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This paper suggests a method to supplant missing categorical data by "reasonable" re- 
placements. These replacements will maximize the consistency of the completed data as mea- 
sured by Guttman's squared correlation ratio. The text outlines a solution of the optimization 
problem, describes relationships with the relevant psychometric theory, and studies some 
properties of the method in detail. The main result is that the average correlation should be at 
least 0.50 before the method becomes practical. At that point, the technique gives reasonable 
results up to 10-15% missing data. 
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Introduction 

This paper discusses a technique to transform incomplete categorical data into 
complete data by imputing "appropriate" scores into the missing cells. Imputations 
adhere to the original coding of the data and will maximize the internal consistency of 
the completed data as measured by the squared correlation ratio ~2, a measure pro- 
posed by Guttman (1941). Though there are many ways to find imputations, maximally 
consistent imputations are particularly attractive because they are, in some sense, the 
most probable candidates that can be found from the observed data. Replacing missing 
data by maximizing consistency enhances the similarity among comparable rows in the 
data. In fact, the basic rationale of the technique is that imputations are sought that will 
match the nonmissing scores of similarly looking, but complete rows in the data. 

The artificial data in Table 1 illustrates the concept of consistency imputation. The 
table contains 10 observations on three categorical variables: income, age, and type of 
car. There are three missing values, indicated by a, b, and c. The problem is to find 
replacement values that are reasonable in some way. For a this is easy; the most 
consistent estimate is " low,"  because this makes the profiles 1, 4, and 7 identical. A 
young owner of a Japanese car will have a low income simply because this is a recurring 
pattern. Moreover, the profile contains all Japanese cars in the data. Analogously, one 
finds "high" for b and "o ld"  for c. Both imputations make the remaining two incom- 
plete profiles identical to row 6. So, the missing scores are interpolated from other 
profiles. One simply looks for similar rows. This is the same as saying that variables 
must be as homogeneous as possible; that is, they measure the same thing. 

For complete data, maximizing ~2 is equivalent to performing homogeneity anal- 
ysis, also known as multiple correspondence analysis or dual scaling. These techniques 
quantify the rows and columns of a matrix of categorical data. Row quantifications are 
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TABLE 1 

Example Data 

Person Income Age Car 

1 a young jpn 
2 middle middle am 
3 b old am 
4 low young jpn 
5 middle young am 
6 high old am 
7 low young jpn 
8 high middle am 
9 high c am 

10 low young am 

often called object scores, while column quantifications are sometimes termed category 
quantifications. See the textbooks by Nishisato (1980), Greenacre (1984), and Girl 
(1990) for more details. The essential ingredient of the present technique is the impu- 
tation rule that states how blank entries should be filled. Suppose one has some pro- 
visional object point for which a score is missing. This paper shows that the most 
consistent imputation for this object is the category whose category point is closest to 
the object. Therefore, the imputation rule compares object scores and category quan- 
tifications, and elects the category that is nearest to the object. Each missing value is 
considered in turn, and the steps to compute object scores, quantifications and impu- 
tations are iterated until maximal 712 is found. The method is implemented in a SAS 
macro called MISTRESS, which is available from the UICSTAT archive at 
LISTSERV@UICVM.BITNET. (For additional information on how to obtain SAS 
macros from the archive please refer to Michael Friendly's computing announcement 
which appeared on pages 313-315 in the June 1992 issue of Psychometrika.) 

