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The present paper is concerned with testing the fit of  the Rasch model. It is shown that this 
can be achieved by constructing functions of the data, on which model tests can be based that 
have power against specific model violations. It is shown that the asymptotic distribution of these 
tests can be derived by using the theoretical framework of testing model fit in general multinomial 
and product-multinomial models. The model tests are presented in two versions: one that can be 
used in the context of marginal maximum likelihood estimation and one that can be applied in 
the context of conditional maximum likelihood estimation. 
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1. In t roduct ion  

The problem of evaluating model  fit in latent trait models is often solved within the 
well established f ramework of  testing model  fit in the general mult inomial  model  (see for 
instance B o c k &  Aitkin, 1981). This can be done  by recognizing that  if {x} stands for the 
set of  all possible response patterns, the vector of  frequency counts  n with elements n x has 
a mult inomial  distribution with parameters  N and n, where N is the number  of  re- 
spondents,  n a vector with as elements the theoretical probabilities p(x I k) of  the response 
patterns and k a vector of model  parameters.  

The likelihood ratio statistic for testing the assumed model  against a general multi- 
nomial  alternative is given by 

G 2 = 2 ~ n ,  l n (  n_~ )) 
tx~ IX " 

It can be shown (see for instance Bishop, Fienberg & Holland,  1975) that  G 2 has an  
asymptot ic  Z 2 distribution. 

If  however  the number  of  possible response patterns is large, the vector of  frequency 
counts  n will have a number  of  very small or even zero elements. In  such cases it is often 
suggested to pool patterns to obtain observed and expected frequencies which are suf- 
ficiently large. However  this pooling is a function of  the data  itself, so the asymptot ic  
distribution of  a test of  model fit based on the pooled data  can hardly be derived. Another  
drawback  in this approach  lies in the fact that  interpreting the causes of  a possible misfit 
is hampered by the aggregation level of  the test: the influence of  particular items on the 
ou tcome of  the test and other  specific causes of  misfit cannot  be identified. The present 
paper  is concerned with presenting a remedy for this situation for the d ichotomous  Rasch 
model. The essence of  the technique is finding some function of  n leading to a test which 
has power against specific model  violations. The  first test discussed focusses on  a table 
with as entries counts  of  the number  of  subjects w h o  at tain a certain sum score r and 
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make item i correct. These counts, denoted by m,~, will be referred to as "first order 
realizations". It will be shown that a test based on these observations is sensitive to 
variation in the slopes of the item characteristic curves. 

The second test focusses on a table with counts of the number of subjects who make 
both item i and item j correct. These counts will be denoted by m~ (i 4: J). The idea of 
evaluating these so-called "second order realizations" is due to van den Wollenberg 
(1982), who has shown that tests based on these observations have power against viola- 
tions of the axiom of unidimensionality. 

The tests proposed in the present paper are based on the comparison of expected and 
observed frequencies. For  the estimation of the expected value of m,l and m~ one must 
deal with the person parameters  in the Rasch model, which cause inconsistencies in the 
estimation of the item parameters (Andersen, 1973). The problem is solved in two ways. 
The first method maximizes the likelihood of the data conditional upon the sufficient 
statistics for the person parameters (Rasch, 1961). This is generally known as conditional 
maximum likelihood estimation. The second approach,  generally known as marginal 
maximum likelihood estimation, considers the person parameters  as independent, identi- 
cally distributed random variables (Rigdon & Tsutakawa, 1983). 

The paper  will consider both estimation procedures. So in the next sections a test 
based on the first order realizations will be presented for respectively the marginal and the 
conditional approach and an example of the testing procedure will be given. In the 
following sections the same will be done for second order realizations. 

2. First Order  Realizations, the Marginal Approach 

Consider the set of all possible response patterns on a test of k items. Suppose the 
number of possible response patterns is t and N persons made the test. Let n be a 
t-dimensional vector of frequency counts which will be partitioned n'  = (n o , n~ . . . . .  n', . . . . .  
n~,_ 1, nk), such that n, is a vector of the frequency counts of response patterns leading to a 
sum score r, n o stands for the number of persons attaining a zero score and n k stands for 
the number  of persons attaining a perfect score. 

In the Rasch model it is assumed that the probability of a correct response as a 
function of the ability parameter  8 is given by 

exp (8 -- 6i) 
p(xi  = 11 8, t$i) = 1 + exp (8 -- 6~)' (1) 

where 6 i stands for the difficulty of item i. If  it is also assumed that the ability parameters 
are randomly sampled from a normal distribution with parameters/~, /~ -- O, and a, the 
expectation of the number of persons producing response pattern x is given by 

N ~  = N f ® ~ e-xE (r~-__x~) a(~ 1 ~) ~ E(nx 1 6, a) 
j -  oo I~(1 + exp (~ - ~3) 

i = 1  

N f : ® e x p  (r8 - x'6)po(~)g(81 or) ~8, (2) 

with 6' = (61 . . . . .  6k), g(gla)  the normal probability density function and r the sum score 
associated with x. 

The frequency distribution of the sum scores is a sufficient statistic for the ability 
distribution (Rigdon & Tsutakawa,  1983) and it can be assumed that persons with the 
same sum score form a rather homogeneous group on the latent continuum. For  every 
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item, checking m,~ against  its expected value across var ious  score levels m a y  reveal devi- 
a t ions  of  the empirical  i tem characterist ic  curve f rom the one predicted by the model.  If  
for instance m,~ is too  small a t  low score levels and  too  large a t  high score levels, it can  be 
concluded that  the i tem contr ibutes  to a possible lack of  mode l  fit because its i tem 
characterist ic  curve is too  steep. Therefore  the objective of  this section is to develop a 
statistical test based on the observat ions  m,~. 

Let X,  be a matr ix  with as co lumns  all response pat terns  leading to a sum score r for 
r = 1 . . . . .  k - 1 and let m,  be a vector  of  the observa t ions  m,~, i = 1 . . . . .  k. I t  can be easily 
verified that  X,  n, = m, .  Using this it can also be shown that  

f/ E(m,~l 8, ~) zx N ~ , i  N ") - = _ ®et T,-  i(t) exp (rO)po(O)g(O I ~) dO, (3) 

with ~ = exp ( - 6 f )  and  ~,~,°_ 1(~ ) an e lementary  symmetr ic  function of  order  r - 1 with as 
pa ramete r s  the elements of  t ,  E' = (51, . . . ,  ~k), where e~ has  been set equal  to zero. F o r  the 
definition of  an e lementary  symmetr ic  function one is referred to  Fischer  (1981). 

Let the k-vector  of  deviances in score g roup  r, d, ,  be defined as d, = m, - E(m, I ~, 0) 
for r = 1 . . . . .  k - 1, d o = n o - E(nol~ , 0) and d~ = n k - E(nkl~,  4), where ~ and 0 s tand 
for m a x i m u m  likelihood estimates.  These deviances will be combined  into a quadra t ic  
form using matr ices I~, = X, /~( , )  X',, r = 1 . . . . .  k - 1 wi th /~( , )  a d iagonal  matr ix  with as 
diagonal  elements est imates of  the probabil i t ies  rc~ as defined in (2), for all response 
pat terns  leading to a sum score r. It  can be verified that  IV, has d iagonal  elements ~F,~ as 
defined in (3) and off-diagonal  elements  

f _ ~ +  ~j ~',~ 2(E) ~F, u = (t ~) exp (rO)po(O)g(O I a) 00, (4) 

with ,.(tj) i~  l r -  21. ~'1 an e lementary  symmetr ic  function of order  r - 2, where the parameters  e~ and  
ej have been set equal to zero. 

