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THE IRRELEVANCE OF DISTRIBUTIONAL ASSUMPTIONS 
ON REACTION TIMES IN MULTIDIMENSIONAL SCALING 

OF SAME/DIFFERENT JUDGMENT TASKS 
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Takane and Sergent developed a model (MAXRT) for scaling same/different judgments and 
response times (RTs) simultaneously. The model assumes that RTs are distributed lognormally. 
Our experiment showed that the RT distribution of the judgments might be task dependent. It 
is shown that lognormal RTs provide a far better fit than exponential, normal, and Pareto 
distributed RTs (with the same means and variances), but that the final parameter estimates 
from the data set with lognormal RTs hardly differ from the alternatively distributed RTs. 
Finally, despite the robustness of the distributional assumption of the RTs with respect to the 
parameter estimates, it is shown that RTs have an informational value that is not contained in 
the same/different judgments alone. 

Key words: response times, distributions, maximum likelihood scaling, likelihood ratio )t, 2, 
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Despite the popularity of response times (RTs) as a dependent variable in psycho- 
logical research, surprisingly few studi~s have used RTs as input data for scaling. A 
remarkable exception to this lack of interest in latencies is Takane and Sergent's (1983) 
MAXRT model. Whereas earlier applications of multidimensional scaling to RTs 
merely used this dependent variable as an alternative to direct similarity ratings or 
confusion data (Brown & Andrews, 1968; Harrington & Brown, 1972; Kak & Brown, 
1979; Melara, 1989; Young, 1970), the MAXRT model introduced a method that takes 
full account of the bivariate nature of same/different judgments and RT data (Takane & 
Sergent, 1983). The model assumes that RTs are distributed lognormally. The first 
question this paper addresses concerns the adequacy of this distributional assumption. 
Next, the effect of a violation of this assumption is investigated by means of a simu- 
lation study. Finally, the data of a same/different task are analyzed with and without the 
RT data to obtain a clear view of the additional information provided by the RTs. 

Preliminaries 

A Short Review of Takane and Sergent's (1983) MAXRT Model 

Given the importance of Takane and Sergent's model for the research reported in 
this paper, a short review will be presented. The model assumes that a set of  n stimuli 
has some parametric representation, from which a dissimilarity between two stimuli (i 
and j)  is uniquely defined: 

dij = d(Oi,  Oj),  (1) 
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where Oi and ®j are parameter vectors characterizing the stimuli, and d is a function 
that expresses their combination rule. MAXRT allows the application of three dissim- 
ilarity models: (a) the Minkowski power distance model (Kruskal, 1964a, 1964b), (b) the 
linear model (Medin & Shaffer, 1978), and (c) Tversky's (1977) feature matching model. 
We restrict ourselves to the first model, where the stimuli are represented as points in 
an M-dimensional space, and where dij is defined as 

I. 1 did = ~ loire - Ojml" , (2) 
m = l  

with Oim the coordinate of stimulus i on dimension m, and u - 0. We use the Euclidean 
distance only (u = 2). MAXRT further assumes that d 6 is error-perturbed by the 
following process: 

A ijkr = d i j e i j k r ,  (3) 

where eijkr is the error random variable operating at replication r, and where 

In eukr ~ dr(0, o'2). (4) 

The subscript k represents an experimental session. The parameter bk symbolizes a 
threshold value, and Yijkr is the random variable for the same/different judgment, 
defined as 

Yijkr = 1 when h ijkr < b k ,  

0 }[ ijkr >" bk .  

The probability function of the variable Y(ikr is 

Qijk = P(rijkr = 1) 

(same judgment) 

(different judgment) 
(5) 

= ~ ( Z )  d z  = ~ (V i j k ) ,  (6) 

I - Q o k  = e ( Y o k ~  = 0 ) ,  

where 

In bk -- In d o 
vijk = (7) 

or k 

and ~ • ) and ~P( • ) are, respectively, the density and the distribution function of the 
standard normal distribution. MAXRT further assumes that the RTs Tijkr are inversely 
related to the absolute value of the difference between the decision statistic (In di j )  and 
the criterion (ln bk). (For more details on this traditional assumption in signal detection 
literature, see Murdock, 1985). It is also assumed that this relation is different, depend- 
ing on the value of YOkr" For different judgments, it is assumed that 