The idea to maximize consistency by imputation was already put forward by Nish- 
isato (1980, p. 201). Nishisato not only deals with maximal consistency, but also dis- 
cusses minimal consistency, and how these two objectives might be used together. 
Until now, however, the problem of finding the accompanying imputations has not been 
solved satisfactorily. The present paper proposes a computationally feasible strategy to 
select the optimal category. A closely related method is due to Dear (1959) who de- 
composes the data into its known and unknown parts and uses the first principal 
component from the known data to estimate the unknown elements. The iterated prin- 
cipal components method proposed by Gleason and Staelin (1975, p. 238) optimizes the 
sum ofp  dominant eigenvalues of the correlation matrix of the completed data. Both the 
Dear method and the PCA method with p = 1 can be seen as numerical equivalents of 
the present technique. For discrete data, Gleason and Staelin (p. 244) suggest rounding 
imputed values to the nearest category score, but the resulting discretized variables are 
treated as numerical, which may not always be appropriate in practice. In an analysis 
of variance context, Hartley and Hocking (197I) identify the so-called (X, m, d) model 
in which one tries to find estimates for missing classifications on the experimental 
variables. This is a combined estimation and classification problem. They note some 
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difficulties with the model, but do not pursue the matter any further. Greenacre (1984, 
p. 237) uses a somewhat different approach. He does not replace the missing data 
themselves, but imputes "consistency optimizing" rounded estimates of marginal fre- 
quencies. Good reviews of imputation techniques for categorical data in general are 
Kalton and Kasprzyk (1982) and the three volumes edited by Madow, Olkin, and Rubin 
(1983). For multiple imputation, in which not just one but many replacements are 
searched, see Rubin (1987). Little and Rubin (1990) provide a recent overview of 
missing data strategies in the social sciences. 

A number of well-established procedures exist for handling missing data in homo- 
geneity analysis. These approaches either code missing responses as auxiliary catego- 
ries or ignore them during the computations. Beside textbooks, Meulman (1982) is a 
readily accessible systematic study of the properties of three strategies for handling 
missing data. Van der Heijden and Escorler (1989) describe a number of other missing 
data options in multiple correspondence analysis. 

The main difference between the current method and previous strategies is that 
imputations are constrained to stay within the original category coding, which is con- 
ceptually attractive. The corresponding optimization problem has been around for 
some time. It is solved by partitioning the loss into known and missing components and 
applying k-means to the missing part. Furthermore, the results on local minima, re- 
covery and the amount of nonresponse provide critical conditions for the practical 
application of the technique. 

Method 

Let the data be coded into indicator vec tors  ( I j ( j  = 1 . . . .  , m) of length kj such 
that qjk = 1 if the observation falls into category k of variablej and 9jk = 0 otherwise, 
and let yj be a kj vector of category quantirlcations, where kj denotes the number of 
categories of thej-th variable. The expression xj = 9)Yj then yields a quantified score 
xj.  Let the average of the m quantified scores z = 1/m Y xj define the object scores. 
The total variation of the data can then be decomposed h--g- 

m m 

x f  = mz 2+ ~ (z - xj)  2. (1) 
j=l  j=l  

This is a between-within partitioning of the form T = B + W. The correlation ratio, 
introduced by Guttman (1941), denoted by 7/and defined by ,/./2 = B/T measures how 
well z can be considered as a representative of each xj.  The ratio ranges from 0 to 1, 
and it is equal to I if all variables are proportional. 

For complete data, 7/z can be optimized over Yl ,  . .  • ,  Yrn. To identify the solu- 
tion, Xl, . . . ,  Xm must have a zero mean and the variance of z must equal some 
positive constant. Procedures for finding optimal Y l . . . .  , Ym are known as homoge- 
neity analysis, multiple correspondence analysis, dual scaling, among others (see Girl, 
1990). These techniques usually consider one or more orthogonal sets of z's, with 
corresponding */'s. 

Let 12 denote the set of all nonmissing variables and let the symbol x j  stand for an 
imputed value. Obviously, 

f x j ,  i f j  ~ Ft; 

xj  = l x : ,  i f  j ~ Ft. 