Using these definitions the following theorem can be stated. 

Theorem 1. If  N - - ,  c~ 

do 2 N -1 k - ,  dg 
R..  - E(no ]~. d) + ,=,~ d'. l~V~ - ld.  + E(nk }~. #) (5) 

has an asympto t ic  ;(2 dis t r ibut ion with k(k - 2) degrees of  f reedom. 

A detailed p roof  of  the theorem is given in Appendix  A. In  this appendix  it is shown 
that  the number  of  degrees of  f reedom is equal  to the number  of  deviances on which the 
test is based, which is k(k - 1) + 2, minus  the number  of  pa ramete r s  that  have to be 
est imated,  which is k + 1, minus  one, so the degrees of  f reedom are given by k(k - 2). 
Inspect ion of  (5) reveals that  the n u m b e r  of  i tems is the main  restriction on the com-  
putabil i ty of  the test. This restriction works  in two ways. First, e lementary  symmetr ic  
functions have to be computed .  Fo r  this recursion formulas  are avai lable and the numeri-  
cal p rob lems  are solved (see Verhelst, Glas  & van der  Sluis, 1984). Secondly the k x k 
matr ices  I~, have to be inverted. I t  is beyond  the scope of  the present  paper  to derive a 
general rule for the number  of  i tems possible, but  experience shows that  the c o m p u t a t i o n  
does not run into p rob lems  up  to 90 items. The  theorem given above  refers to a s i tuat ion 
where a sample f rom one popula t ion  is confronted  with one test. The  result can be 
generalized to a s i tuat ion where samples  f rom different popula t ions  are confronted with 
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different, though possibly overlapping tests. With respect to the generalization to these 
situations, the following considerations must be made. 

Let A = D~- ~/2(an/c3k'), with n a vector of the probabilities nx of all possible response 
patterns, D~ a diagonal matrix of these probabilities, and k = ( ~  . . . . .  ~k, a). In the 
derivation given in Appendix A, it is essential that the t x (k + 1) matrix A is of full 
column rank. If this is not the case the model is not identified. For  a situation of G 
populations and H tests the definition of A must be extended. Let xg h be a response 
pattern on test h given to the sample of population g. The exact design will not be 
specified, but the restrictions on the design imposed by the necessity of constructing an 
identified model will be discussed below. 

Let n be the vector of theoretical probabilities of all possible response patterns for all 
relevant combinations of a population and a test. Suppose that ~ has elements 

~ *  = , , (1 + exp (~(,9 -- fi,))) crg(2n) ~ 2  ' (6) 

where B h is the set of indices of all items in test h. 
The model given in (6) is not identified because there exists a transformation of the 

parameters which leaves the theoretical probabilities unchanged: ~ = ~t/d (d > 0), 5~ = d6~ 
+ c, ~g = dtrg and fi~ = d/~g + c. 

It  can be easily shown that the functional dependence among the parameters  causes 
the matrix t3n/d): with L a vector of all parameters,  to be of incomplete column rank. For  
one test and one population the indeterminacy can be resolved by imposing the re- 
strictions ct = 1 and # = 0. It would go beyond the scope of the present paper to treat all 
possible test administration designs, but some situations often arising in practice will be 
given as examples of how the identification problem must be solved. It  is always assumed 
that 0t = 1. 

1. In the case of one test and several populations /~1 -- 0 and #g free as g > 1 is a 
sufficient restriction to identify the model. 

2. In the case of several tests and one population the restriction # = 0 may  be 
chosen. As an example one may think of the instance of test equating where different 
samples make different and possibly nonoverlapping tests. In this case the item parame- 
ters can be calibrated on a common scale by assuming that all samples are drawn from a 
common ability distribution. 

3. Consider a situation where one test is administered to a sample of one population 
and another test is given to a sample from another population. If BI c~ B2 :fi ~ ,  that is, if 
the two tests have common items, the restriction #1 = 0 and #2 free is sufficient. So this 
covers the well known situation of common item equating. If  however B~ c~ B 2 = O ,  the 
restriction #2 = 0 must also be imposed. In this case the likelihood of the data for the first 
sample is independent of the likelihood of the data in the second sample and the item 
parameters are not calibrated on one common scale. 

Given a matrix A = D~ ~/2(an/dk') of full column rank, that is, given a full rank 
parametrization of the model, generalization of the statistical test Rm to a situation of 
more tests and more populations is straightforward. Let N~h be the size of the sample of 
population g taking test h. Test h has k, items. For  every relevant combination of a test 
and a population, a table with entries mr~, will be analyzed, m,~oh stands for the number  of 
persons in the sample of population g, who take test h, attain a score r and make item i, 
i E B h, correct. If  6 h is the vector of item parameters  of test h and /~g and tr~ are the 
parameters of population g, E(rnrighl6 h, I~g, trg) can be evaluated using expression (3) with 
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the proper substitution of arguments. If mre h is a vector with elements m, igh, i = 1 . . . . .  k,,  
a vector of deviances d,g h = m,a h - E(m,ghl~ h, /,2a, t~o) can be defined for all relevant 
combinations of r, g and h. The deviances for a zero score and a perfect score, dog , and 
dk,g, are defined analogous to the one test and one population case. 

It must be stressed that the deviances are evaluated using maximum likelihood 
estimates of the parameters obtained by maximizing the likelihood of the complete data 
set, that is, by maximizing ~ . h  ~{~,h} n~h In r%, as a function of all parameters. The 
symbol ~g.h stands for a summation that runs over all combinations of a and h that are 
relevant to the test administration design under consideration. As in the case of one test 
and one population all deviances are combined into a quadratic form, this time by 
applying k h x kh matrices l~,g h. l~,g h has diagonal elements ~rig~ (i = 1, . . . ,  kh) and off- 
diagonal elements ~m~h (i ~ j) which are defined by (3) and (4) with the proper substitu- 
tion of the item parameters ~n and the population parameters /~g and t~g. Now the 
following generalization of Theorem 1 can be given. 

Theorem 2. Consider G populations and H tests, from every population at least one 
sample is drawn and every test is administered at least once. Let the parametrization be 
such that dn/d),' is of full column rank. If for all relevant combinations of g and h, 
Nob---, c~, 

W,o h dg~ + E(nk,g,t~,g,)] R,, = 9.hE \E(nogh i ~,,) + N~ t ,=E, d;e* " - '  

has an asymptotic Z2 distribution with ~g.h (kh(kh -- 1) + 1) -- dim (k) degrees of freedom. 

The proof of this theorem is a straightforward generalization of the proof given in 
Appendix A. The degrees of freedom can be determined by counting the number of 
deviances, subtracting the number of parameters that have to be estimated and subtract- 
ing one degree of freedom for every multinomial distribution under consideration, that is, 
every combination of a test and a sample that is relevant to the design. In the application 
section of this paper an example of the use of this theorem will be given. 

