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Factor analysis and principal component analysis are usually followed by simple structure 
rotations of the loadings. These rotations optimize a certain criterion (e.g., varimax, oblimin), 
designed to measure the degree of simple structure of the pattern matrix. Simple structure can 
be considered optimal if a (usually large) number of pattern elements is exactly zero. In the 
present paper, a class of oblique rotation procedures is proposed to rotate a pattern matrix such 
that it optimally resembles a matrix which has an exact simple pattern. It is demonstrated that 
this method can recover relatively complex simple structures where other well-known simple 
structure rotation techniques fail. 
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Factor analysis (FA) and principal component analysis (PCA) are popular methods 
for the exploratory analysis of a data set consisting of observations on (many) variables. 
The solutions of both methods are partly undetermined. Specifically, the factors are 
determined up to a (possibly oblique) rotation only. The pattern matrix, with loadings 
of the variables on the factors, is likewise determined up to a transformation. To 
eliminate this indeterminacy, the factors are usually rotated such that the correspond- 
ing pattern becomes as simple as possible, thus facilitating interpretation of the solu- 
tion. Here "as  simple as possible" is defined as using per variable a minimum number 
of factors to account for it. 

Many proposals for finding transformations that optimize the degree of simplicity 
(parsimony) of the solution have been made. They are usually called simple structure 
rotations. Some of these, like Kaiser's (1958) well-known varimax rotation, are limited 
to orthogonal rotations. However, there are many situations where requiring factors to 
be orthogonal is unnatural (see, Mulaik, 1972, pp. 224-227). Therefore, oblique simple 
structure methods are called for. The earliest oblique rotation methods, like Carroll's 
(1957) oblimin family of methods, were directed at finding a simple structure for the 
so-called reference factors. One reason for choosing to rotate the reference structure 
rather than the pattern itself to optimal simplicity may have been the mathematical 
complexity of the problem of the oblique rotation of a pattern: In order to retain the 
factors normalized to unit length, the pattern transformation matrix T has to be con- 
strained such that Diag (T -1T -1 ') = I (e.g., see Mulaik, p. 308). However, as pointed 
out by Jennrich and Sampson (1966), "Since the reference factors seem more like 
mathematical abstractions than variables of primary interest, an interest in simple 
reference structure seems a little strange" (p. 313). They proposed to apply the oblimin 
criteria to the pattern matrix directly, and solved the mathematical problems associated 
with such a rotation. Other "direct" oblique rotation methods are the Promax rotation 
(Hendrickson & White, 1964), and the orthoblique rotations (Harris & Kaiser, 1964). 
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The above mentioned rotation methods aim at optimal simplicity of the pattern as 
measured by certain simple structure criteria. For instance, quartimin (the simplest 
member of the oblimin family) finds the oblique rotation for which the sum of all 
cross-products of squared loadings (pattern elements) is minimal. Alternatively, the 
varimax criterion maximizes the sum of variances of squared loadings on the factors. 
The orthoblique methods are usually based on a varimax rotation or on other rotations 
from the orthomax family (see, e.g., Clarkson & Jennrich, 1988), combined with a 
column weighting procedure. The oblimin and orthomax criteria can be considered 
indicators of "pattern simplicity" in that it can be proven that the measures reach their 
optimum for simple patterns where each variable is associated with only one factor 
(that is, each variable has "complexity" one). However,  it is not clear in what sense 
these criteria measure the "degree of simplicity" or the "deviation from simplicity" in 
cases that are less ideal. In addition, for patterns that are simple but do not have 
complexity one for each variable, the oblimin and orthomax measures need not be 
optimal. A clearer measure for simplicity, or rather, for the deviation from simplicity is 
the deviation of an obtained rotated pattern matrix from a truly simple pattern matrix. 
In fact, the Promax method employs such a measure in its second step. That is, after 
Promax has found an approximation to a truly simple pattern (based on the varimax 
rotated pattern matrix, the normalized elements of which are taken to some high power, 
while signs are left unaffected), in the second step Promax performs an oblique Pro- 
crustes rotation of the original pattern toward this approximately simple pattern. 