It is possible to partition the variation into three independent quadratic components: 
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m 

Z  =mz 2+ X (z X (z ,5 - - x j )  , ( 2 )  

j = l  jEI '~ j ~ f l  

2 / i w m  x f )  Since so that the squared consistency is again equal t o  7/2 = B / T  = m z  ~,/-,j=l • 

T = B + W, the maximum o f  '17 2 coincides with the minimum of W / T  = 
1 - 7 2. Maximal homogeneity among the imputed variables can be found by mini- 
mizing this W/T-rat io  over Y l ,  . . .  , Ym and over the imputations x ] , . .  • , Xm.* The 
corresponding loss function is defined in terms of xj  and x j  and can be written as 

° r ( Y l , ' . .  , Y m ; g * l ,  . . .  , g * )  = ~ ( z - g ) y j ) 2 +  ~ (z-g*"yj J')2, (3) 
j E f ~  jq~l~ 

where g j  indicates an initially unknown indicator vector. Let or(. ) stand for 
(r(Yl . . . .  , Ym; g ' l ,  " "  , g'm). Now, the imputation problem is where to impute the 
" l "  in the missing vector g~, which is a problem in combinatorial optimization. More 
specifically, this type of problem is known as sum-o f - squares  part i t ioning.  See, for 
example, Spfith (1985) for a detailed discussion. The so-called "k-means algorithm" is 
used here to solve it. For given j ,  the k-means algorithm minimizes o-( • ) over y j  and 
g~, simultaneously. Reasons to choose the k-means algorithm over other procedures 
like enumeration, dynamic programming techniques and simulated annealing are that 
the k-means strategy is simple and well-studied, can be applied to large data sets and 
has satisfactory performance characteristics (Milligan, 1980; Scheibler & Schneider, 
1985). Moreover, the combination of homogeneity analysis and the k-means algorithm 
was used before for a different purpose in the GROUPALS clustering technique de- 
veloped by van Buuren and Heiser (1989). The algorithm is, however, prone to local 
minima. 

The k-means algorithm (see Hartigan, 1975) iteratively relocates classifications one 
by one. A slightly modified version of the standard algorithm is used here. The modi- 
fication is that all nonmissing entries remain tied to their categories and are never 
relocated. The modified k-means algorithm starts with some initial imputation of the 
missing data, considers each imputation in turn and checks whether or not a change 
from the current category s to a new category t would decrease the loss. If so, the 
imputation will be relocated from s to t and the solution is updated accordingly. The 
process is repeated until no relocations exist that would reduce the loss. 

The precise imputation rule follows directly from the loss function. Let d s and d t 
denote the number of observations in category s and t of variable j ,  and let Ys and Yt 
be the corresponding category quantifications. Suppose that observation i has a score 
zi and that we move imputation g* from s to t. Fisher (1958) showed that the new loss 
will be equal to 

d s ( Z i  -- y s )  2 d t ( z i  -- Y t )  2 
0 * ( .  ) -  ~ , 

ds - 1 dt + 1 

where o'*( • ) denotes the current loss. Therefore, the imputation rule is: If the inequal- 
ity 

d t ( z i  - y t )  2 d s ( z i  -- Ys)  2 
< 

dt + 1 ds - 1 

is true, relocate imputation s to t. Every relocation that adheres to this rule decreases 
the loss. The inequality usually holds if zi is closer to Yt than to Ys,  depending on the 
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size of d s and d t . After relocation, the corresponding Ys and Yt are updated. In general, 
it suffices to know the former weights Ys and Yt ,  the score zi  and the marginal fre- 
quencies ds and d t .  The update for the donating category s becomes 

y s d s  - zi  zi  - Ys 

~ s : -  d s -  1 = Y s  + ds~_ l .  

Likewise, for the receiving category t we obtain 

y t d t  + z i  z i  - Y t  
y t ' .  - = Y t  + 

dt + 1 dt  + 1" 

It is assumed that ds -> 1 so that division by zero does not occur. Both formulas are 
independent of the number of observations, which makes them very efficient updates, 
especially for large sample sizes. 