In Tijk~ ~ Ar{Pk(ln dij - In bk)  + ak  ; q2},  

and for same responses, 

(8) 

In Tijkr ~ Ar{pk(ln bk  -- In dij )  + ak ;  q2},  (9) 
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where Pk is assumed to be negative. The model further assumes that qk = --Pktrk • The 
joint density function of Tijkr and Yijkr is written as 

y ( t i j k r ,  Y i j k r )  = {Y(s)(tijkr)aijk}Y°'~'{Y(d)(tijkr)(1 - Q i j k ) }  1 - yek , ,  

where yts)(tijkr ) and y~d)(tijkr) are the lognormal density functions for, respectively, 
same and different judgments. The joint likelihood can be stated as 

L = 1-[ 1-[ 1-I ff(tijkr, Yijkr). 
k i , j  r 

The model parameters can be divided into the parameters (0i,,,) of the representation 
model and the parameters of the response model (bk, Pk, ak, and q2). The parameters 
are estimated by maximizing the log-likelihood function, In L. 

The Assumption of Lognormally Distributed RTs 
The conditional lognormality of the RTs is assumed to follow from the lognormality 

of hijkr. Takane and Sergent (1983) give two reasons to justify the assumed lognormal- 
ity of the RTs: (a) it is a positively skewed distribution, which is typical of most 
empirically obtained RT data, and (b) Chocholle (1940) reported that for simple RTs, 
the standard deviation is roughly proportional to the mean, which makes the lognormal 
distribution a suitable one. Both arguments are not quite convincing. Firstly, as Luce 
(1986) remarked, the lognormal distribution is not the only parametric distribution that 
is positively skewed; other positively skewed distributions that are used in the RT 
literature are the exponential distribution (e.g., Kohfeld, Santee, & Wallace, 1981; 
Scheiblechner, 1979), the gamma distribution (e.g., Anderson & Bower, 1973; 
Townsend & Ashby, 1983), the generalized gamma distribution (McGill & Gibbon, 
1965), nonidentified distributions but with an exponential tail (e.g., Green & Luce, 
1967, 1971; Luce & Green, 1970), convolutions of normal and exponential distributions 
(e.g., Ratcliff, 1978; Ratcliff & Murdock, 1976), the double monomial distribution 
(Snodgrass, Luce, & Galanter, 1967) and the Weibull distribution (Ida, 1980). Secondly, 
the proportionality of standard deviations and means is also a characteristic of  the 
exponential and the gamma distribution, and it is questionable whether this propor- 
tionality phenomenon can be generalized to RTs registered in more complex tasks (e.g., 
choice tasks). 

The Experiment 

To investigate the RT distribution, an experiment was designed that was similar to 
the experiment of Takane and Sergent (1983). 

Experimental Procedure 

Subjects. Five subjects, aged between 19 and 28, were paid to participate in the 
experiment. The results of the sixth subject, drawn randomly from Sergent and Ta- 
kane's (1987) experiment (further denoted by TS), were also analyzed. 

Stimuli. Two different stimulus sets were used. Three subjects (LA, AB, and DC) 
were presented schematic faces; two subjects (JM and WL) were shown pairs of geo- 
metric figures. The schematic faces were different from the stimuli used by Takane and 
Sergent (1983; Sergent & Takane, I987) and were constructed with the Flury and 
Riedwyl (1981, 1983) procedure for representing multivariate data. Only three param- 
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(a) 

I/ [2] 
/ /  

(b) 

FIGURE 1 
(a) Face stimuli; (b) geometric figure stimuli. 

rl 

eters were varied: eyes,jaws, and nose. The perceptually most salient parameters were 
chosen (De Soete, 1986). The eight different stimuli were constructed by factorially 
combining two levels of  the three varying features (parameter values 0.2 and 0.8). The 
second stimulus set consisted of eight symmetric geometric figures, constructed by 
factorially combining two levels of three features: form (square or diamond), size (large 
or small), and filling. The two stimulus sets are presented in Figure 1 ((a) and (b), 
respectively). 
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Apparatus. All possible pairs of different stimuli were photographed twice (left/ 
right permutation). The pairs were projected on a transparent screen with a random 
access projector (KODAK S-RA 2500). The presentation sequence was random. Re- 
sponses were registered by two push buttons connected to an Apple II + microcom- 
puter. After every trial, the identification number of the stimulus pair, the response 
(same/different), and the response time was recorded. 

