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T H E  AREA B E T W E E N  T W O  I T E M  C H A R A C T E R I S T I C  C U R V E S  

NAMBURY S. RAJU 
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Formulas for computing the exact signed and unsigned areas between two item characteristic 
curves (ICCs) are presented. It is further shown that when the c parameters are unequal, the area 
between two ICCs is infinite. The significance of the exact area measures for item bias research is 
discussed. 

Key words: item response theory; item bias, item characteristic curves. 

In item bias research, the area between two item characteristic curves (ICCs) for two 
different groups  is sometimes used as a measure of  item bias ( I ronson & Subkoviak,  1979; 
Shepard, Camiili, & Averill, I981; Shepard, Camilli, & Williams, 1984; Rudner, Geston,  
& Knight,  1980a, 1980b). At the present time, the area between two ICCs is only esti- 
mated, either by integrating the appropr ia te  function between two finite points such as 
- 4 . 0 0  and +4.00 (Shepard et al., 1981), or  by adding successive rectangles of  width 0.005 
between two finite points (Rudner  et al., 1980a, 1980b). One  of  the purposes of  this paper  
is to offer formulas for comput ing  the exact area between two ICCs  for the one-, two-, and 
three-parameter  I R T  models. The other  purpose  is to discuss the significance of  the exact 
area measures for item bias research, including a conceptual  problem for the three- 
parameter  model when the c parameters  are not  equal. 

The Signed and Unsigned Area Formulas  

Let Fl(O ) and F 2 (0) represent two ICCs  which, in the three-parameter  model,  can be 
expressed as 

Fi = FI(O) = ct + (I -- Cl)P 1 (I) 

F 2 = F 2 (0) = C2 + (1 -- c2)P 2 (2) 

where 

exp ( D a l ( O  - bx) ) 
PI  = PI(0) = 1 + exp (Dal(O --  bl )  ) '  (3) 

exp (Da 2 (0 --  b2) ) 
P2 = P2 (0) = 1 + exp (Da z (0 --  b2) ) '  (4) 

a f, bi, and c~ are the three item parameters  for t h e / t h  ICC,  and D is a scaling constant ,  
usually set to  1.7 to equate the logistic ogive to approximate ly  the normal  ogive (Lord, 
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1980). Fur thermore,  let the signed and unsigned areas be defined as 

f o Signed Area (SA) = (F I -- F 2) dO, (5) 
0o 

f o Unsigned Area (UA) = I Fl -- F2 [ dO. (6) 

The SA is also referred to as the difference between two curves whereas the UA as the 
distance. Because of  their popular i ty  in the item bias literature, the SA and UA nota t ions  
will be adopted  here. In  evaluat ing the integrals in Equat ions  5 and 6, two different cases 
will be c o n s i d e r e d - C a s e  I :  c = cl = c 2 and  Case I I :  c~ ~ c 2. 

Theorem 1: Case I. 
a~ # a 2 and the restriction that c = c~ = c 2 . Then 

SA = (1 - c)(b 2 - bx) 

, [ 2 ( a 2 - - a x )  ( ( D a a a 2 ( b z - b l ) ) )  bl) 
U A = ( 1 - - O ] - ~ a T a  7 In l + e x p \  . . . . . .  a 2 - - a x  (b 2 -  

Proof 
expressed as 

Let F~ and F 2 represent two ICCs  with the st ipulation that  

(7) 

(8) 

Since c, = c 2, the two ICCs  must  intersect at a point,  0o, which can be 

a2 b2 - alb 1 
O0 = (9) 

a 2 -- a 1 

In fact, 0 o is the only finite intersection point. Now,  to evaluate SA and UA, the appropri-  
ate integrals can be written as 

SA = f~_~ (F1--  F2) d O = ( 1 - - c )  f~oo (P1--  P2) dO 

= (1 --  c) (P~ - -  P2) dO + (P1 - P2) dO 
0 

(lO) 

o r  

where 

SA = (1 -- c)[l 1 + 12] 

I1 -- (P1 -- P2) dO 

f 12 = (P l  --  P2) dO 
o 

[I:i f ] = ( l - - c )  ] P t - P 2 ] d O +  [ P 1 - - P 2 ] d O  
0 

(11) 