3. First Order Realizations, The Conditional Approach 

Neyman and Scott (1948) have shown that the presence of so-called incidental pa- 
rameters, that is, parameters who's number tends to infinity as the sample size tends to 
infinity, causes maximum likelihood estimates of the structural parameters to lack consist- 
ency and efficiency. In the Rasch model the person parameters act as incidental parame- 
ters. One way of dealing with these parameters is used in the previous section. Rasch 
(1960, 1961) suggested dealing with the problem by a conditional maximum likelihood 
estimation method: maximizing the likelihood of the data given minimal sufficient statis- 
tics for the incidental parameters. Andersen (1973) has shown that the well-known theo- 
rems concerning the asymptotic normality of maximum likelihood estimates are also valid 
for these conditional estimates, the estimates are consistent and uniformly converge to a 
normal distribution. Furthermore the estimates are efficient in the sense that the lower 
bound for the asymptotic variance of the estimator is attained. 

Fischer (1981) has given a necessary and sufficient condition for the existence and 
uniqueness of the conditional maximum likelihood estimates of the item parameters. As 
for testing the model in the conditional case, the idea of comparing the expected and 
observed values of mri (r -- 1 . . . . .  k - 1 and i = 1 . . . .  k) is not new. Van den Wollenberg 
(1982) presented a test statistic, Qt, based on the evaluation of these realizations. However 
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the asymptot ic  distr ibution of  the test could, as yet, not  be derived, though simulation 
studies support  the conjecture that it is ~2 distributed (van den Wollenberg). Another  test 
based on the first order  realizations was suggested by Mart in  L/Sf (1973) and in fact it is 
the same test as the one proposed in the present paper. Re-introducing the test is moti -  
vated by the fact that  Mart in  L f f  assumes that  the number  o f  persons at taining a score r 
is a Poisson distributed r andom variable. The test proposed  here does not  need this 
assumpt ion and generalizations to the situations considered in the previous section are 
easily made. But first the case of  one test administered to  one sample will be treated. 

The condit ional  p~obability of  response pat tern x is given by 

k 

I-I 7 
p(x I r, c) z~ i=1 - ( 8 )  

where c' = (~1 . . . . .  ~k) and ?,(c) an elementary symmetr ic  funct ion of  order  r (r = ~ =  1 x~). 
with as arguments  the elements of  e. 

As in the previous section, the vector of  frequency counts  of  patterns leading to a 
sum score r, a t ,  is t ransformed X~ n r = mr,  with X ,  a matrix with as columns all response 
patterns with sum score r (r = I . . . .  , k -- 1). The resulting vector mr is given by m', = (re, l, 
. . . .  m,~ . . . . .  re,k). It can be verified that  

{i) 
~i ?, - 1 (~) (9) E(m,i l N , ,  e.) ~- N ,  F,t = N ,  ,~ t~3 ' 

• ( o  a " w~th ?, _ ~(E) s m the previous scction and N,  the number  of  persons scoring r. I f  

. . . .  ( i , j )  (E~ 

,i~ r,(t) ' 

and D~., a diagonal  matrix with on the diagonal  all probabilities rc~., leading to a sum 
score r (r = 1 . . . . .  k - 1), it can also be verified that  the k x k matrix W.r, W., - XrD~.r  
X',, has diagonal  elements F,~ and off-diagonal elements Fr~ 1. 

Let ~ stand for the condit ional  max imum likelihood estimate of  ~. The vector of  
deviances fl.~ is defined by d.~ = m, -- E(m,t r,/:) and I~., s tands for W.~ evaluated at L The  
following theorem is equivalent with theorem 1 for the marginal  case. 

T h e o r e m 3 .  If Nr-- ,  ov for r --- 1 . . . . .  k - 1  

k - - 1  

Rc ~ -1 , = N,  d., ff'.~ ld., 
r = l  

has an asymptot ic  ~(2 distr ibution with (k - 1)(k - 2) degrees of  freedom. 

(11) 

Appendix B gives a detailed p roof  of  this theorem. As in the case of  Theorem 1, it is 
convenient  to have some rule of  t humb  to determine the degrees of  freedom of  the test. To  
give this rule, it must  first be noticed that  there is an impor tan t  difference between the 
condit ional  model and the marginal  model• In the first case the model  is mult inomial  with 
parameters  N and re. In the condit ional  case the model  is a p roduc t  of  k - 1 mult inomial  
models  with parameters  N,  and n•,, where re•, has elements as defined in (8). This gives 
rise to k -  1 addit ional restrictions which must  be accounted for. So the degrees of  
freedom are now given by the number  of  deviances minus the number  of  parameters  that  
have to be estimated, which is k - 1, minus the addit ional restrictions, so the degrees of  
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freedom of R c is (k - 1)(k - 2). For  the logic behind this rule one is referred to the 
derivation in Appendix B. 

The statistical test proposed  here can be generalized in much  the same way as Rm, 
only a generalization to more  than one popula t ion  has no meaning, since the condit ional  
likelihood is only function of  the item parameters.  As ment ioned above  Fischer (1981) has 
given a necessary and sufficient condi t ion for the existence of  a solution to the est imation 
equat ions and this condi t ion also applies to  a situation where different tests are adminis- 
tered to different groups. A m o n g  some more  technical requirements, the tests must  be 
linked by c o m m o n  items. If every selection of  items that  is administered to one particular 
g roup  is called a test, c o m m o n  person equat ing is not  different f rom c o m m o n  item 
equating, so the condit ions given by Fischer and the generalization of  R c that  will be 
given below also apply to this kind of  test equating. 

Let B h be the index set of  test h and let B h, be the index set of  test h'. The tests 
indicated by h and h' are linked if there exists a sequence of  index sets Bhl, Bh2 . . . . .  Bh~ 
such that  B h c~ Bhl ~ ~ ,  Bhl (3 Bh2 ~ ~ . . . . .  Bh: C~ B h, --/= ~ .  This condit ion is necessary 
but not  sufficient. However  the more  technical requirements specified by Fischer (1981) 
are in almost  all instances fulfilled and if the sample size goes to infinity they are a lmost  
surely fulfilled. So let the design be such that  a solution to the est imation equat ions exists. 
For  every test h, a table with entries m,i h (i = t . . . . .  k h and r = 1 . . . . .  k h - 1) is analyzed. 
Let Nrh be the number  of  persons at taining a score r on  test h and let m,i h s tand for the 
number  of  persons who at tain a score r on  test h and make  item i, i ~ B h, correct. A 
vector of  deviances is defined by d.,h = m,h -- E(m,h I N , ,  t), where m',h = (mr1 h . . . . .  mrl h, 
. . . .  mrkhh) and E(mrhlN r, ~) must  be evaluated by (9) with the obvious  substi tution of  
arguments.  

In the same manner,  the definition of  the k h x k h matrix I~.,h is derived from the 
definition of  I~., given above. 

Theorem 3 can now be generalized in the following manner.  

Theorem 4. Consider  H tests which are linked by c o m m o n  items. If  N,h---, oo for 
h =  1 . . . . .  H a n d r =  1 . . . . .  k h - l ,  

H kh-- 1 

Rc-- E ~ N,~Xd'-,hl~'.~d.,h (12) 
h = l  r = l  

has an asymptot ic  ~2 distribution with ~ =  1 (kh - -  1) 2 - -  dim (e) - 1 degrees of  freedom. 

The proof  of  Theorem 4 is a s traightforward generalization of  the p roof  of  Theorem 
3. The degrees of  freedom can be recovered by noticing that  every test contributes kh(k h 
- 1) deviances, k h - 1 restrictions are imposed for every test by the product-mul t inomial  

form of the model and dim (E) - 1 parameters  have to be estimated. 
As for the computa t ion  of  the test, it must  be noticed that  the max imum number  of  

items in one test, max h (kh), is the main  restriction, because the dimension of  l~.,h and the 
maximal order  of the elementary symmetr ic  functions which must  be computed  are both  
bounded  by max h (kh). 