Results 

O c c u r r e n c e  o f  L o c a l  M i n i m a  

A recovery study on artificial data was carried out to investigate the existence of 
local minima, and used 10 datasets, each consisting of 100 subjects, 7 normally distrib- 
uted variables with bivariate correlations that varied systematically from r = 0.00 to 
r = 0.90 with a step size of 0.10. The data were discretized into 5 categories using an 
optimal coding scheme preserving the normal distribution as closely as possible (van 
Rijckevorsel & de Leeuw, 1992) and 5% random missing data were created. Two 
methods to find a starting allocation of missing entries are used: random and passive. 
The random procedure imputes a category randomly drawn with a probability propor- 
tional to the observed marginal frequencies; the passive method uses the "missing 
passive" option (Girl, 1990) to compute an initial configuration and subsequently allo- 
cates each observation to a category that is closest. After these initial imputations are 
found, the method iterates over z ,  Y l , .  • • ,  Ym and g ~ , . . . ,  g *  until the difference 
between two consecutive values for tr( • ) is less than 1.0E-7. We computed 25 rep- 
lications per condition, for a total of I0 × 2 × 25 = 500 analyses. 

Convergence usually occurred after about 10-20 iterations. Lower levels of con- 
sistency produce local minima. Figure 1 graphs log(O'ma x - trmin) versus the number of 
different minima of the 25 replications per level, for both random and passive starts. 
The most striking feature of the plot is the difference between the starting methods. 
Passive starts always produces less minima and induces more similar fits. For corre- 
lation levels 0.00-0.40, both methods find less minima as the data become more con- 
sistent. Beyond r = 0.40, the passive starting method invariably generates the same 
solution, and the corresponding points are not plotted. The random method, however, 
keeps producing about 15 different minima, no matter what the internal consistency of 
the data is. Passive is clearly superior to random, both in terms of the number of minima 
and in terms of fit. 

Also of interest is whether the obtained solution is close to the global optimum. 
Since the actual globally optimal solution is not known, this question cannot be an- 
swered directly. Taking the best fitting solution over all 50 replications within a cor- 
relation level as a provisional global optimum, one finds the solutions obtained by the 
passive method beyond r = 0.40 are very close or equal to the provisional global 
minimum in terms of fit. Keep in mind that these results apply to a situation of 5% 
missing data. If the actual percentage is higher, the "safe"  correlation level is also 
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likely to rise. Other factors that might influence the number of local minima are the 
sample size and the number of categories. 

Recovery of Missing Information 
Another issue is how well the method recovers the "true" data. In practice one 

never has access to the true data, and only by creating artificial blanks within the 
complete data may we know them. A way to measure the amount of recovery in this 
case is the Q,~ statistic proposed by Gleason and Staelin (1975). Ifhij represents the raw 
data, h,~ represents the imputed data, p denotes the proportion of  missing values and 
o -f denotes the variance of  the complete data with sample size n, then 

(j~a tr2nmp* 2 Q,~ = ) (4) 
/ 

measures the dissimilarity between the true and the imputed values for some method a. 
For mean substitution, Gleason and Staelin show that the expected value of Qa is equal 
to 1. 

The same I0 complete matrices used in the local minima simulation study were 
considered and from these 25 incomplete matrices were generated with 5% and 10% 
missing values for each consistency level. Next, Q,~ was computed for these 250 ma- 
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trices using three imputation methods: random imputation, mean substitution, and 
consistency imputation. Mean substitution for categorical data reduces to imputing the 
modal category. 

The four curves in Figure 2 contain the averages over 25 replications of Q ~. As 
expected, the curve for mean substitution hovers around "1" .  It will be clear that 
random imputation is inferior to mean substitution. For low levels of correlation, con- 
sistency imputation is worse than random and introduces too much structure in the 
data. Beyond correlations of 0.20, the method is better than random and beyond 0.50 
it recovers the data better than mean substitution. This result agrees with the curve for 
the Dear method found by Gleason and Staelin (1975), and with the findings of van 
Buuren and van Rijckevorsel (1992), who compared three other imputations methods 
and found that maximizing consistency is best above correlations of 0.50. Gleason and 
Staelin found still better recovery for their PCA method, but they consider not one, but 
many independent components. The same could have been done here, but it would not 
maximize consistency. 