(12) 

(13) 

(14) 
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Since F 1 and F2 intersect at only one finite point and since this must also be true of P1 
and P2, if P~ - P 2  is positive in the open interval (--oo, 00) , then P 1 -  P2 must be 
negative in the open interval (00 , ~) .  Therefore, 

I PI - P 2 [  = Pt -- P2 when 0 E (-- 0% 0o) 

I PI - P21 = --(PI -- P2) when 0 E (0o, ~ )  

Hence, the integral for UA for this case can be written as 

[f,o f. 1 (1 - -  c)  (P1  - -  P 2 )  dO - ( P 1  - -  P ~ )  d O  = (1 - -  c ) [ l  I - I 2 ] .  ( 1 5 )  
ct~ o 

If, on the other hand, P~ - P2 is negative in the open interval ( - ~ ,  00) and positive in 
(0 o, ~) ,  then 

1PI - P2t = - ( P I  - e2) for 0 e ( -  00, 00) , 

I PI - P21 = P1 - P2 for 0 ~ (00, ~) .  

Therefore, for this case, the integral for UA can be written as 

o f 
( l - - c )  - -  ( P 1 - P 2 )  d O +  ( P I - P 2 )  dO = ( 1 - c ) ( - 1 ) [ 1 1 - 1 2 ] .  ( 1 6 )  

0 

Combining (15) and (16), a single, general expression for UA can be written as 

UA = (1 -- c)lI~ -- 121. (17) 

Therefore, in order to prove Theorem 1, only 11 and 12 need to be evaluated. The integral 
11 can be rewritten as 

f' I 11 = lim (PI -- P2) dO 
X ~ o O  - -  

= lim In (1 + exp (Dal(O -- bl))) - - -  
X ~ c O  

__ ].o 
1 In (1 + exp (Da 2 (0 -- b2))) 

Da2 - x 

I (  1 + exp (Daj(Oo -- bl)))~/°"~ 7 I(~l + exp ( D a t ( - - x - -  bt)))l /m17 
= I n  (i - ,-exp(Da2(0 0 ~2m _l . . . . . . .  r ~ - 2 ~  x ~2m A ......... __ h ~I11)a21- lira in - - -  - -  

(18) 

It should be noted that a l ( O  o - bl) = a 2 (0 o - 82) since 0 o is the finite intersection point of 
P~ and P2. Therefore, the first term in (18), in view of(9), can be written as 

B = a-2 ~al In ( IDala2 +exp(Da'a'~2(b'--2sbt!))\ a2 - a, . (19) 

Rewriting the second term of(18)gives 

I~_~ exp ( 1 - - D a l b , ) ~ t / ° ' q  

(i + exp / d 
~im In + exp (-- Do E b2)~ 1/Da~ i 

exp (Da 2 x) ,,I d 
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In order  to evaluate  this limit (as well as o ther  limits tha t  we will encounter  later), 
certain theorems abou t  limits are presented wi thout  proofs.  Let  f and  # be any  two 
functions and let f(g(x)) be the compos i te  function. Fur the rmore ,  let f(x)---, A as x - - ,  
and g(x)--~B (B 4: 0) as x--~ ~ .  Then,  f (x) /g(x)-*A/B as x---* oo and f(g(x))--,f(B) as 
x--* oo. (Proofs of  these theorems can be found in mos t  calculus texts.) In  view of these 
limit theorems,  the limit of  the above  equat ion can be wri t ten as In (1) - 0. Therefore,  
I~ = B - 0 = B. To  evaluate  the second integral, I z can  be writ ten as 

1 2 =  lim l n E (  ~ + e x p ( D a t ( x - - b O ' ) ' / m ' l  l n [ ( ~ l + e x p ( D a ' ( O ° - - b O ' ) " ° " l  (20) 
x -  oo + exp (Oa z (x -- bz)))'/°"2J -- + exp ~ Z b2))),/o,,,J" 

Based on the preceding discussion, the second te rm in (20) equals B. The  first te rm in (20) 
can be rewrit ten as 