4. An Example 

In order  to clarify the technique suggested in this paper  an example will be presented. 
The example concerns six arbitrarily chosen multiple choice items from an examinat ion in 
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TABLE 1 

Parameter Estimation For The MAVO-C Level 

MML CML 
A A A A 

r n r i s i 6 i SE(6i) s~ 6 i SE(6i) 

0 2 

1 20 1 289 

2 47 2 289 

3 61 3 176 

4 77 4 189 

5 87 5 230 

6 66 6 263 

801 .131 223 -.794 .141 

801 .131 223 -.794 .141 

952 .ii0 II0 .937 .121 

774 .Iii 123 .774 .122 

196 .i13 164 .187 .123 

320 .119 197 -.329 .129 

N-360 
A A 

/J- .900 SE(/~)-.078 

A A 

o - 1 . 0 6 1  S E ( a ) - . 0 8 5  

reading comprehension in English for two levels of Dutch secondary education, called 
MAVO-C and MAVO-D. For  the analysis presented here, only a sample of the complete 
examination data was available, so N = 360 for MAVO-C and N = 367 for MAVO-D.  
Since the data were collected in the actual examination situation, it was assumed that 
guessing would not occur too frequently and that the Rasch model would be appropriate.  
The analysis presented here gives support  to this assumption. 

Table 1 and Table 2 give the results for the conditional and the marginal estimation 
procedure for both levels separately. The column marked N,  gives the frequency distri- 
bution of the sum scores r, the column marked s i gives the number  of correct responses to 
the items. Since the number  of  persons achieving a perfect score does not influence the 
conditional estimation procedure, a column marked sg is added, which contains the 
number  of correct responses to an item in the subgroup of examinees who did not achieve 
a perfect score. For the marginal case the estimation of the parameters  was carried out by 
the method described by Thissen (1982) and Rigdon and Tsutakawa (1983), for the 
conditional case the techniques described by Fischer (1974) were applied. 

The columns marked M M L  and C M L  give respectively the marginal and the con- 
ditional estimates. A normalization ~ i  6i = 0 is chosen. At the bo t tom of both tables the 
estimated mean and variance of the ability distribution are displayed. Table 3 gives the 
observed and expected values of rn,i (r = 1 . . . . .  k - 1 and i = 1 . . . . .  k) for the marginal 
model. The last five columns of Table 3 are marked "scaled deviance". The entries are 
given by (m,i - E(mril i)) /var (m,i I ~,)1/2. The interpretation of the size of the "scaled de- 
viance" may be aided by the fact that if only one item and one score level are considered 
and no parameters have to be estimated, the "scaled deviance" would be a standardized 
binomial variable. 
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r n r i 

MML CML 

SE(61) 

0 i 

i 4 I 

2 16 2 

3 46 3 

4 74 4 

5 113 5 

6 113 6 

332 -.983 .170 219 -.980 

328 -.851 .168 215 -.849 

225 1.075 .113 112 1.077 

241 .850 .113 128 .850 

275 .323 .118 162 .318 

312 -.413 .115 199 -.415 

.176 

.182 

.128 

.120 

.128 

.131 

N-367 
A A 

/~-1.629 S E ( p ) - . 0 7 4  

,% A 

a- .986 SE(a)-.086 

Computa t ion  of  the model  test for the data  in Table 3 resulted in Rm = 35.6 with 
k ( k  - 1) = 24 degrees of  freedom. Table 4 gives an evaluat ion of  m,~ (i = 1 . . . . .  k and 
r = 1 . . . . .  k -  l) using condit ional  estimates. In  this case R c = 18.3 with 
(k - 1)(k - 2) = 15 degrees of freedom. The same computa t ions  were also carried out  for 
the M A V O - D  level, the results are summarized in Table 5, row one, two, five and six. 

The model fit for the M A V O - D  level is somewhat  better that  the model  fit for the 
M A V O - C  level. Inspection of  Table 3 and Table 4 shows that  the first item gives the 
largest scaled deviances. The est imation procedure was repeated using only the last five 
items, the results of  the evaluat ion of  the model  fit are given in Table 5, rows three, four, 
seven and eight. For  the M A V O - C  level the model  fit clearly improves:  Rm = 18.3 with 15 
degrees of  freedom and Rc = 12.2 with 12 degrees of  freedom. The next question which 
may  be answered is whether the five remaining items form a Rasch homogeneous  scale for 
both levels combined.  Therefore marginal  max imum likelihood estimates of  the model  
parameters  were made on the data  of  both  levels simultaneously, under  the assumption 
that both  levels have normal  ability distributions with different means and variances. 
Table 6 gives the estimation results in the co lumn marked  "MML-2" ,  where #1 and ~x, are 
the mean and variance for M A V O - C  and ~2 and tx 2 are the mean and the variance for 
M A V O - D .  Table 5 gives the result of  the R m test in the row marked  M M L - 2 :  R m = 33.0 
with 34 degrees of freedom. 

Next  it was assumed that  bo th  levels have the same ability distribution, so # = #1 = 
~2 and tr = t71 = tr 2. The row marked " M M L - I "  in Table 5 gives the result of  the model  
test: R m = 76.0 with 32 degrees of freedom, so the hypothesis that  both  levels have the 
same ability distribution must  be rejected. 
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TABLE 5 

Hypothesis Testing 

method population items R df crit.val.95% 

MML MAVO-C i-6 35.62 24 36.4 

MAVO-D i-6 14.88 24 36.4 

MAVO-C 2-6 18.27 15 25.0 

MAVO-D 2-6 14.21 15 25.0 

CML MAVO-C 1-6 27.51 20 31.4 

MAVO-D 1-6 12.95 20 31.4 

MAVO-C 2-6 12.18 12 21.0 

MAVO-D 2-6 11.72 12 21.0 

MML-2 combined 2-6 33.05 34 45.9 

MML-I combined 2-6 76.05 32 48.3 

5. Second Order  Realizations 

Van den Wollenberg (1982) has shown that statistical tests for the Rasch model 
which are based on analyzing first order realizations are in many instances insensitive to 
violation of the axiom of unidimensionality. The argument given by van den Wollenberg 
can be summarized in the following manner.  Suppose unidimensionality is violated. If  the 
subject's position on one latent trait is fixed, the assumption of local stochastic indepen- 
dence requires that the association between the items vanishes. In the case of more than 
one latent trait however, the subject's position in the latent space is not sufficiently 
described by one unidimensional ability parameter  and as a consequence the association 
between the responses to the items given the ability parameter  will not vanish, Therefore, 
van den Wollenberg (1982) proposed a test that focusses on the observed and the expected 
association between the items. The asymptotic distribution of the test can, as yet, not be 
derived, although simulation studies point in the direction of a X 2 distribution. Practical 
application of the test also has its limitations, for its computat ion needs the conditional 
maximum likelihood estimation of the item parameters  for every score level. 

The present section will propose a model test which is based on the heuristic devel- 
oped by van den Wollenberg and that can be derived by the same principle as used in the 
previous section: constructing a linear function of the frequencies of  the response patterns 
to obtain deviances which may show the model violations under consideration. This is 
achieved in the following manner. 

