical variables (N = 305; Harman, 1976, p.22)

SE of Residual SE of Stand. Resi. SE of Corr. Resi.
i i s5i;—6ij Theor. Simul. Theor. Simul. Theor. Simul.
2 2 —.094 0142 0141 0130 0131 * *
4 2 010 0116 0118 0107 0110 0139 0165
4 4 —.059 0146 0149 0138 0142 * *
6 2 —.009 0110 0107 0109 .0107 0112 0112
6 4 —.026 0112 0109 0113 0110 0117 0114
6 6 069 0143 0148 L0153 0161 * *
8 2 .039 0115 0115 0120 0122 0128 0130
8 4 —.026 0116 0114 0124 0123 0134 0133
8 6 —.041 0118 0119 0134 0137 0189 019
8 8 166 0155 0154 0185 0188 * *

RMR = .0510 00196 .00196
SRMR = .0510 .00200 00214
CRMR = .0652 .00240 00251

Note: SE = Standard Error, RMR = Root Mean Square Residual, SRMR = Standardized RMR, CRMR =
Correlation RMR. The values denoted by asterisks are zero by definition.
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TABLE 4.
Restricted factor analysis for the twelve psychological tests (N = 355; Harman, 1976, p. 401)

SE of Residual SE of Stand. Resi. SE of Corr. Resi.
i j Sij— Gy j Theor. Simul. Theor. Simul. Theor. Simul.
2 2 —.096 .0244 .0257 .0222 .0237 * *
4 2 —.017 .0187 .0182 .0180 .0176 .0245 .0240
4 4 011 .0235 .0232 .0238 .0238 * *
6 2 —.018 .0186 .0184 .0177 .0176 .0181 .0181
6 4 .004 .0183 .0181 .0184 .0184 .0180 .0181
6 6 —.003 .0251 .0250 .0250 .0251 * *
8 2 .029 .0187 .0189 0171 .0174 .0184 .0187
8 4 .020 .0184 .0180 0177 0174 .0179 0176
8 6 —.038 .0195 .0190 .0187 0182 .0247 .0244
8 8 —.088 .0255 .0257 .0234 .0239 * *
10 2 .002 .0199 .0203 .0209 .0216 .0232 .0241
10 4 —.010 .0195 .0188 .0216 .0209 .0233 .0224
10 6 .021 .0202 .0199 .0222 .0219 .0250 .0246
10 8 —.049 .0203 .0203 .0215 .0215 .0246 .0253
10 10 174 .0287 0278 .0347 .0339 * *
12 2 015 0151 .0149 0152 .0152 .0153 .0154
12 4 —.004 .0148 .0145 .0157 .0155 .0160 .0160
12 6 .002 .0153 .0151 .0161 .0160 0162 .0162
12 8 .035 .0154 0157 .0156 .0160 .0156 .0161
12 10 —.099 .0168 .0170 .0195 .0198 .0235 .0237
12 12 101 .0166 0171 .0184 .0193 * *
RMR = .0455 .00211 .00215
SRMR = .0455 .00217 .00226
CRMR = .0490 .00232 .00238

Note: SE = Standard Error, RMR = Root Mean Square Residual, SRMR = Standardized RMR, CRMR =
Correlation RMR. The values denoted by asterisks are zero by definition.

where v is a population factor mean vector; A is a population loading matrix; and \V is a diagonal
matrix with the diagonal elements being the population variances of unique factors. The zero ele-
ment in A is a fixed loading. Note that the loading matrix A appears both in the mean vector and
the covariance matrix. Table 5 shows the theoretical and simulated standard errors of the mean

TABLE 5.
Standard errors of mean residuals (N = 400)
SEof X; — [ SE of (x; — f4;)/+/6i
i Theor. Simul. Theor. Simul.
1 0274 .0279 .0053 .0054
2 .0343 .0353 .0079 .0081
3 .0374 .0371 .0108 .0107
4 .0339 .0340 .0065 .0066
5 .0343 .0347 .0073 0074
6 .0287 .0290 .0054 .0055
RMMR 0116 0113
SRMMR 00276 .00263

Note SE = Srandard Error, RMMR = Root Mean Square of Mean Residuals,
SRMMR = Standardized RMMR.
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TABLE 6.
Correlations between mean residuals (N = 400)