Although the Promax approach is appealing, it has at least two drawbacks. Firstly, 
the matching procedure by Hendrickson and White (1964) is not optimal subject to the 
constraint Diag (T -1T -1 ') = I. This constraint is enforced only after the target rota- 
tion is computed. Secondly, the procedure for obtaining the target depends on finding 
a good simple structure of the pattern in advance. Using just an orthomax rotation, or 
even iterative promax procedures like the one by Digman (1966; see Mulaik, 1972, 
pp. 302-304) may produce a useful target pattern, but these procedures do not guar- 
antee to yield, either the most simple target, or, among a set of equally simple targets, 
that target that can be approximated best by a rotated pattern. 

In the present paper, we propose a modification of the Promax procedure in which 
a simple target matrix and the target rotation are found simultaneously. As pointed out 
by an anonymous reviewer, a similar approach has been developed earlier by Shiba 
(1972), although that study is restricted to orthogonal rotations. Unfortunately, no 
sources describing this method seem to have appeared in English. In the present paper, 
it is proposed to find among all simple target matrices that have a specified number of 
zero elements, that target matrix that can be approximated best by a rotated pattern 
(henceforth called the "bes t"  simple target matrix), thus offering a solution to the 
second problem of the original Promax procedure. It should be emphasized that this 
procedure does not rely on a subjective choice of the target, but that the target is the 
(objectively) best simple target with a specified number of zeros. To avoid the first 
problem of the original Promax procedure, it will be ensured that the target rotation 
procedure is optimal subject to the constraint Diag (T - l  T -1 ') = I. It will be shown 
that the new rotation method finds that oblique rotation that gives the minimal sum of 
squares for the p smallest (in the absolute sense) elements of the pattern, where p is to 
be specified by the user. In this way, the method can be seen to MAXimize the 
SIMPLicity of the rotated pattern (for given p). Therefore, the method is called 
SIMPLIMAX rotation here. By comparing results for different values of p,  we can find 
the solution(s) that have most elements close to zero (e.g., smaller than .05 in the 
absolute sense). Thus, several SIMPLIMAX analyses can help find the simplest avail- 
able solution. 
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The present paper starts by describing an algorithm for SIMPLIMAX rotation. 
Then, the performance of the SIMPLIMAX rotation on artificial data sets (with known 
truly simple patterns) is studied. Next, some guidelines are given as to how the number 
p can be specified, and these are illustrated by an analysis of the well-known Box Data 
(Thurstone, 1947). The latter analysis also serves to demonstrate that SIMPLIMAX 
finds the (in this case) known simple structure, whereas five well-known other simple 
structure rotation techniques fail to do so. The remainder of the paper is devoted to 
constrained versions of the SIMPLIMAX method. These methods are designed for 
situations where it is useful to specify the desired complexity for each variable in 
advance. It is shown that the SIMPLIMAX rotation method can easily be modified to 
allow for such constraints. The method for rotation to an optimal target with complexity 
one for each variable is also illustrated by an exemplary analysis. 

An Algorithm for SIMPLIMAX Rotation 

The problem to be solved by SIMPLIMAX rotation is that of finding the truly 
simple target matrix with p zero elements that can be approximated best by a rotated 
pattern matrix (the "bes t"  simple target). If the position of the zero elements were 
known, we would deal with the situation handled by Lawley and Maxwell (1964), 
Jfreskog (1965), Gruvaeus (1970), Browne (1972b) and Kashiwagi (1989). However, 
none of these procedures determine which elements should be taken zero. In 
SIMPLIMAX, we do not only need to perform a target rotation, but also to determine 
the best positions of the zero elements (i.e., those leading to the best simple target). 
Explicitly, let P(m × r) be a given (orthogonal) pattern matrix, T(r × r) the pattern 
transformation matrix, and G a target pattern matrix which has at least p zero elements. 
Then, SIMPLIMAX minimizes 

G) = IIPT- GII 2 (1) 

over T subject to Diag ( T - I T  -1 ') = I ,  and over all matrices G that have p zero 
elements and (mr - p)  arbitrary elements. Note that the target employed here differs 
from the one used in Promax in that it has many elements that are exactly 0 rather than 
close to zero, and in that it is determined through the minimization process itself rather 
than in advance. 