I ~  " exp (x = b " ]  
'(1 + exp (na,(x -- bO)) '/°°' exp (x -- b , ) ]  

lim In - -  - -  exp (x_~ ~2) 1 
x - ~  + exp (Da 2 (x - -  b2))) l/Da2 exp (x - -  b2)J 

P U  =x-~lim In (1)1/oa2 +(b2-b0" 

Since P~-- ,  1 and  P2----~ 1 as x - - ,  o% 1 2  in (20) can be writ ten a s  1 2  = ( b  2 - b 0  - B. Based 
on (11), the signed area  is 

SA = (1 -- c)[l I + la]  = (1 -- c)[B + (b2 - b 0  - B] = (1 -- c)[b a -- bx]. (21) 

The unsigned area  can be writ ten as 

UA = ( 1  - c ) l t l  -- 121=(1  - c ) 1 2 B - - ( b 2 - b 0 1  

= ( 1 - c ,  I2(az--al)  2 +exp(Dalaz(b--2~bl)))--(b2--bOl.\ a2 _ al 

This completes  the p roof  of  Theo rem 1. 

(22) 

[ ]  

Lemma. Let F~ and F 2 represent  two ICCs with the restrict ions tha t  a~ = a 2 and 
c = c ~ = c  2 . T h e n  

SA = (1 -- c)[b 2 -- b l ]  (23) 

UA = (1 - -  c ) l b  2 - b 11. (24) 

Proof. The p roof  of  this l emma  is very similar to the p roof  of  T h e o r e m  1 with the 
expcept ion that  0 o is any  arb i t ra ry  point  between - ~ and  + ~ .  Unl ike  in T h e o r e m  1, F 1 
and F 2 in this l emma  do not  have a finite intersection point  because a I = a 2 and  b~ # b 2 . 
Therefore,  the expression for B in (19) will be different but  still finite for any  arb i t ra ry  
point  between - o ~  and + ~ .  Fur thermore ,  since Pa and  P2 do  not  intersect a t  a finite 
point,  integrals I~ and  12 (as given in Theorem 1) are bo th  either posit ive or  negative. 
This, in turn, implies that  UA = (1 - - c ) l I ~  + I21. These special considerat ions,  when 
incorpora ted  into the p roof  for T h e o r e m  1, establish the validity of  (23) and (24). [ ]  
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o r  

Corollary 1. Let Pt  and P2 represent two ICCs in the two-parameter  model. Then  

S A  = ( b  2 - -  ba) (25) 

1 2 ( a 2 - - a O l n  (1 + e x p ( D a a a - ~ ( b - " ~ 2 - - b l ! ) ) - ( b 2 - b O l  ifa~ ~ a  2, (26) 
UA = Dalaz \ a 2 - a~ 

U A = I b  2 - b  11 i f a  l = a  2. (27) 

Corollary 2. For  the Rasch model  (Wright & Stone, 1979), the unsigned and signed 
areas between two ICCs are 

SA = (b 2 - bl) (28) 

UA = I b 2 - b 1 I. (29) 

The proofs of  Corol lary  1 and Corol lary  2 are s traightforward and are therefore omitted. 
Having presented the signed and unsigned areas for Case I and its special cases, let 

us now turn to Case II where c 1 ~ c 2. 

Theorem 2: Case II. Let F 1 and F 2 represent two three-parameter  ICCs with 
cl ~ c2. Then the signed area is + oo or - ~ ;  the unsigned area is + ~ .  

Proof  
between the two (three-parameter) ICCs can be written as 

- -  f : ~ o  ( E l  - -  F 2 )  I dO 

= ( F  l - -  F2) dO + (F 1 - -  F2) dO 
-- 0 

I = 11 + 12 . 