Procedure. Subjects were acquainted with the stimuli in a learning session similar 
to the six experimental sessions. Every session started with 24 training trims that were 
not included in the data set. Next, 448 pairs were presented; half of them were different 
pairs and half were same pairs. Every same pair was presented 28 times; all the 56 
different pairs were shown 4 times in every session. Subjects were tested individually. 
They were seated in front of a screen (at 114 cm distance) with a chin and forehead rest 
used to fixate the head. During the experiment the room was darkened. The search time 
to select the next stimulus was fixed at six sec, and was followed by a warning tone of 
0.5 sec. One second later the stimulus pair was presented. The faces, when projected, 
subtended a visual angle of 3050 ' in width and 4042 ' in height. Two subjects used the left 
button for same responses; three subjects used the left button for different responses. 
The stimuli remained on the screen until a response was given, but with a maximum 
presentation time of 2.5 sec. Subjects were asked to respond as accurately and as 
quickly as possible. A session lasted between 75 and 120 minutes. 

Results 

Because we wanted to focus our attention on the impact of the assumed lognormal 
distribution of the RTs in MAXRT, only one representation model was selected for the 
analysis of the data: the Minkowski power distance function with Euclidean distances. 
Furthermore, due to the incompatibility of the lognormal distribution with zero dissim- 
ilarities in the Minkowski power distance model, only the data of the different pairs 
were analyzed, and symmetry of the dissimilarities was assumed (dij = dji). (The latter 
two restrictions are also present in Takane & Sergent, 1983; and Sergent & Takane, 
1987.) Solutions were obtained for spaces with different dimensionalities. The optimal 
number of dimensions, determined with the likelihood ratio X 2, were 4, 4, 3, 3, 3, and 
2 for subjects TS, LA, AB, and DC (who compared the faces), and JM and WL (who 
worked with the geometric figures), respectively. 

Testing the lognormal assumption. The MAXRT model makes clear assumptions 
concerning the distribution of the RTs (see (8) and (9)). They imply that response times 
are distributed differently for every stimulus pair (i, j)  in every session k. But due to the 
time consuming nature of the experiment, maximally eight RTs from every distribution 
could be observed. Takane and Sergent (1983) verified the adequacy of the lognormal 
assumption by means of a normal quantile plot of the log RT data per session by pooling 
the data according to the model. The normalized log residuals were plotted against the 
normal quantile scores. Visual inspection of the plot lead them to conclude that the 
lognormal distribution gave a reasonably good fit in all sessions for the two subjects, 
"although some irregularities (occurred) near the extreme ends of the distribution" 
(Takane & Sergent, 1983, p. 419). 

Due to the central importance of the lognormal assumption in the research reported 
here, a more rigorous technique to verify this assumption was adopted. We again 
pooled the data (but only the different responses for different pairs) per session, and 
then tested the normality of these data with the Shapiro-Wilk test (Royston, 1982; 
Shapiro & Wilk, 1965) which provides the most powerful omnibus test of normality 
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known (D'Agostino & Stephens, 1986; Pearson, D'Agostino, & Bowman, 1977). The 
data for two out of six subjects (TS and AB) showed no evidence for rejecting the 
lognormal hypothesis. The RTs for subjects DC and LA reject this null hypothesis for 
one and for three sessions, respectively, and for two subjects (JM and WL) who carried 
out the relatively simpler task (comparing geometric figures) the lognormal hypothesis 
could be rejected for all six of the sessions. 

The Shapiro-Wilk test was also applied to the unpooled data, leaving maximally 
eight replications per stimulus pair. Using this much weaker test 168 times per person 
(28 stimulus pairs x 6 sessions), the null hypothesis could still be rejected far more than 
could be expected by chance. (At a = .05, only 8 or 9 out of  168 replications can be 
expected to be significant, while we observed 17, 18, 15, 8, 24, and 26 rejections for 
subjects TS, LA, DC, AB, WL, and JM, respectively.) 