To handle the above minimization problem, we introduce an auxiliary set of (in- 
dicator) parameters as follows. According to the constraint, G has (at least) p zero 
elements. To indicate which elements are constrained to be zero and which are not, we 
use the m x r binary indicator matrix W which has p zero elements at the positions of 
the p zero constrained pattern elements, and unit elements elsewhere. The positions of 
the zero and unit elements in W have to be determined by the minimization procedure 
itself. Therefore, the matrix W can be viewed as an auxiliary set of parameters in the 
loss function. Then, writing aq for element (i, j) of PT,  the function to be minimized 
can be written as 

~(T, G, 
m r 

w) = E E (ao-  wo.go) 
i=l j=l 

tn r m r 

= E E (1 - + E E wo(ao - g u )  
i = I  j : l  /=1 j = l  

(2) 
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where the first term on the right-hand side pertains to the elements of G that are 
constrained to zero, and the second term pertains to the unconstrained elements of G. 
We can now eliminate G from the problem by minimizing ~ over G, as is done by taking 
g 6  = a i j  i f  w u  = I ,  a n d  g i j  = O i f  w i j  = 0, for i = I . . . . .  m ,  j = 1, . . . ,  r .  Then 
it remains to minimize 

m f 

f(T, W)=  Z ~] ( I -  w i j ) a ~  (3) 
i = l  j = l  

over T subject to T' T = I and over W subject to the constraint that it has p zero and 
m r  - p nonzero elements. It follows that the T and W that, together with G chosen 
such that 9 i j  = w i j a i j ,  i = 1 . . . .  , rn ,  j = I . . . . .  r ,  minimize ~r(T, G, W) also 
minimize fiT, W). Hence, the T found by minimizing (3) is the same as that that would 
be found by minimizing (2). Therefore, from now on we will only consider the problem 
of minimizing (3) over T and W. 

To minimize (3), it is proposed here to alternately minimize f over W for given T, 
and over T for given W. First, we consider the minimization of fiT, W) over W, that 
is, the procedure to determine the best positions of the zero elements. Because w i j  is 
constrained to be either one or zero, the minimum of f(T, W) is found by determining 
the p smallest values of a 2 and setting the associated elements w i j  of W equal to zero, 
and the others equal to one. It can be seen now that, according to formula (3), 
SIMPLIMAX rotation optimizes a straightforward measure for simplicity of a pattern: 
It minimizes the sum o fp  smallest squared elements of P T  over T and W. 

The problem of minimizing (3) over T, for given W, subject to the constraint 
Diag (T-1 T-!  ') = I, has been solved by Browne (1972b). Browne's method minimizes 
the more general function Y.m 1 Y-f=1 (I - w i j ) ( a i j  - b i j )  2 , where bi j  denotes fixed 
values of a given target matrix. His function reduces to (3) in case all these fixed values 
equal zero. Browne's procedure for minimizing this function consists of a series of 
rotations of single columns of loadings in a plane. Each such rotation decreases the 
function value (or at least does not increase it). Cycling through all possible planes, and 
repeating this procedure until the function value does not decrease considerably any- 
more, we have an algorithm for minimizing (3) over T for fixed W. Alternately mini- 
mizing f over W considering T fixed, and over T considering W fixed, we can decrease 
the function value of (3) until convergence of the function value. Rather than actually 
minimizing f over T (considering W fixed), we can use just one complete cycle of planar 
updatings of T (which also decreases the function value), then turn to updating W, then 
perform one cycle for updating T again, etcetera, until convergence. 