The integral 12 can  be written as 

12 = lim (F 1 -- F2) dO 
x ~ m  o 

= lim [(c I - c2) + (I -- cl )P 1 - (1 - c2)P2] dO 

I 1 -- c 1 
---- lim (c 1 -- c2)0 + In (1 + exp (Dal(O -- bO) ) 

x -  ~ Oal 

1 
(1 + exp (Da z (0 -- b2)))l ~ 

C 2 
In 

Da2 Oo 

I (1 + exp (Dal(......~O--b0)) ~l -,.,~/mt ].,- 
= x~olim (c 1 -- c2)0 + In (1 + e~p (Da2 (0 - b2))) {'-'---q -c---2~/°"--Slo,, 

Let 0 o be any arbi t rary point  between - ~  and + ~ .  Then the signed area 

(30) 

(30 

(32j 
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F o r  de r iva t iona l  conven ience ,  let 

G(O) = 
(1 + exp  (Dax(O -- bx))) (l-ct)/°°~ 

(1 + exp  (Da 2 (0 - -  b2))) (x -C2)]Da2 

/ ((1 Cl)(0 b l ) )~  
(1 + exp  (Dal(O --  b0))  (1-c ' ) /D° ' [  exp  

1 

\ e x p  ((1 ez)(a bx)) / 

"'o / e x p  ((I --  c2)(0 --  b2))~ 
(1 + exp  ( D a  2 (0  - -  b2))) (1 -c2,/ a 2 [ _ _  

\ e x p  ((1 - c2)(0 - -  b 2 ) ) f  

1 ~(1 -Cl)/Dal 

1 -~2)w.2 exp  [(1 --  cO(O - b l )  - (1 - c2)(0 - b2) ]. ),1 
p- j 

(33) 

U s i n g  the  def in i t ion  of  G(0), 12 c a n  be rewr i t t en  as 

12 = l im [(c 1 - c2)x + In G(x)]  - (cl - c2)00 - In G(O0). 
X ~ o 0  

Since Px---~ 1 and  P2---~ 1 as  x--* 00, 

l im [(c I - c2)x + In G(x)] = b 2 (1 - c2) - bt(1 - cx). 
X --~  oO 

Subs t i t u t i ng  this in (34) yields 

12 ---- b 2 (1 -- c2) -- bx(1 - e l )  - (c x - c2)00 - In G(O0), 

which  is finite. T u r n i n g  n o w  to  11 , it shou ld  be  n o t e d  t ha t  

Yl 11 = lira (F 1 --  F2) dO 
x ~ o O  - -  

I (1 + exp  (Dat(O -- bx))) 
1 C_...~I 

= i i m  (cx - c2)0 + D---a: In 

1 
(1 + exp  (Da 2 (0 --  b l ) ) ) T  ° 

C2 
In 

D a 2  d - x  

(34) 

I 1 -- c x In (1 + (Dal(O o --  bx))) = (ct  - c'-~O__o + exp  
D a l  

1 
(1 + exp  (Oa2(O o --  b2))) 1 

C2 
In 

Da2 

I (1 + exp  ( D a t ( - - x  --  bt))) 
1 C 1 

- - l i m  (c 1 - c 2 ) ( - x ) +  D a l  In 
X ~ o O  

1 
(1 + exp  ( O a 2 ( - - x  b2))) ] .  

i C2 
- - -  I n  

Da2 

In  the  a b o v e  equa t ion ,  the  first p a r t  is finite w h e r e a s  the  l imit  o f  the  s econd  p a r t  equa l s  
(c x - c2) ( -  ~ )  since 

exp  ( - -  Da,  b,) 
lira exp  (Da~ ( - x  --  b3) = l im = O. 
. . . . . .  e x p  (xDal)  
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Therefore, 

I1 = F(cl - c 2 ) 0 o  + 
k 

1 - c 1 In (1 + exp (Dal(O o - bl))) 
Da  I 

1 -t C2 
In (1 + exp (Da 2 (00 - b2))) / + (cl - Cx)~. 

Da 2 J 

Unless c I = c 2, I t will be either - o o  or oo. Hence, in (31), 12 is finite, whereas 11 is 
infinite. This completes the proof  for the signed area. Since by definition (see (5) and (6)) 
the unsigned area is always greater than or equal to the signed area, the unsigned area in 
the present context must be oo. This completes the proof  of Theorem 2. [ ]  

Discussion 

All the area formulas assume that the item parameters for the two groups are on a 
common metric. Procedures for converting two sets of item parameters to a common 
metric are given in Hambleton and Swaminathan (1985). 