Amount of Missing Data 

A further practical point concerns the amount of missing data. Since the method 
optimizes ~/z over the missing data, increasing the number of unknown entries results 
in higher values of r/2. The more missing data, the more consistency obtained. The 
magnitude of bias towards the consistency model depends on the amount of missing 
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data. Optimization techniques tend to find those imputations that are most favorable for 
the model at hand. Bias towards the model is not a problem of MISTRESS only, but a 
characteristic of any optimization method that attempts to estimate missing data. 

The question of how much bias is acceptable remains. In the context of dual 
scaling, Nishisato (1980, p. 203) advocates the use of minimal and maximal correlation 
ratios r/2in and ~Tm2ax. One obtains r/2in by inserting those responses that will minimize 
the internal consistency. The difference ,/2 = r/2max _ ,/2in increases with the amount 
of missing data, and the idea is that there might be some critical point beyond which 772 
becomes significant and the analysis should be aborted. Nishisato and Ahn (in press) 
suggest the computation of empirical 95% confidence bands for r/m2ax and 7/2 n to see if 
they overlap. If they do not, 72 is considered to be significantly different from zero. 

An alternative strategy is used here. Rather than focusing on the difference be- 
tween ~ a x  and ~ 2  n, concentrate on the difference between ~2ma x and the true consis- 
tency, 7/t~rue, which is simply equal to the consistency of the complete data. By creating 
four nonresponse rates (5, 10, 15, and 20 percent), and applying MISTRESS to the 
incomplete data, four estimates of ~m2ax are obtained. Imputation bias can then be 
quantified as r/m2ax - 7/2rue . To get an idea what amount of bias could be reasonably 
tolerated, it is useful to see whether r/mZax falls within a confidence interval of a92rue. A 
simple but convenient bootstrap procedure is used (as outlined by Meulman, 1982, p. 
67) to compute 80% confidence intervals. First, take 10 random samples with replace- 
ment of size n (n being the number of observations) from the rows of the complete data. 
Second, compute the consistency for each bootstrap sample. Third, neglect the most 
extreme values and take the rest as a crude estimate of the 80% confidence interval. 
Note that the very act of drawing with replacement may make the data more homoge- 
neous (rows will be repeated now and then), so that on the whole, bootstrap intervals 
will be slightly biased upwards. This effect is particularly visible in the lower consis- 
tency levels for which the bootstrap interval may not even contain ~72rue. Compared to 
90% or 95% confidence bands, the use of 80% intervals leads to smaller intervals and 
more conservative results. For larger confidence bands, it is less likely that the hy- 
pothesis */2ru e = ~72ax will be rejected. 

The same 10 complete data sets were analyzed as before and the average of ~m2ax 
was computed over three replications for every combination of nonresponse and con- 
sistency level. Figure 3 portrays the results as a scatterplot of true versus obtained 
consistency. The gray surface indicates the 80% confidence regions for 2 ~'/true- Lines 
connect all points that have the same nonresponse level. As expected, r/2ax increases 
if more imputations are to be found. The curves for 5% and 10% missing data reside 
within the 80% confidence band. This means that the variation caused by imputation 
compares to the bootstrap stability. The 15% curve stays above the confidence region 
until ~72e = 0.60. This result suggests that for imputing I5% missing data one needs at 
least a consistency of 0.60. Below the crossover point MISTRESS invents too much 
structure, and should therefore not be applied. The same story can be told for 20% 
missing data, except that the crossover point is now at to 0.75. 

Dutch Life Style Survey 

This example is taken from the Dutch Life Style Survey (Leef Situatie Onderzoek) 
conducted by the Netherlands Bureau of Census. The data were collected at different 
time points during the years 1977 through 1986. Not all questions were posed at each 
occasion, and so the data contains many systematic missing entries. The analysis 
sample consists of 7332 individuals. Persons responded to the question whether one of 
the following conditions applied: dirty (D), heavy (H), risky (R), stench (S), and noise 
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(N). For 5750 people, the type of job is also known, classified into 7 categories: man- 
agement (MAN), administrative (ADM), commercial (COM), scientific (SCI), service 
(SER), agrarian (AGR), and industrial (IND). The classification by profession is missing 
for 7332 - 5750 = 1582 observations. 