1 1.00 —.66 -.27 —.06 .04 26
2 —.63 1.00 —.38 —.23 —-.07 .20
3 —.36 —.30 1.00 —.15 —-.07 .03
4 —.17 —.15 —.13 1.00 —.48 —-.52
5 .06 —.12 —.03 —.39 1.00 —.46
6 35 .09 —-.02 —.49 —.55 1.00

Note: The elements above and below the main diagonal of the matrix
indicate the theoretical and simulated correlations, respectively.

residuals, the standardized mean residuals and their summary indices. The theoretical standard
errors were obtained by using the above population values with the assumption of N = 400. The
simulated standard errors were obtained using the population values in a manner similar to the
simulation in the previous examples. The number of replications in the simulation was 1,000.
From Table 5, we see that the theoretical values are close to their corresponding simulated val-
ues. It is to be noted that while the standard errors of raw mean residuals are similar to each other
though they depend on scales, the standard errors of the standardized mean residuals are substan-
tially different. Table 6 shows the theoretical and simulated correlations between the raw mean
residuals. The theoretical correlations are similar to their corresponding simulated correlations,
which also shows the appropriateness of our procedure.

Discussion

In this article, we used the maximum likelihood method with the assumption of multivari-
ate normality for the estimation of the parameters in mean and covariance structure models.
However, it is to be noted that in principle, the assumption and the procedure can be relaxed
or replaced by other ones. For instance, the basic equation (7) for covariance structure models
without structured means holds irrespective of different distributional assumptions and different
estimation methods. The normal theory discrepancy function (5) may be replaced by other ones,
for example, those for elliptical distributions, if necessary. When we use the GLS estimation
method and the unweighted least squares (I.S) method, we have typical elements of the gradient
vectors corresponding to (6) in the following way:

o F R
gGLsi = 83“ —u{(ST'EsT s =0 (34)
i
and
0 F R )
gLsi = 855 =T -HT}=0,G=1,....9), (35)
1

with fit functions Fgrs and Fis for the GLS and LS estimations, respectively. The equations (34)
and (35) evaluated at @ = 0 represent (implicit) functions between S and 0. It is to be noted that
the asymptotic distribution of the residuals in covariances by the GLS method is equivalent to
that by the ML method since the GLS estimator is asymptotically equivalent to the ML estimator
(Browne, 1974/1977).

In case with structured means, we can use the minimum chi-square estimation with or with-
out normality assumption for observed variables (see Ferguson, 1958; also Bentler, 1989; Kano,
Bentler & Mooijaart, 1993). The discrepancy function to be minimized is

Fue = {t — (V/(2(0)), ' (0)}V ™! {t — (vV/(Z(0)), ' ()}, (36)
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where V is a consistent estimator of the asymptotic covariance matrix of t. (Note thatt = (§',X')’
may be replaced by (s/, X')" without changing the asymptotic property of the estimator of . See,
e.2., Bentler, 1989, p. 224.) Let

Vi Vio
V= , 37
[ Var Vi GD
where the submatrices correspond to the subvectors in t = (§,X). In the asymptotically

distribution-free case, Vi1 and Vi consist of the fourth- and third-order moments, respectively
(Browne, 1984). For the normal distribution, we have the well-known simple resulis: a typical
element of Viy 18 (01,01 +0y1051)/N and Vi = O (Vo = {0;/N} is unchanged). The implicit
function between t and the estimate 6 is obtained from 9 Fyve /060 = 0 cvaluated at 6 = 0.

In the case of structured means, overall statistics for the residuals in covariances/correlations
and means may be constructed to evaluate the overall goodness-of-fit of a model. For instance,
T = wriRMR + w3 RMMR or ST = ws; SRMR + ws, SRMMR may be used for such indices,
where wr;, ws;, (i = 1, 2) are the relative weights to be determined by researchers. The asymp-
totic standard errors of T and ST are derived straightforwardly by using again the delta method.
However, in this case the asymptotic covariances between the mean and covariance residuals are
required. With the assumption of normality, they are given in the following way.

acov(m;, ujx) = cov(X;, §jx) — acov(X;, 6;x) — acov(fi;, §x) + acov(ji;, & jx)

90 A o
= —cov(%;,X) Ujk - -%l acov(s, ;) + i acov (0)
F=p % oo o0
_ _(Ui1,~~,0ip)8_f)’ 90 jk
N 0% |5y, 00
0| Qovjou oajouk + o%oy, - 20pi0pk)
% |y N
ryis .
+8_0/ac (0)__ (lv,]akzla**'sp)’ (38)

where cov(T;, s") = ¢ is used.