Just as the estimated item parameters are likely to vary from one sample to the next, 
the signed and unsigned areas (when based on estimated item parameters) will also vary 
from one sample to the next due to sampling error. This variation could be severe at 
times, especially if the size of the sample used for estimating item parameters is small. 
Standard error formulas, which are not currently available, will be needed to assess the 
degree of variation to be expected in area estimates when such estimates are derived from 
estimated item parameters. The asymptotic procedures adopted by Oosterloo (1984) for 
establishing confidence intervals for test information function and relative efficiency may 
prove useful in developing formulas for standard errors for the area estimates. 

When the lower asymptotes are equal, the area between two ICCs is finite, which can 
be evaluated readily with the formulas developed in this paper. The procedures of Rudner 
et al. (1980a, 1980b) and Shepard et al. (1981, 1984) also provide estimates of the area 
between two ICCs, but their estimates are obtained by integrating between two finite 
points on the theta scale. Their estimates will be smaller (and, at times, substantially 
smaller) than the area estimates given in this paper. For  illustration, consider the example 
given by Linn, Levine, Hastings, and Wardrop  (1981), where a I = 1.8, bl = 3.5, ct = .2 for 
Group  1 and a2 = .5, b2 = 5.0, and c 2 = .2 for Group  2. Based on (7) and (8), the signed 
and unsigned area are 1.200 and 1.415, respectively. If integrated between - 3  and + 3 on 
the theta scale, then the S A  and U A  are --.106 and .107, respectively. For  this example, 
the areas based on (7) and (8) are substantial and are consistent with the fact that the 
differences in item difficulty and item discrimination are also substantial. On the other 
hand, the area estimates based on a finite interval ( - 3 ,  + 3) of integration are quite small, 
which prompted L inne t  al. (1981) to question the suggestion of item bias based on a large 
difference in estimated item difficulty or item discrimination. This example raises an 
important  question about  the estimation and use of the area between two ICCs as a 
measure of item bias: What  is the appropriate  score interval for computing the area 
between two ICCs? 

On the one hand, the use of the entire theta scale range in computing the area 
between two ICCs removes the arbitrariness associated with defining a finite interval for 
integration. Also, the resulting areas will more accurately reflect the differences in the item 
parameters. Furthermore, given the item parameter  invariance, any area measure used for 
identifying item bias must reflect the lack of invariance when it exists. The infinite interval 
approach would accomplish this; whereas, in the finite interval approach, it would depend 
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upon the finite interval chosen for integration. On the other hand, as noted by I. W. 
Molenaar (personal communication, February 18, 1987) and two anonymous reviewers, 
the difference between two ICCs is more relevant in an ability region where there are 
more than just a few persons. This perspective argues in favor of a finite interval for 
integration but it also implies the need for an appropriate density function for 0(0(0)). 
With #(0) properly specified, one can compute the area between two ICCs by integrating 
the function: (F 1 -- F2)#(0). Such a theoretically appealing approach will emphasize the 
ability region of interest while performing the integration on the entire theta scale. (It 
should be noted that the existing procedures for estimating the area between two ICCs 
implicitly assume that the density function for 0 is uniform.) Both the specification of g(O) 
and the integration of (FI -- F2)g(O ) are important questions for future research, and, as 
noted by Molenaar, the work of Bock and Aitkin (1981) may prove to be useful for 
solving the integral in this context. 

Finally, Theorem 2 states that when the lower asymptotes are not equal, the area 
between two ICCs is infinite. This means that the current (finite interval) procedures for 
estimating the area between two ICCs with unequal lower asymptotes yield misleading 
results. For the area measure to be meaningful and valid, it must be finite and its estimate 
fairly accurate. Neither requirement is satisfied for these procedures when the lower 
asymptotes are unequal. One possible solution for this problem is to specify an appropri- 
ate density function for 0 and use it to evaluate the area between two ICCs. As noted in 
the preceding paragraph, research is needed to assess the viability and practicality of this 
solution. In the meantime, practitioners may want to use Lord's chi-square test (Lord, 
1980) for item bias analysis within the context of the three-parameter model. 
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