It is remarkable that, for the pooled data as well as for the unpooled RTs, clearly 
more rejections were observed for the subjects who compared the geometric figures, 
indicating that the RT distribution of same/different judgments might be task depen- 
dent. 

Goodness-of-fit. A second, but indirect way of checking the validity of the 
MAXRT assumptions concerning the RTs is the following. If the model holds, then the 
log RTs are normally distributed with mean 

[~ i j k  :- pk(ln t~i j  - -  In ~k) + ak, 

for different responses, and 

I.l, i jk  = / ~ ( l n  ~k - In a U) + ilk, 

for same responses, with standard deviation Ok, as determined by the parameters. 
Therefore, it follows that the sum of the squared standard normal deviations 

(In TUk~ - i~ijk) 2 
~ ~  q2 ' 

k i , j  r 

is approximately chi-square distributed, with degrees of freedom equaling the number 
of components (N = 1344), minus the number of free parameters. The critical values 
(at ot = .01) are I419.5 for the four-dimensional, and 1423.6 for the three-dimensional 
model. The obtained values for all subjects reject the model (1470.I, I420.3, I538.1, 
1589.4, 1604.3, and 1626.2 for TS, LA, DC, AB, JM, and WL, respectively), but the 
data do not allow us to attribute this lack-of-fit to the distributional assumption alone. 
Takane (personal communication, June, 8, 1990) suggested that the lower fit for the 
geometric data (subjects JM and WL) could be due to an inappropriate stimulus display 
time. In Sergent and Takane (1987), different presentation times had to be tried out for 
every subject until a good fit was obtained for the data from geometric stimulus sets. 
Anyway, it is obvious that the presented stimulus material alone cannot account for the 
differences in goodness-of-fit; only for one of the three subjects who were presented 
schematic faces was an acceptable goodness-of-fit value obtained. 

Reliability of  the RTs. A necessary condition for an acceptable goodness-of-fit 
value for the RTs is that the mean log RTs for the stimulus pairs in different sessions 
should have comparable values. MAXRT assumes a linear relation (see (8) and (9)), and 
consequently a high correlation between the mean log RTs for the different pairs among 
the six sessions. For every subject, an intraclass coefficient (Shrout & Fleiss, 1979) was 
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calculated, which can be interpreted as a general correlation between these mean log 
RTs. Considering the sessions as a random variable, and the 28 different pairs as a fixed 
variable, results in the adjustment of the ICC(2-I) coefficient (Shrout & Fleiss, 1979) for 
a mixed model (Kirk, 1982): 

where 

ICC = 
MSs.  - MSsp × s 

MSsp + - 1 MSsp x~ + (MSs - MSsp x x) 

k = the number of sessions (=6), 
n = the number of stimulus pairs (=28), 

MSsp = the mean squares between the stimulus pairs, 
MSs = the mean squares between the sessions, 

MSspxs = the mean squares of the interaction term: stimulus pairs × sessions. 

The ICCs give us an idea of the reliability of the RTs. We obtained the values .63, .92, 
- .02,  .32, .25, and.  12, for subjects TS, LA, AB, DC, JM, and WL, respectively. The 
data of LA seem to be very reliable, as are the data of TS, but the correlations for the 
other subjects are low. 

The relation between RTs, errors, and similarity judgments. The choice process, 
as formulated by Takane and Sergent (1983, see (6) and (7)) and the assumptions 
concerning the RTs ((8) and (9)) lead to the prediction that log RTs for stimulus pairs 
increase as the number of errors for these pairs increases. For none of the subjects was 
a monotone increasing relation observed, but only the data of WL strongly deviate from 
a general increasing relation. Figure 2a shows this relation for subject WL and for 
subject JM (randomly chosen from the other five subjects). (The number of errors in the 
experiment was quite low. All subjects made between 2.5 and 6% errors, and the 
distribution of these errors was highly similar to the data of Takane & Sergent, 1983.) 