Let m* be a 1/2k(k- 1) dimensional vector with elements m~, i = 1, . . . ,  k -  1, 
j = i + 1 . . . . .  k, and let n* be the vector of frequency counts of response patterns with a 
sum score 2 < r < k - 1, so n*' = (n~ . . . . .  n~_ 1). The objective is to construct a matrix Y 
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Parameter 

TABLE 6 

Estimation For The MAVO-C And MAVO-D levels 
(Item i is removed) 

Combined 

MML- 2 MML- i CML 
A A A A ^ ^ 

61 SE(6 i) 6 i SE(6 i) 6 i SE(6 i) 

2 -I.030 .i01 -I.028 .i02 -I.016 .I05 

3 .858 .077 .858 .077 .860 .085 

4 .650 .077 .649 .077 .647 .082 

5 .077 .080 .075 .080 .065 .085 

6 -.554 .085 -.555 .080 -.556 .088 

A 

#i - .723 
^ 

SE(#I)= .082 
^ 

a I =1.230 
^ 

SE(al)= .095  
A 

P2 =i. 439 
A 

SE(~2)= .076 
^ 

o 2 = 1 . 0 2 2  
^ 

SE(a2)= .096  

^ 

=1.126 
^ 

SE(~)= .057 
^ 

a = 1 . 1 9 6  
^ 

SE(~)= .068  

such that m = Yn*. The reason for not  including score level r = I and the exact definition 
of  the elements of m.*. will become apparent  in the sequel. Let  Y be a matrix where every U 

column is associated with a response pat tern x leading to a sum score 2 < r < k - 1. If  Yx 
is the co lumn associated with x, y .  has elements 

{ l o i f x , = l a n d x j = l ,  
Yx,j) = for all other  combinat ions  of  xl and x~. 

Notice that if the same definition is also applied to a response pat tern with a score r = 1, 
yx = 0. Using m* = Yn* it can be verified that  m~ is equal to the number  of  persons who 
obtained a sum score 2 < r ~ k - 1 and made  both  item i and item j correct. The testing 
procedure will be deveToped for the marginal  approach  first. 

Using E(m* 16, tr) = E(Yn* 16, a), it can be shown that  E(m* 16, tr) has elements 

E(m~16, a) = N ~ ~ l) x (rS)Po(l))g(~la) dS, (13) 
r = 2  , - -  

k - t  so E(m~16, t r )=  N ~ , = 2  q ' ,o  with q ' ,o as defined in (3). Let  /)* be a block-diagonal  
matrix diag (/),(2) . . . . .  /)~(,) . . . . .  /~(k-  *)) with /)~(,) as defined in section 2. If  0 = Y/)* Y' 
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it can be verified that U is a 1/2k(k - 1) x 1/2k(k - 1) matrix with elements 

t k~l I,oef 8J el' ej, ~ljt~')(g) exp (rg)po(9)g(9 ] tr) 0~, if i 4: i' and j 4: j ' ,  

U(o)( i ' J ' )  - ~  k c~ 

~ , ~  2 -oo ei ~jei' ~(,'~'~(c) exp (r~)po(O)g(gl~r) ag, i f j '  = i or j '  = j. 

For  the derivation of the asymptotic  distribution of the model test all score levels have to 
be taken into account. So let d o , d~ and d k be the deviance for the score levels r = 0, r = 1 
and r = k as defined in section 2 for the marginal case. Suppose f = m* -- E(m* 1 & 0). 
Using these definitions the following theorem can be given. 

T h e o r e m  5. If  N ~ oo, 

do ~ ag (14) 
R2,. - E(nol8 ' ~) + N - ~ d ' ~ ; ~ d ~  + N-'f'O-~f + E(nkl& i)  

has an asymptotic  Z 2 distribution with 1/2k(k - 1) degrees of freedom. 

The proof  of this theorem generally follows the same lines as the proof  of Theorem 1 
as it is given in Appendix A, only some modifications need to be made. Appendix C 
indicates these modifications. 

For  the derivation of an analogous theorem for the conditional case, it is convenient 
to define a vector of frequencies of sum scores N '  = (Nx,  . . . ,  N . . . . . .  N k -  1). If  m* = Yn* 
with Y as defined above, the conditional expectation E(m* I N, ~) is a vector with elements 
~,~-~ N, F,u where F,u is defined by (10) in section 3. 

k - I  Let Y be partitioned as (Y2 .. . . .  Y,, . . . ,  Yk-l) and 0.. = ~r=2 N, Y,/),,., Y, with/~=., 
as defined in section 3 for the conditional ease. The elements of 0..  can be recovered in 
the same manner  as in the marginal case. Finally f = m* - E(m* I N, ~:) and the definition 
of d. ~ and I~. t remains unchanged. The following theorem is the conditional equivalent of 
Theorem 5. 

T h e o r e m 6 .  I f f o r r =  I . . . . .  k -  1, N,---~oo 

R~c = d~tff'~-ldl + f ' 0 s l f  

has an asymptotic  g 2 distribution with 1/2k(k + 1) - 2(k - 1) degrees of freedom. 

The proof  of Theorem 6 runs along the same lines as the proof  of theorem 5 given in 
Appendix C. 

The computabili ty of Rzm and R2c is limited by the dimension of U and U... If  
k = 15 U and U.. are 95 x 95 matrices, so 15 items must  be considered as an upper 
bound for the number  of items that can be analyzed in one run. A larger number  of items 
would not only cause computat ional  problems, the vector of  "second order deviances" f 
would become too large to identify the results of  individual items. Therefore a larger test 
must  be spli t up in a number of subtests and these subtests must be analyzed separately. 
In the next section a simulated example of the use of the techniques presented here will be 
given. 

6. A Simulated Example 

In order to validate the claims concerning the power of the R Z s  and R2c test in cases 
of violation of the axiom of unidimensionality, a small simulation study was carried out. 
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TABLE 7 

H y p o t h e s i s  T e s t i n g  Fo r  D a t a  G e n e r a t e d  U s i n g  One and  Two D i m e n s i o n s  

CML MML 

R c df R2e df R m df R2m d£ 

one dimension 19.34 20 11.42 ii 18.95 24 13.95 15 

two dimensions 28.44 20 112.18 II 31.94 24 138.56 15 

The studies were replicated for both the marginal and the conditional approach and for 
several values of k and E. Only the results for a test of six items will be presented here, 
because the results of the other simulation studies follow exactly the same pattern. 

The studies were carried out under two conditions, in the first condition the items 
appealed to one latent trait, in the second condition the first three items appealed to one 
latent trait and the last three items appealed to another latent trait. The item parameters 
are given by t : ' =  (2.0, 1.0, 0.5, 2.0, 1.0, 0.5). The data were generated in the following 
manner. 

For the first condition a person parameter 8 was drawn from the standardized 
normal distribution after which the probability p(x i = 118, 6i) could be calculated using 
(1). A value ~i was drawn from the uniform distribution on (0, 1) and the response to item 
i was calculated according to the following rule: 

if p(x  i = 1 t 8, tSi) > ~ then x~ = 1 else x i = 0. 

This was repeated for all items. 
For  the second condition the procedure was the same, only in this case for every 

simulated response pattern two person parameters were drawn. The first three items 
appealed to the first person parameter and the last three items appealed to the second 
person parameter. 

Table 7 gives the results for two typical simulation runs with N = 4000. The rows 
marked "one dimension" give the results of the hypothesis testing for a one dimensional 
data set, the rows marked "two dimensions" give the results for a two dimensional data 
set. It can be seen that in the last case the R c and the R m tests do not reject the model, 
while the Rzc and Rz,,, tests are indeed sensitive to the specific model violation that was 
initiated. 