It should be noted that the algorithm requires an initialization for T. A simple 
choice is to choose T = I, or to choose a random T satisfying the constraint on T. Other 
useful choices can be obtained from the solutions for T from other simple structure 
rotation techniques. Such starts are usually referred to as "rational starts". Because 
the algorithm is rather sensitive to hitting local optima (as will be seen below), it is 
advised to use many different (among which several random) starts for T in one 
SIMPLIMAX analysis; the one giving the lowest function value is then considered as 
the actual SIMPLIMAX solution, and it is hoped that this indeed is the global minimum 
of the loss function. A computer program using the above algorithm and a procedure for 
using random restarts can be obtained from the author. 
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Analyses of Artificial Data 

To test the SIMPLIMAX rotation method, 40 truly simple pattern matrices were 
constructed. The first 20 pertained to m = 20 variables and r = 4 factors, the last 20 
to m = 30 variables and r = 5 factors. In all cases each variable was associated with 
at least one factor, and with each factor at least m/r variables were associated. The 
remaining pattern elements were determined in a random fashion. All nonzero pattern 
elements exceeded 0.25, so that they can be distinguished clearly from the zero values. 
For the first ten 20 × 4 pattern matrices the variables had complexity 1.5 on the average 
(p = 50); in the second series of 20 × 4 patterns the variables had complexity 1.75 on 
the average (p = 45). For the first ten 30 x 5 pattern matrices the variables had 
complexity 1.5 on the average (p = 105), for the last ten they had complexity 2 on the 
average (p = 90). 

Each of the above described pattern matrices was scaled rowwise such that R = 
pd~p' was a correlation matrix, where • denotes a factor correlation matrix determined 
by drawing a random sample of 100 observation units with scores on r (four or five) 
factors. Next, a principal components analysis was used to obtain, for each correlation 
matrix, an orthogonal pattern (for the right number of factors). The above procedure 
ensured that the resulting 40 unrotated pattern matrices could be transformed into a 
truly simple pattern matrix (with 50, 45,105, and 90 zero elements, respectively). A first 
purpose of the present simulation study is to verify whether the new rotation method 
indeed recovers these truly simple patterns. If it does not, this must be attributed to the 
local minimum problem of which the method may suffer. 

In each analysis we used one rational start for T (based on normalized varimax) and 
20 random orthogonal starts. For each analysis we considered the iterative process to 
have converged if either the difference between function values of two consecutive 
cycles differed by less than .001%, or if the function value dropped below 10 -7. To 
avoid very long computation times each analysis was allowed a maximum of 100 iter- 
ations, but this maximum was reached only occasionally. 

For all twenty 20 x 4 patterns, and for the ten 30 x 5 patterns with p = 105, the 
truly simple pattern was recovered by at least one of the 21 analyses. For the ten 30 x 
5 patterns with p = 90, the truly simple pattern was not recovered in three cases. 
Apparently, more (randomly started) analyses are needed to obtain the global minimum 
for data with this fairly high complexity and size. More detailed insight in the local 
minimum problem can be obtained from Table 1, which lists the average numbers of 
local minima in percentages, both for the analyses where a random start was employed, 
and for those where a rational start was used. It should be noted, however, that the 
SIMPLIMAX method itself (incorporating all runs from different starting positions) hit 
a local optimum in only 3 out of 40 cases. 

A second purpose of the present study is to compare the SIMPLIMAX method to 
some well-known direct rotation methods: Normalized Varimax, Promax (using the 
power four), Harris and Kaiser's Independent Cluster Rotation (Harris & Kaiser, 1964, 
pp. 356-360; denoted as HKIC), Harris and Kaiser's orthoblique rotation with M taken 
to the power ½ (Harris & Kaiser, p. 361; denoted as H K M  1/2), and Direct Quartimin. 
Specifically, the main question of interest was to what extent the truly simple pattern 
was recovered. To compare the resulting rotated matrices with the associated truly 
simple pattern, the columns of the resulting matrices were permuted and reflected to 
optimal congruence with the truly simple pattern. Next, the positions of the p smallest 
(in the absolute sense) elements of the rotated patterns were determined, and an asso- 
ciated indicator matrix was computed. This indicator matrix was compared to the true 
indicator matrix, and the number of differences was considered as a crude but simple 
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TABLE 2 