The objective of the present paper was to derive the asympiotic standard errors of the various
types of residuals and their summary indices, and not to choose appropriate type(s) of residuals
for model evaluation. However, from the limited numerical examples, it seems that Bentler’s
standardized residuals in covariances are more stable than the correlation residuals though the
correlation residuals have some advantages mentioned earlier. (Recall that we cannot directly
compare raw residuals with standardized and correlation residuals because of the scale depen-
dency of the raw residuals.)

In previous sections, we assumed that a model was true. However, in practice, structural
models may be at most approximations to realities as is often discussed in structural equation
modeling. In such cases, the asymptotic results derived in this article may be meaningless. But,
our results can be extended to such cases, when a model is slightly misspecified in the sense that
E(sij) —oi; = 00 /N (see, e.g., Bentler & Dijkstra, 1985; Satorra, 1989). When the relaxed
assumption holds, it can be shown that u /avar(u, 1) has the asymptotic noncentral chi-square

distribution with df = 1 and the noncentrahty parameter being say, 8;; = {E(u;; )} Javar(u;;). In
this case, the asymptotic variance of fit indices using residuals e.g., RMR can also be derived by
replacing asymptotic expectation of RMR and acov(u) by corresponding appropriate ones. The
former, E(RMR), is easily obtained as follows:
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1/2
E(RMR) = (E(u'w)/pHl/? = ([tr{acov(u)} + ) sijavar(u; ,-)} / p*) . (39
ixj
The latter, acov(u), is provided in the Appendix.
Appendix
The Asymptotic Variance of the Sum of Squared Residuals

In this appendix, we deal with the case in which models are slightly misspecified in the
sense that

E(ui;) = O1/V/N). (A1)
Letw* = (u3,. 3. sy, . ... 105, ;. u05,) . Then, we have
avar( > u%) = avar(u'w) = 1/, acov(u*)1 (A2)
iz

where 1, is the p* x 1 vector consisting of ones. The (ij, kl)-th element of acov(u*),
acov(uizj, ug), (p>i>j>1;p>k>12>1),isobtained as follows.

Let z1 = ui/ase(uy) and zo = uo/ase(us), where the subscripts 1 and 2 denote pairs
(i, j) and (k, ), respectively, and ase(-) denotes the asymptotic standard error of the parenthe-
sized variable. Then, from (A1) z; and z, are asymptotically distributed according to N (81, 1)
and N (8,2, 1) respectively, where 8; and &, are of order O(1). We assume that the asymptotic
correlation between z; and 75 is p12.

First we derive the asymptotic covariance between u3 and u3. Write 25 as

22 = p12(21 — 81) + /1 — phe1n + 82, (A3)

where e1> has the asymptotic distribution N (0, 1) and acov(e;2, z1) = 0. Then,
acov(ui, u3) = B(uiuz) — E(ui)E(u3)
= avar(upavar(u2)[E[{z1 — 81 + 2(z1 — 81)81 + 57}
x {p(z1 —81)* + 2p12(1 — 10122)1/2(21 —8pen+ (1—ph)ed,
+2p12(z1 — 8082 + 2(1 — p2,) Pernds + 83} — (1 + 8D (1 + 83)]

= 2avar(uyavar(uo)p12(o12 + 26182)

= 2{acov(uy, uz)}z + dacov{uy, ur)ase(u)ase(us)58182, (Ad)

where E{(z1 — 81"} = 3, E{(z1 — 81)%e12} = O and E{(z1 — 81)%¢},} = 1 are used.
From (A2) and (A4),

avar(Z ulzj) = 21},* (acov(w) © acov(u))1p+ 4+ d(ase(m) © &) acov(w)(ase(u) © &)

i
= 2trlacov(w){acov(u) + 2(ase(u) © &)(ase(w) © &)1, (A5)
where © denotes a Hadamard (elementwise) product,

» /
ase(u) = (ase(u11), ase(uay), ase(Uaz), ..., as¢(Up p—1), ase(U pp))
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and

8= (511,821,822, .. .. 8p p—1, 8pp).

When a model is true,

6§=0 and avar(Zuizj) = 2uf{acov(w)}?].

iz
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