Table 8 gives the observed values of m* and the expected values of m* under the 
marginal model for the one dimensional data set. The column marked "scaled deviance" 
gives the values of (m~ - E ( m * l ~ ,  6))/var (m*t~, t~) 1/2. These values may aid the identifi- 
cation of items which violate the model. For every item i, this can be done by inspecting 
the scaled deviances indexedj = 1 . . . . .  i - 1, i + 1 . . . . .  k. 

The simulation study described here far from exhausts all possible patterns of viola- 
tion of the dimensionality axiom. In fact the simulation study was rather extreme, for in 
practical testing situations the data are almost never generated by two completely inde- 
pendent latent dimensions. Still, the results presented show that test statistics based on 
first order realizations are in some instances insufficient to test the fit of the Rasch model 
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TABLE 8 

E v a l u a t i o n  o f  m~j F o r  T h e  M a r g i n a l  M o d e l  

I j observed expected scaled 

deviance 

1 2 294 292.054 

1 3 205 204.564 

1 4 409 403.051 

1 5 311 295.912 

1 6 199 203.882 

2 3 158 156.959 

2 4 319 309.404 

2 5 224 228.211 

2 6 149 156.420 

3 4 211 216.727 

3 5 168 159.101 

3 6 112 106.688 

4 5 312 313.504 

4 6 223 216.007 

5 6 158 158.556 

-.052 

-.018 

-.055 

3.372 

.786 

.029 

1.842 

.600 

i.iii 

1.149 

1.052 

763 

241 

1 373 

018 

and it may be wise to supplement the testing procedure with a test based on the second 
order realizations. 

7. Discussion 

In the present paper a statistical testing procedure was proposed, which can serve 
both as an overall test of model fit and as a diagnostic tool for identifying violations of 
the Rasch model. The asymptotic distribution of the tests can be derived by making use of 
the well established theory of multinomial testing. Once the relation to this theoretical 
framework is recognized, a generalization of the testing procedure to incomplete designs 
is easily derived. 

The first two tests, R c and R m, are sensitive to differences in the form of the item 
characteristic curves, so these tests have power against the two and the three parameter  
model. The other two tests, Rz~ and R2m, are based on the simultaneous realization of 
answers of a respondent to pairs of items and these tests have power against multidimen- 
sional models. 
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As a final remark it must be mentioned that the present paper is only one more 
contribution to the topic of testing the fit of the Rasch model, other well founded testing 
strategies exist (see for instance Andersen, 1971; and Kelderman 1984). This forms a 
striking contrast with the literature on the testing of model fit for the two and three 
parameter  model. Workers in the field of the Rasch model are at advantage because the 
model is a member  of the exponential family and sufficient statistics for the person 
parameters exist. Still item response theory would be helped a lot if also for the more 
complex models well founded testing procedures would be derived. 

Appendix A: The proof of Theorem 1 

The proof  of Theorem 1 is closely related to the theory of the asymptotic distribution 
of Pearson's Z2 as it is given by Bishop, Fienberg and Holland (1975) and Rao (1973). An 
important  theorem which will be used in the sequel has been proved by Rao (1973, page 
186 and following) and is summarized by Bishop, Fienberg and Holland (1975) in the 
Theorem 14.3-7 and 14.3-8 on page 473. For convenience it is reproduced below. 

Theorem A. Let a be a s-dimensional stochastic variable which has a multivariate 
normal distribution N(0, Z) and Q = a 'Va  for some symmetric matrix V. Then the distri- 
bution function of Q is equal to the distribution function of ~ =  1 fl~ Z2, where Z 2 . . . .  , Z 2 
are independent Z2 variables with one degree of freedom each and fll . . . . .  fls are the 
eigenvalues of B, B = V1/2ZVI/2.  If B 2 = B, all the eigenvalues are either 0 or 1 and the 
number  of degrees of freedom is equal to trace (/3). 

Before using this theorem, it is convenient to write R m in a compact  form. To achieve 
this the following notation is introduced. Let X be a v x t matrix (v = 1/2k(k - 1) + 2 
and t the number of possible response patterns) which is given by 

X = 

"~0 

X1 

X, 

0 

0 S k -  1 
X k 

where X r (r = 1 . . . .  , k - 1) is a matrix with as columns all response patterns leading to a 
score r, x 0 = 1 and x k = 1. In section 2 the t-dimensional vector of frequency counts n was 
partitioned (no, nl . . . . .  nk_ 1, nk). Let ~ = n / N  and let n be the vector of theoretical 
probabilities. D~ is defined as a diagonal matrix of the elements of n, W = X D ~  X '  and 
z = N1/2(~ - ft). Then the model test Rm is given by Rm = (Xz) ' l~ '-  l(Xz). 

Under certain regularity conditions (see Birch, 1964), which are easily shown to be 
fulfilled for the marginal Rasch model, for multinomial models in general the following 
expression holds: 

: )  ) (A1) 

where ---~a stands for convergence in distribution, I t is a t x t identity matrix, L = 
D ~ / 2 A ( A ' A ) - I A ' D ~  1/2 and A is a t x (k + 1) matrix defined by A = D~t/2(dn/dk ' ) ,  k'  = 
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(fit, . . . ,  6 k, a). Using (A1) the asympto t ic  covar iance  matr ix  of  z is given by 

Z = D ~  - n n '  - (D~ - Itit')I:, - L ( D .  - I t s ' )  + L ( D ~  - lm ' ) r . .  

However  A'lt 1/2 = 0, since A'it ~/2 is a vector  with elements 

0r~ x X =0 =0 
{x} 

and so (A2) simplifies to 

(A2) 

Z = D r -- Itit' -- D~/2A(A'A)-  1A'D1/2.__, . (A3) 

The  a sympto t i c  covar iance  mat r ix  of  X z  is equal  to X E X ' ,  so f rom the t heo rem given 
at  the beginning of  this appendix  it follows tha t  R= has  an a sympto t i c  Z 2 dis tr ibut ion if B, 
B = W - I / 2 X Y . X ' W - I / 2 ,  is idempoten t  and  the degrees of  f reedom can be derived by 
identifying trace (B). To .ach ieve  this, a n u m b e r  of  propos i t ions  mus t  be  given first. Let  u 
be defined by u' = (1, 1, 1 . . . . .  1) and  let It' = (no, n't . . . . .  n', . . . . .  Itk- 1, r~k). 

Proposition 1. W,u = rXri t , ,  for r = 1 . . . . .  k - 1. 

Proof. In the main  text, I4:, was defined as X ,  D,~,)X',. Since X~ u = ru by the defini- 
tion of X , ,  D~,) X', u = rD~,~ u = rn, and the result follows. [ ]  

Proposition 2. W,'- IX ,  It, = (1/r)u, for r = 1 . . . . .  k - 1. 

Proof  Follows directly f rom Propos i t ion  1. [] 

Proposition 3. Trace  ( n ' X ' W -  ~ Xit)  = 1. 

Proof. 

k - l  k - 1  1 

trace (it'X', W 7 1 X ,  It,) + ~o + Itt = ~ - trace (n~X',u) + ~0 + nk 
r = l  r = l  r 

by propos i t ion  2, but  the last expression is equal  to ~(x~ nx and  the sum of  all probabi l -  
ities in the model  in one. [ ]  

Proposition 4. D ~ / 2 X ' W -  IXD~/ZA(A'A)-  tA '  = A ( A ' A ) -  IA'. 