Average Misfit Values For Five Simple Structure Rotation Techniques 

(Number of Cases Without Errors Parenthesized) 

m r iv Normalized Promax HKIC HKM 1/2 Direct 

Varimax Quartimin 

20 4 50 1.2 (7) 1.0 (S) 1.3 (7) 1.1 (7) 1.2 (8) 

20 4 45 8.5 (0) 6.1 (2) 2.6 (4) 3.6 (4) 7.8 (2) 

30 5 105 5.2 (2) 1.2 (8) 0 (10) .2 (9) 0.4 (9) 

30 5 90 25.5 (0) 19.3 (0) 8.4 (1) 12.4 (1) 13.0 (1) 

measure of  "misfit" of the rotated pattern solution. It should be noted that a misfit 
value higher than one implies that the obtained pattern differs substantially from the 
truly simple one in that a variable is associated with a different factor, so all deviations 
pertain to differences that are more than just small size differences. Table 2 lists the 
average numbers of misfits in the four conditions for the five methods. Clearly, there 
are many instances where all methods fail to find or even approximate the available 
truly simple pattern, especially in cases with average complexity higher than 1.5. Con- 
sidering that SIMPLIMAX (as the method incorporating 20 runs from random restarts) 
obtained the truly simple pattern in all but 3 cases (as was found above), it can be 

TABLE i 

Percentages  of  Local Minima for  SIMPLIMAX Rotat ion of  

Four Types of  Contrived Pat tern  Matrices 

m r p Random Start  Rational Start  

20 4 50 61.0 % 20 % 

20 4 45 86.5 % 60 % 

30 5 105 54.0 % 20 % 

30 5 90 96.0 % 100 % 
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concluded that the new method does a much better job in recovering truly simple 
patterns, especially in cases where the complexity is considerably larger than one. 

Choosing the Number of Zero Pattern Elements in the Target 

In practice, the number p of (near) zero elements of the pattern is not given. 
Several approaches to determining this value can be conceived of. For instance, one 
may rotate a pattern to simple structure by any simple structure rotation procedure, 
count the number of "small" elements, and choose this value for p. However, such an 
approach will fail as soon as the simple structure procedure yields a solution that by no 
means approximates a truly simple pattern. Therefore, it seems necessary to determine 
p without recourse to existing simple structure methods. 

A reasonable approach to determine p is analogous to the scree-test used in factor 
analytic techniques for determining the number of factors. To determine the most 
useful p value, one can analyze the data by using a range of p values and compare 
associated function values. As p increases, the function value usually increases as well. 
The function value is the sum of squared smallest elements, so the increase can be seen 
as an indication for the impact of adding one more zero constraint on the total size of 
the smallest elements. As a cut-off point for p one can take that value whereafter the 
function value shows a considerable relative increase. 

Obviously, this procedure has certain drawbacks. First of all, the question how to 
choose the range o fp  values to check remains unanswered. The safest way is to try all 
possible values (from 0 to m r ) ,  but more etficient procedures are desirable. For in- 
stance, we can always find an oblique rotation yielding at least r ( r  - I) exact zeros, 
and, in practice, we will never be able to find more than (m - 1)r zeros (because that 
would imply that at least one column of the pattern matrix becomes zero, and hence one 
factor or component would be superfluous). Usually, it will not be difficult to indicate 
a maximum desirable average complexity for the variables; in addition, one may specify 
a maximum function value, or, a maximum average size of the smallest elements, above 
which one is no longer inclined to consider the smallest elements really small. A second 
problem arises in cases where there is no clear jump in the function values. Then it will 
be hard to determine a cut-off point at all. In all problematic cases, one may also 
compare solutions in terms of interpretability, where one may use substantive infor- 
mation in addition to the numerical information yielded by the method itself. It should 
be noted that, like determining the number of factors in a factor analysis, this procedure 
has a nonnegligible subjective component. 