The similarity between the pairs of faces were judged by twenty other subjects on 
a seven-point rating scale. The correlations of these direct judgments with the dissim- 
ilarities from the MAXRT analyses are .78 (LA), .79 (DC), and .13 (AB). The high 
intercorrelation for the first two subjects are in accordance with other studies where a 
good resemblance between scaling solutions of direct similarity ratings and RT based 
measures were found (Behrman & Brown, 1968; Brown & Andrews, 1968; Podgorny & 
Garner, 1979; Young, 1970). The low correlation for subject AB may be indicative of a 
different subjective stimulus space. 

The results of the analyses of the experimental data do not give a clear answer to 
the question of the importance of the lognormal assumption in MAXRT. The data 
provide goodness-of-fit values that vary widely, and several other measures indicate 
that the adequacy of the model differs for different subjects. The test of the lognormality 
of the RTs, however, clearly showed that this assumption is not always met by the data. 
To obtain a clearer view on the effect of violations of the lognormal assumption in 
MAXRT, a simulation study was carried out. 

A Simulation Study 

The Generation o f  Data 

In this simulation study, data were generated in the following way. For all six 
subjects, sixteen simulations were run. The same/different response was generated 
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FIGURE 2 

For representative subjects JM and WL, (a) mean RT for every number of  errors; (b) MAXRT and MAXSD 
estimates; (c) true dissimilarities and the estimates from MAXRT and MAXSD. 

stochastically, based on (6) and (7). As the values of  the parameters bk and o- k, the 
estimates from the three-dimensional solutions for the experimental data were used. 
For the mean log RTs, the parameter values ak and Pk were also taken from the 
estimates of  the experiment. Afirst  series of four simulations used the estimates from 
the experiment as values for the d V parameters. (This series is labeled estimates in the 
tables.) The four generated data sets in this series only differed in the distribution of  the 
RTs. A first set was in perfect accordance with the assumptions of  the MAXRT model: 
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the RTs were distributed lognormally as described by (8) and (9). Now, i fX is normally 
distributed with mean /z x and standard deviation tr x ,  then Y = e x is distributed 
lognormally with 

2 2 
i ~ r = e  ~x+C~/2), and cr2=eC2~'x+~x)(e * x -  1). 

In the second set, RTs had the same mean and variance, but were distributed according 
to the two-parameter exponential distribution: 

ox { } 
with x > 0 and 8 > 0 (Johnson & Kotz, 1970). In this distribution, E(X) = 0 + 8 and 
VAR (X) = 82 . Consequently, 8 was set equal to the standard deviation of the RTs in 
the first set, while 0 was set equal to the difference of the mean of the first set and 8. 

The RTs in the third set were distributed normally. This symmetric distribution 
does not correspond to the empirical fact that RTs tend to be positively skewed, and 
these data were included only to study the impact of a relatively severe violation of the 
lognormal assumption. The means and the standard deviations were based on (8) and 
(9). The RTs in the fourth set were generated according to a Pareto distribution, which 
is positively skewed, but which can also be extreme because it can have a heavy right 
tail. The density function is 

ak a 
PX xa+l,  

where a > 0, x -> k and k > 0 (Johnson & Kotz, 1970). Because 

a k ak 2 

/Zx a -  I '  and VARx ( a -  I ) 2 ( a - 2 ) '  

the same mean and standard deviation can be obtained by making 

( l tt a =  1 + I + \ V A R x / ]  ' 

and 

k = 
VARx (a - I ) 2 ( a - 2 )  

The distribution functions for these four sets are plotted in Figure 3 for the parameter 
values of subject LA, first session, stimulus pair I-2. The figure is highly similar for 
other subjects, sessions, and stimulus pairs, due to the equating of the means and 
standard deviations. 

For reasons of generalizability, a second, third, and fourth series of four data sets 
per person were generated. They only differed from thefirst  series in the choice of the 
dissimilarity matrix used to generate the data. In the second series (labeled cube in the 
tables), the dij values were derived from a three-dimensional configuration where eight 
stimuli were located at the eight vertices of a cube. The dissimilarities for the third 
series (labeled tetra) were derived from a tetrahedron configuration, where pairs of 
stimuli were close to each other on the four comers, thus forming a stimulus config- 
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uration with quasi-dense regions. The dij's for the fourth series (labeled random) were 
derived from a random stimulus configuration, again in a three-dimensional space. 