The data and the imputation results, ordered by row scores, are presented in Table 
2. The most consistent imputations are in boldface. All workers experiencing at least 
three or more adverse conditions are assigned to the group of industrial workers. Three 
out of 10 incomplete profiles with 2 annoyance scores are assigned to farmers. The 816 
persons working in a clean environment are all assigned to the management group. 
Labor conditions are consistent with the type of work people do, and this relationship 
is automatically taken into account when searching for maximally homogeneous impu- 
tation. 

The frequencies of the observed data are also pictured in Figure 4 by a slightly 
smoothed graphical analogue of the cross-tabulation in Table 2. The job classes and 
nuisance patterns are scaled by the consistency maximizing scores obtained by 
MISTRESS, with blue collar jobs relatively close together on one side and well-sepa- 
rated from white collar jobs on the other side of the X-axis. The conditions with few or 
no nuisance parameters are consistently separated from the rest on the Y-axis. The 
intuitive interpretation of the most consistent imputation is that it should disfigure the 
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TABLE 2 

Single Imputation LSO Table (Bold is an Imputation) 

Labor Professional Category z 
Conditions 

D H R S N MAN ADM COM SCI SER AGR IND 

1 1 1 1 1 1 1 1 6 2 5 64 19 3.18 
1 11 10  0 0 0 6 3 7 11 10 2.68 
1 0 1  1 i  1 1 0 3 3 1 21 6 2.58 
0 1 1 1 1  0 0 0 1 1 1 3 2.48 
1 1 1 0 1  0 1 1 1 1 3 61 23 2.47 
1 1 0 1 1  0 1 1 4 6 4 50 15 2.41 
1 0 1  10  0 1 2 1 0 2 8 $ 2.0~ 
0 1 1 1 0  0 1 0 0 0 1 2 1 1.97 
1 1 1 0 0  t 1 0 9 2 9 51 22 1.96 
1 1 0  1 0  0 1 1 9 2 20 13 20 1.90 
0 0 1  11 0 3 2 2 0 0 12 4 1.88 
1 0 1 0 1  0 0 2 1 1 1 20 12 1.87 
1 0 0 1 1  4 3 2 6 3 2 46 32 1.81 
0 1 1 0 1  0 0 1 2 1 0 8 7 1.76 
1 1 0 0 1  2 6 4 6 9 12 88 32 1.70 
0 1 0 1 1  0 0 0 1 0 0 5 2 1.70 
0 0 1  10  0 0 0 1 1 0 2 3 1.38 
1 0 1 0 0  0 1 0 1 4 3 14 10 1.37 
1 0 0  10  0 2 1 2 2 13 17 10 1.31 
0 1 1 0 0  0 0 3 6 0 1 10 9 1.26 
0 1 0 1 0  0 1 0 3 4 0 4 3 1.20 
1 1 0 0 0  2 6 16 21 38 81 95 81 1.19 
0 0 1  01  1 16 3 10 6 2 15 14 1.17 
0 0 0 1 1 3 19 6 16 6 0 29 28 1.00 
1 0 0 0 1  8 11 6 20 14 10 48 103 0.99 
0 1 0 0 1 2 4 12 19 21 4 16 40 0.89 
0 0 1 0 0  3 5 7 27 12 19 2 29 0.16 
1 0 0 0 0 4 15 28 32 25 96 60 104 0.09 
0 0 0 1 0 6 22 3 27 8 25 1 17 0.09 
0 1 0 0 0 2 12 58 115 87 71 16 80 -0.02 
0 0 0 0 1 21 133 40 132 54 122 3 125 -0.11 
0 0 0 0 0 157 816 843 373 916 349 54 324 -0.91 

total 218816 I100 573 1406 665 333 318 93 1470 340 

surface in Figure 4 as little as possible. The frequencies of  the imputed data are depicted 
in Figure 5. 