Proof. Since D ~ / 2 X ' W - 1 X D  1/2 has a b lock-diagonal  form, which can be given by  
diag (1, T I, T,, Tk- l, 1), with T~ = nl /2  y ,  w -  1 y  nl /2  ;, is suiEcient to  show tha t  

• • • ,  • • • ,  " n { r )  " ~  r " '  r ~ "  r ~ ' n ~ r ) ,  " ~  

T,D~r~(ait,/0)d) = D~(~it , /~k') .  Since T, is idempotent ,  it is a project ion mat r ix  and  its 
I/2 t manifold M(T,) is given by M(D~{,~ X ) [see for instance Rao, 1973, sec. Ic]. 

Using nl/2.,,I/2 u~,~., ,  ---n, and  propos i t ion  2 it can be verified tha t  T, itl,:2= ..,~O/2. But  if 
~t, = exp ( -X~ .6 )  and  g, = S exp (r0Mo(O)e(01~) 00 it follows tha t  It, = g,0t,, so or, t/2 is an 
element  of  M(T~). 

This  can  be used in the following manner .  Let ~(0) be a k-dimensional  vector  with 
elements  exp (~ - 6a)/(1 + exp (0 -- 6i)), i = 1 . . . . .  k. Then  it can  be shown tha t  

O r, ,,,: ,, , , 

= _ r ~ l / 2 y ,  *ta/2a -1/2 f ~ (  exp (rO)po(~)g(~[a) . -~ , ) , .  + , o, 0)' 00. 
$ 
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So both  the terms in the above summat ion  are matrices composed  of  column-vectors  
belonging to M(T,). 

In  the same manner  it can be shown that  

n(r) ~ d t r }  = D ~ 1 / 2 ( a - 3  82Qtr exp  (rS)Po(8)e(81tr) 08  --  t r -Xn , )  

~tl12 a-  l/2rr- 3 ~ 82 ~ll2al/2tr-1 = - ,  o, - exp(rD)P0(8)g(8 I~) dS - _ ,  ~, v , 

which also belongs to M(T,). [ ]  

If B 1 = W - 1 / 2 X l t ~ t ' X ' W  - 1 / 2 ,  B 2 = W-t/2XDI~/2A(A'A)-IA'Dt~/2X'W -1/2 and I v a 

v x v identity matrix, B = I v - BI - B 2 . 
To  use Theorem A, it must  be proved that  B is idempotent.  

Proposition 5. B 2 = B. 

Proof. (I~ - -  B t - -  B 2 )  2 - (I~ -- B 1 - B 2 )  because 

(i). B 2 = B 1 as a consequence of n ' X ' W -  1Xn = 1 (see Propos i t ion  1), 
(ii). B22 = B 2 as a consequence of proposi t ion 4, 

(iii). B t B  2 -- 0, which can be shown by noticing that  It' = n'l/2Dt~/2 and using propo-  
sition 4 and A'n t/2 = 0 in that  order. [ ]  

To determine the degrees of  freedom of the X 2 distribution of  Rm, trace (B) must  be 
identified. 

Proposition 6. Trace (B) = k(k - 2). 

Proof  

(i), trace (Iv) = v = k(k - 2) + 2. 
(ii), trace (BI) = trace ( n ' X ' W - ~ X n )  = 1 (see Proposi t ion  2), 

(iii), trace (B2) = trace (A (A 'A) - IA 'D~t2X 'W-1XD~/2 )  -- (by 
(A (A 'A ) - tA ' )  = trace ( (A 'A)- I (A 'A))  = k + 1. 

Proposi t ion 4) trace 
[ ]  

Theorem 1 can now be proved by using Theorem A. 
F r o m  the well known fact that  

z'15~ Iz--,  z'D~ lz 
a 

(see for instance Bishop, Fienberg & Holland,  1975, p. 515) it follows that  

R~ = (Xz)' ~ ' -  l(Xz)--, (Xz)' w -  X(Xz) 
a 

and Rm has an asymptot ic  g 2 distr ibution because, by proposi t ion  5, B is idempotent  and 
the degrees of  freedom are equal to k(k - 2) by proposi t ion 6. 

This concludes the p roof  of  Theorem 1. 

Appendix B: The proof  of  Theorem 3 

The p roof  of  Theorem 3 generally follows the same lines as the p roof  of  Theorem 1. 
Like the p roof  of Theorem 1, the p roof  will be based on Theorem A, given in Appendix A. 



5 4 4  P S Y C H O M E T R I K A  

However ,  mos t  of  the e lements  used in append ix  A need a sl ightly different  definit ion.  Let  
the vector  of  frequency counts  n be re-defined as (n~ . . . . .  n' r . . . . .  n~,_ 1). The frequency of  
the pa t t e rn  leading to a zero score and  the frequency of  the pa t t e rn  leading to a perfect 
score are  omit ted.  This  is mo t iva t ed  by  the fact that  the cond i t iona l  p robab i l i t y  of  these 

pa t t e rns  equals  one. Suppose  ~' = (n'l/N1, . . . ,  n',/N . . . . . .  n 'k_l /Nk_l)  and n'. = (n'. 1 . . . . .  
r(-k-1), n.,  has  e lements  nx., as defined in (8). Us ing  the results  of  Birch (1964), it  can be 

^ , ~1:2 ~a - ~-k- 1)') converges  to  shown tha t  the  d i s t r ibu t ion  of  z~ = (N I/2(~1 - n. 1 ) , .  . . . . .  t -  1 ~,-k - 1 
a mul t iva r i a t e  no rma l  d i s t r ibu t ion  with expec ta t ion  0 a n d  covar i ance  ma t r ix  

Y,, = V - L V  -- E V  + LVE,, (B1) 

with V a b lock  d iagona l  mat r ix  d i ag  (V l . . . . .  ~ . . . . .  ~ - 1 ) ,  V, = D~., - g.,rc~,, D~., and  n.,  
as defined in sect ion 3. If  D~.. = d i a g  (D~. 1, . . . ,  D~.k_l), L is given by  L =  
D~!2A(A'A)-tA'D~I./2. Let A be pa r t i t i oned  (A 1 . . . .  A . . . . .  A t_ t ) .  If  the no rma l i z a t i on  
61 = 0 is chosen and  6 ' =  (62 . . . .  , 3k) it fol lows tha t  A,  = D~.~/2(dn.,/d6'). H ow e ve r  A', 
It, 1/2 = 0, so (BI)  simplifies to  

E D~.. H~.. Ol/2/ff,4'/l~ - l / I n  1/2 (B2) 

with H~.. a b lock  d i agona l  ma t r ix  d i ag  (n tn  ~ . . . . .  n, n', . . . . .  nk-ln~,-1).  Let  X be defined as  
in append ix  A, only  this t ime x o and  x k are  omi t ted .  Then  R¢ can  be wri t ten as R,  = 
(Xz.) ' l~C-l(Xz) with W = XD~. .X ' .  To use T h e o r e m  A it mus t  be shown tha t  B, B = 
W - t / 2 X Z X ' W  -~/2, is idempoten t .  The  p ropos i t i ons  needed will be indexed by  the same 
number  as the ana logous  p ropos i t i ons  for the marg ina l  case and  proofs  will only  be given 
if they canno t  be easily recovered from their  marg ina l  coun te rpa r t .  

Proposition 1'. W.,u = rX ,  n., for r = 1, . . . ,  k - 1. 