Results 

Goodness-of-fit of the RTs. The goodness-of-fit measure of the RTs, as described 
earlier, was calculated for all the MAXRT analyses on the simulated data sets. Table 1 
shows these X 2 values. The critical value with a = .05 is 1387.06. It is obvious that the 
lognormal RT data provide far better fits than the alternatively distributed RTs. The fits 
of the exponential and Pareto RTs are fairly similar, while the normal data provide the 
worst values. However, only four data sets resulted in a rejection of the model at a = 
.05. Summing all the RT data across subjects and underlying stimulus configurations 
that were generated with the same distribution, only the normally generated data reject 
the hypothesis of lognormal RTs at a = .05. 

The log likelihood of the data. In comparing the maximized log-likelihood values 
for the different simulations, the same pattern was observed as for the goodness-of-fit 
values for the RTs: lognormal RTs resulted in far superior values, Pareto and expo- 
nentially distributed RTs produced mutually comparable values, and normal RTs re- 
suited in the worst likelihood. It is also interesting to compare the maximized likelihood 
of the empirical data with the values provided by the simulated data of Series 1 (since 
they have common underlying parameters). For all subjects the likelihood of the em- 
pirical data were inbetween the value for the lognormally generated data set and the 
values for the exponentially and Pareto distributed data. 

Goodness-of-recovery. In examining the effect of the assumption of lognormal 
RTs in MAXRT, the goodness-of-fit is not the only measure of importance. Since 
MAXRT is a model designed for scaling a fixed set of stimuli, the estimated distances 
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TABLE 1 

Coodness-of-Fit of the RTs and Squared 
Goodness-of-Recovery Correlations [in Brackets] 

609 

Series Estimates Cube Tetra Random 

TS 
~o.o~a~,~  ~00 f~]  ~ 9  [~:] 4~9~ [999t 9 , , ,  [~] 
exponential ItT 1309.7 . 1357.7 1346.3 1348.0 
normal ItT 1358.6 ~96  t 1368.6 ti~5t 1379.5 ti9996] 1380.0 [i9987] 
pareto ltT 1333.8 ~ 1362.0 1463.2 * 1376.0 

LA 
lognormal RT 328.9 [.99~ ] 1065.4 f.~5] 1039.9 [.99] 1002.7 [.99] 
exponential I~T 1322.5 . 1319.4 . 1303.4 . 1297.9 . 
normal RT 1372.6 1991 1344.5 1981 1357.7 1991 1378.5 1861 
pareto RT 1332.6 i 1299.0 i 1306.0 ~ 1287.1 

AB 
lognormal RT 982.6 [ ' ~ t  1290.8 [.94 t 559.2 f.9~] 363.1 [.887 ] 
exponential RT 1270.3 . 1335.8 . 1275.4 . 1270.7 
normal ItT 1359.5 t:~71 1363.2 t:~4] 1391.2" ~85~ ti64] 
~are~o~T ~ o  ~ , ~  ~22~8 ~:o. ~2,~2,~, 

DC 
lognormal ItT 550.3 . 515.8 . 321.1 
exponential ItT 1280.3 . 1324.2 . 1297.8 .97 1314.4 
normal RT 1361.2 t88t  1374.4 t93t  1354.0 .94 1397.1- 
pareto RT 1236.6 i 1263.0 i 1285.2 .94 1318.3 

J~ 
~ o . o ~  ~T 3 ~ . .  [ ~ t  9~.~ f~t ~"2 [~t  '°~" [~t 
exponential ItT 1329.5 . 1348.5 . 1291.7 1332.2 
normalRT 1378.1 t~94t 1351.6 t194] 1358.4 fi99~t 1364.9 1!994 t 
pareto ItT 1360.5 1351.0 1323.5 1332.8 

YL 
~o~o~.~ ~, ~ ,~  [~t ~o . ,  [~t 012.8 f9968] 2~,.0 f~t  
exponential RT 1315.4 . 1337.3 1301.1 . 1314.3 
normal ltT 1351.5 t849 ] 1334.5 t i~4] 1340.6 t 9 5  t 1366.7 ti967 t 
pareto ltT 1288.6 ~ 1333.9 1316.5 i 1294.3 