The imputations follow a curved and peaked range of  frequencies f rom the origin 
{white collar, no nuisance} up to the far upper corner  {blue collar, maximal nuisance}. 
Though the analysis extracts  the major trend from the data, the albeit " r ea sonab le"  
imputations are nevertheless very "s ingle" :  all missing data with the non-nuisance 
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pattern are attributed to managers. In practice, this solution is a bit peculiar since other 
white collar workers would also have been reasonable candidates. The effect is a 
consequence of maximizing consistency, and it is most likely to become a problem if 
the number of  different response profiles is small. A possible strategy will now be 
sketched, based on multiple imputation, how one may handle such situations. 

Suppose that it is possible to define for each missing value a multinomial distribu- 
tion Pr(Xmi s ] Xobs) containing probabilities Pk that, conditional on the observed data, 
state how likely it is that category k should be imputed for g m i  s . One possibility to find 
such a distribution would be to relate the distances between objects and categories to 
probabilities. Let P r ( g m i  s I X o b s )  be chosen such that the category with highest p k is the 
most consistent imputation. This most consistent imputation is appropriate only if Pk 
itself is relatively high, but of course, we may also find that all candidates are equally 
probable. The predictive distribution will then be relatively flat and the highest p k is not 
particularly representative for the distribution. In that case, a method that simply picks 
the largest probability tends to generate a lot of unreasonable imputations. A sensible 
alternative would then be to draw a number of samples from the entire predictive 
distribution Pr(Xmis t Xobs), and use these samples to generate a number of completed 
matrices, which are pooled in some way afterwards. Such procedures take the uncer- 
tainty induced by the imputations into account, and are known as multiple imputation 
(Rubin, 1987) and data augmentation (Tanner & Wong, 1987). See Rubin (1991) for an 
overview. 

There are many possibilities to combine multiple imputation and maximizing con- 
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FIGURE 5. 
Imputation frequencies (Z) versus job classes (X) versus labor conditions ( ~ .  

sistency. For each missing entry, one can simply define Pr (Xmi s I Xobs) as a set of k 
probabilities proportional to the inverse of the distances between the provisional object 
point and the k category quantifications. Using this definition, the data were re-imputed 
five times. Figure 6 is a graphical representation of the average imputation counts. 
Comparing Figures 5 and 6, both imputations, single and multiple, follow the same 
gradient from white collar, no nuisance on the bottom to blue collar, maximal nuisance 
on top. It is obvious that the multiple imputations are more spread over jobs and 
nuisance patterns and that the surface is more like that of Figure 4. 

Discussion 

The method optimizes a well-known and widespread criterion: 9/2 is proportional 
to the largest eigenvalue of the correlation matrix, the average correlation, the average 
of  the squared correlations between z and x, and Cronbach's a. The method stays close 
to the data, and also few assumptions are needed. Furthermore, given a sufficient 
amount of consistency, local minima appear to be not much of a problem. Since the 
number of variables or observations hardly influences the computations, the technique 
can be used with large data matrices. 

Despite these assets, the method should be applied with care. A main practical 
issue is the amount of intercorrelation. If the magnitude of the correlations is below 
0.20, then the method may generate estimates that are even worse than random impu- 
tation. In this case, unconditional mean imputation often works better. It seems pref- 
erable to use MISTRESS here only in combination with a resampling method, like the 
bootstrap, to estimate the variability of  consistency. In the recovery study, maximizing 
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Average counts based on multiple imputation (Z) versus job classes (X) versus labor conditions ( ~ .  

consistency beats mean substitution only above average correlations of 0.50. Correla- 
tions of this magnitude can be found in, for example, psychological testing, surveys and 
longitudinal research. The fact that MISTRESS does not work well with inconsistent 
data is not the fault of  the method itself, but is due to the lack of  fit between the data 
and the consistency model. Inappropriate models simply yield bad imputations. 
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