Proposition 2'. W~, lX ,~ . r  = (1/r)u for r = 1 . . . . .  k --  1. 

Proposition Y.  Trace  (n~,X', W.- , IX,  n.,) = 1 for r = 1, . . . ,  k - 1. 

Proposition 4'. 1 / 2  , -- 1 1 / 2  , - I , D ~ . . X W  X D . . . A ( A A )  A = A ( A ' A ) - X A ' .  

Proof. D~(2. X ' W  - IXD~(2. has a b lock -d i agona l  form, d iag  (T  1 . . . .  , T, . . . . .  Tk-1) wi th  
D 1/2 ' W -  1~( Dl l2  T, = _~. ,  X ,  . . . ,  __ ,_~ . , .  Us ing  P r o p o s i t i o n  2' it can  be shown tha t  T,n., = it . , .  I f  8' = 

(61 . . . . .  3k), some c o m p u t a t i o n a l  l a b o u r  will show that  dn.,/t96' = - D ~ . ,  X', + n., n'., X'.  So 
D~-.,~:2(c3r~./d6 ') has co lumns  be longing  to  M(T,) and  the same goes for D~.,1/2(c~n.Jc~k ') with 
k '  = (61, • • . ,  3~- 1). So the pro jec t ion  _~DI/2~"W-IXD1/2..._ _~.. will m a p  A o n t o  A. [ ]  

= I/2~('D1/2 ,eli ' "t- 1 , l ) l l 2 y ,  - t/2 If  B 1 = W - 1 / 2 X H n X ' W  -1/2,  B 2 W -  _-_~ . . . . .  A A,  A - - ~ . . , .  W and  I v is a 

v x v ident i ty  matr ix ,  v = k(k - 1), B is given by  I v - B 1 - B 2 . 

Proposition 5'. B z = B. 

Proof. 
(i). B~ = B t because  B 1 is a b lock  d i agona l  ma t r ix  d i ag  (W.~ 1/2X, n., re'., W.~ 1/2) a n d  

all mat r ices  on  the d i agona l  a re  idempoten t ,  
(ii). B22 = B2 as a consequence  of  P ropos i t i on  4', 

(iii). B I B  2 = 0 as a consequence  of  P ropos i t i on  4'. [ ]  

Proposition 6'. Trace  (B) = (k - 1)(k - 2). 
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Proof. 

(i). t race  (19 = k(k - 1), 
k - 1  

(ii). t race  (B1) = t race  ( X ' W - 1 X H ~ )  = ~ t race (X', WT, t X ,  n.,n'.,) 
l e = l  

k - - 1  

= ~ u ' n . r = k - -  1, 
r = l  

(iii). t race (B2) = k - 1. [ ]  

U s i n g  T h e o r e m  A of  A p p e n d i x  A, Rc has  a n  a s y m p t o t i c  X 2 d i s t r i b u t i o n  as a conse-  

quence  of  P r o p o s i t i o n  5. F r o m  P r o p o s i t i o n  6 it fol lows tha t  the  test has (k - 1)(k - 2) 

degrees of  f reedom. 

A p p e n d i x  C. P r o o f  of T h e o r e m  5 

Let  Y be p a r t i t i o n e d  (Y2 . . . . .  Y~ . . . . .  Yk-1) S uppose  c r = ~.~,~ h. T h e n  every c o l u m n  
in  the  m a t r i x  Yr (r = 2 . . . . .  k - 1) has  c r e l emen t s  equa l  to  one  a n d  all o the r  e l emen t s  are  
zero. Th i s  will be used in  the  ske tch  of  the  p r o o f  of  T h e o r e m  5 g iven  below. T h e  n u m b e r s  

of  the  p r o p o s i t i o n s  c o r r e s p o n d  wi th  the  a n a l o g o u s  p r o p o s i t i o n s  g iven  in  A p p e n d i x  A. I t  

will p rove  c o n v e n i e n t  to  i n t r o d u c e  Y1 = X r 

Proposition 1". W, u = c, Y~ n r for r = 1 , . . . ,  k - 1. 

Proposition 2". W 7 ~ Y~ n r = (1/c,)u for r = 1 . . . . .  k --  1. 

Let Y* be given by  

YI ¥2 . . . . .  Y~-I 

Y 

with  Yl = Yk = 1. If X is rep laced  by  Y* in  the  P r o p o s i t i o n s  3, 4, a n d  5 in  A p p e n d i x  A, 
these p r o p o s i t i o n s  are  still valid.  O n l y  P r o p o s i t i o n  6 needs  some  modi f i ca t ion .  I f  B = 
W - 1 / 2  Y*~ .Y* 'W-x /2 ,  this  p r o p o s i t i o n  m u s t  r ead :  t race  (B) = 1/2k(k - t). Th i s  conc ludes  
the  ske tch  of  the proof.  

References 

Andersen, E. B. (197 I). The asymptotic distribution of conditional likelihood ratio tests. Journal of the American 
Statistical Association, 66, 630-633. 

Andersen, E. B. (1973). Conditional inference and models for measuring. Copenhagen: Mentalhygiejnisk For- 
skningsinstitut. 

Bishop, Y. M. M., Fienberg, S, E, & Holland, P. W. (1975). Discrete multivariate analysis: Theory and practice. 
Cambridge, MA: MIT Press, 

Birch, M. W. (1964). A new proof of the Pearson-Fisher theorem. Annals of Mathematical Statistics, 35, 817-824. 
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: An application 

of an EM algorithm. Psychometrika, 46, 443-459. 
Fischer, G. H. (1974). Einfiihrung in die Theorie psychologischer Tests [Introduction to the theory of psycholo#ical 

tests]. Bern: Verlag Hans Huber. 
Fischer, G. H. (1981). On the existence and uniqueness of maximum likelihood estimates in the Rasch model. 

Psychometrika, 46, 59-77. 
Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223-245. 



546 PSYCHOMETRIKA 

Martin L~f, P. (1973). Statistika ModeUer. Anteckningar frdn seminarier Lasdret 1969-1970 utarbetade av Rolf 
Sunbery obetydligt ~indrat nytryk, oktober 1973 [Statistical models. Proceedings of the Lasgtret seminar 
1969-1970, edited by Roll" Sunberg]. Stockholm: lnstitutet tr6r F6rs/ikringsmatematik och Matematisk 
Statistik rid Stockhotms UniversiteL 

Neyman, J., & Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrika, 
16, 1-32. 

Rao, C. R. (1973). Linear Statistical Inference and its Applications (2rid ed.). New York: Wiley. 
Rasch, G. (1960). Probablistic models for some intelligence and attainment tests. Kopenhagen: Danish Institute 

for Educational Research. 
Rasch, G. (1961). On the general laws and the meaning of measurement in psychology. In J. Neyman (Ed.), 

Proceedings of the Fourth Symposium on Mathematical Statistics and Probability, 4, 321-333. 
Rigdon, S. E., & Tsutakawa, R. K. (1983). Parameter estimation in latent trait models. Psychometrika, 48, 

567-574. 
Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psycho- 

metrika, 47, 175-186. 
van den Wollenberg, A. L. (1982). Two new test statistics for the Rasch model. Psychometrika, 47, 123-140. 
Verhelst, N. D., Glas, C. A. W,  & van der Sluis, A. (1984). Estimation problems in the Rasch model: The basic 

symmetric functions. Computational Statistics Quarterly, I, 245-262. 

Manuscript received 11/12/86 
Final version received 8/13/87 