* p  < 0.05 

were also examined, leading to the final scaling solutions. The estimated distances were 
computed under differently assumed RT distributions. In the simulation study, the 
underlying dissimilarities were known, and consequently, the correlation between the 
true dij's and the ali'S estimated from the MAXRT analyses could be calculated. The 
squared goodness-of-recovery correlations are shown in Table 1. In all the simulations, 
with the exception of the normally distributed RTs in the second series (cube) for 
subject AB, unexpectedly high values were obtained, regardless of the underlying dij 
matrix. In general, slightly higher values were observed for the lognormal data, and the 
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normal RTs resulted again in little worse; but, surprisingly, the differences are almost 
negligible. 

Likelihood ratio X 2 and the AIC-statistic. Violations of the assumption concern- 
ing the RT distribution should also be evaluated by studying the effect on the X 2 test 
with nested models. The data for the simulations were generated, based on a three- 
dimensional stimulus configuration. When comparing three- and four-dimensional so- 
lutions for these data with a X z statistic, the data should not favor the four-dimensional 
solution. The X 2 statistic was calculated for all the simulations (2 [log L(&4) - log 
L(&3)], where log L(&n) represents the log likelihood of the n-dimensional solution, 
with a difference of four in free parameters). Four rejections at the 1%, and five at the 
5% significance level are close to the expected number based on chance. The very small 
number of rejections (five out of 96 hypothesis tests) does not allow an interpretation 
based on the generating RT distributions. However, since the sum of X 2 statistics is 
again 9( 2 distributed, all the three- and four-dimensional solutions could be combined 
(regardless of the subject and the underlying stimulus configuration) for every RT 
distribution, resulting in a X 2 test with 96 free parameters (24 times 4). This test incor- 
rectly favors the four-dimensional solution for the exponentially and for the normally 
distributed RTs at a = .05. 

The 96 pairs of models were also evaluated using the AIC-statistic (Akaike, 1974): 

AIC (&n) = - 2  In L(&n) + 2no,, 

where no, is the number of free parameters in the model. The model with the smallest 
value is favored by the statistic. The no~ equals 18 and 22 for the three- and four- 
dimensional solutions, respectively. The AIC-statistic rejected the three-dimensional 
model in five simulations, exactly the same data where the X 2 test (a = .01) rejected this 
model. 

From MAXRT to MAXSD? 

Analyses of the simulated data sets showed that, although the goodness-of-fit 
measures were much higher for lognormal RT data than for exponential, normal, and 
Pareto distributed RTs, the differences in goodness-of-recovery were remarkably small. 
Therefore, it can be concluded that the underlying RT-distribution has little effect on 
the final maximum likelihood parameter estimates, given that the model assumes a 
lognormal distribution, and that this distribution is characterized by the mean and the 
variance. The next question is whether an analysis of same/different judgments alone, 
without the RT-information, results in a qualitatively inferior scaling solution. 

MAXSD 

First, the MAXRT model was simplified to MAXSD (maximum likelihood algo- 
rithm for same~different data). Keeping (1) to (7), but dropping the modeling of the RTs 
((8) and (9)) gave the following density function: 

f f ( Y i j k r )  = f l Y ° k ' (  1 - -  ~'~ ~(1-Your) ~ i jk  ~ i jk  ! • 

The log likelihood of the total set of observations then becomes 

In L = ~] ~] {n~Sk ) In Qijk + n ~  In (1 - Qijk)}, 
k i , j  

where n/(j~ ) = Y.r Yijkr and n/(jk d) = Y. r (1 - Yijkr). 
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The log-likelihood function was maximized using Fisher's scoring algorithm (De 
Soete & Carroll, 1983; Takane & Sergent, 1983), where estimates of a parameter 3' are 
updated as follows: 

,y(t + l) = ,y(t) + A (t)H(T(t))-lg('y(t)), 

where A (t) is the stepsize and y(O is the parameter value at iteration t, g(y(t)) is the 
gradient, and H( y (t)) is the information matrix. 

The elements of the gradient for the parameters dij are 

/ (s) (d) O lnL (nq~ nij k l(--~)(Vijk)l 
O--dij - ~ \Qok I --- Qok ] \" o" 7 1" 

For the thresholds bk one gets 

O lnL _ ~ (n::2 _ n(~ ) l(cb(v,jk)l. 
Obk \Q.k 1 -Q.k]\\: i,j 

and for the o-k's, the gradient is 

0 l n L  (n~  n~ d, ~ [ l n d / j - l n b k ]  

Ocr------~ = ~ \-'~ijk I -" -Qok)ck(viJk) 1 o~ ]" 
i,j 

In the information matrix, the diagonal values are: 

,n L) (N.k N.k 
- E ~  =~k \-~ijk 1--~. . ' , ,  ~ ",, ~,:/\ k ij / 

--EwKv.K i,j\Qr---7 I- tr2b 2 sei ik/ \  k k / 

/021n L\ (Nijk N_iik .~fdp(vijk)(ln bk - ln dij)) 2. 

i,j 

All other entries are zero, except the following three second-order partial derivatives 

-E  ~ \aijk 1 =-Oijk cr2d i jbk  ' 

E(O21nLt=:Nijk N_~ .1 ¢h(vUk)Z(lnbk-lndij) 
-\'Odij'-O'~7] \Qij---Tk I - QU~:] cr2dij ' 

E(O_I lnL  t [Nuk N.k I -~b(v,k)Z(ln b ,  -In d.) 

i,j 

MAXSD and the Data of the Experiment 
MAXSD was applied to the same/different data of the experiment. The estimated 

dissimilarity parameters c~ij from MAXSD, and the c~ij from MAXRT for two repre- 
sentative subjects are presented in Figure 2b. The correlations between these estimates 
for every subject were .63, .78, .43, .83, .61, and .86 for TS, LA, AB, DC, JM, and WL, 
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TABLE 2 

S e m i - p a r t i a l  C o r r e l a t i o n s  
d i j  and t h e  E s t i m a t e s  f r o m ] l A l R T  

S e m i - P a r t i a l  P a r t i a l  

TS .78 .91 
LA .62 .99 
AB .57 .94 
DC .65 .79 
JM .57 .88 
WL .57 .93 

respectively. As can be seen, a substantial part of the variance of the ali'S from 
MAXRT can be accounted for by the estimates from MAXSD, but the correlation is far 
from perfect, indicating that the RTs did have a substantial influence on the estimates. 

MAXSD and the Data from the Simulation Study 
To arrive at a clearer view of the quality of the clij estimates from MAXSD, this 

model was applied to the data from the simulations. In Figure 2c the true dij for two 
representative subjects are plotted with the estimates from MAXRT and MAXSD. The 
MAXSD estimates are more scattered, while the estimates from MAXRT show a clear 
linear relation. The squared goodness-of-recovery correlations based on the MAXSD 
model were .69, .99,.  14, .62, .70, and .52 for TS, LA, AB, DC, JM, and WL, respec- 
tively. Comparing these correlations with the recovery indices of MAXRT (Table 1), it 
becomes clear that MAXSD does a lot worse for five out of six subjects. Still the 
recovery in MAXSD is quite high, taking into consideration the considerable number of 
ties in choice proportions on which the scaling was based. Partial and semi-partial 
correlations between the true aij and the MAXRT estimates, with the effect of the 
MAXSD estimates partialled out, are given in the first and second column of Table 2. 
Both correlations confirm the additional information of the RTs in the MAXRT model. 

Conclusion 

Detailed analysis of the data from the experiment showed that the MAXRT model 
for response times and same/different judgments provides widely varying goodness- 
of-fit measures for the data of different subjects. The Shapiro-Wilk test suggested that 
the RT distribution might be task dependent. On the basis of an elaborate simulation 
study, it was possible to show that the underlying RT distribution had a clear effect on 
the goodness-of-fit of the RTs and on the X 2 test in comparing nested models, but it had 
little impact on the final distance parameters as estimated by the model. Despite this 
robustness of the distance parameters under differently distributed RTs, a comparison 
of MAXRT with a similar model, based only on the same/different judgments (and not 
on the RTs), proved that RTs do give some additional information to the judgments in 
a two-choice task. 
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