SIMPLIMAX Applied to the Pattern for the Box Data 

To illustrate the SIMPLIMAX method, and to show that determining the value for 
p can be quite simple indeed, we reanalyzed the pattern matrix for Thurstone's (1947) 
Box Data, as given by Cureton and Mulaik (1975). The Box Data have been constructed 
by Thurstone as an example where three factors are used to construct 26 variables by 
highly different but simple nonlinear combinations of the factors (for which the formu- 
las are mentioned in Table 3). Because of the nonlinearity of the construction formulas, 
there need not be a truly simple pattern for these data, but it is expected (and found for 
instance by graphical rotation) that a good approximation to a truly simple pattern can 
be obtained. 

The reported unrotated pattern matrix was first analyzed by the five simple struc- 
ture methods that were used in the previous section. None of these recovered the 
pattern specifying from which factors the variables were originally constructed. For 



574 PSYCHOMETRIKA 

TABLE 3 

SIMPLIMAX a n d  HKM v2 R o t a t e d  P a t t e r n s  f o r  Box D a t a  

V a r i a b l e  F o r m u l a  SIMPLIMAX HKM 1/2 

1 2 3 1 2 3 

x . 9 9  - . 01  - . 0 1  . 6 4  . 7 0  - .29 

y .06 .94 .04 .65 - .24 .63 

z .01 .05 .97 - .21 .57 .74  

x y  .64 .65 - .02 .84  .23 .23 

xz  .60 .00 .65 .23 .82 .31 

y z  - .02 .61 .64 .23 .17 .87 

2 
x y .83 .39 . 0 1  . 8 0  .47  .02 

2 
x y  .38 .82 .03 .78 .02 . 44  

2 
x z .79 - .02 .42 .40  .82 .07 

2 
x z  .45 .02 .86 .09 .83  .52 

2 
y z - .02 .76 .45 .38 .01 .83  

y z  2 - .02 .43 .78 .07 .32 .86  

x / y  .75 - .83 .02 - .06 .81 - .73 

y / x  - .75 .83 - .02 .06 - .81 .73 

x / z  .81 .02 - .82 .75 .07 - .82 

z / x  - .81 - .02 .82 - .75 - .07 .82 

y / z  - .02 .86 - .81 .76 - .78 - .03 

z / y  .02 - .86 .81 - .76 .78 .03 

2 x + 2 y  .55 .72 - .02 .83 .14 .29 

2 x + 2 z  .56 - .03 .69 .17 .82 .33  

2 y + 2 z  .00 .61 .63 .24 .18 .86  

(x2+y2) V2 .54 .71 - .01 .82 .14 .30  

(x2-{-z2) I/2 .53 - .01 .68 .16 .79 .34  

(y2+z2)V2 .02 .61 .60 .27 .17 .83  

x y z  .45 .48  .46  .49  .45 .52 

(x2+y2+z~) v2 .34  .53 .48 .45 .36  .60  
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instance, all these methods assigned complexity two or more to the first three variables, 
whereas these variables should each reflect simply one of the original constituting 
factors. Next, we applied SIMPLIMAX, choosing the values p = 25 . . . .  , 30  (where 
it should be noted that the number of zero values corresponding to Thurstone's con- 
struction formulas is p = 27). For each analysis we used one rational start (from the 
normalized varimax solution) and ten random additional starts; the same convergence 
criterion was used as in the analyses of the artificial data. The optimal function values 
were .0074, .0107, .0149, .1202, .1628, and .1969, respectively, where it may be of 
interest to mention that none of these were found after using the rational start. Clearly, 
a large jump in function values occurs after the third analysis (corresponding to p = 
27). On the basis of these results, it seems rational to choose the solution with p = 27 
as the one striking the best compromise between parsimony (as many near zeros as 
possible) and fit (average squared deviation from zero for the alleged near zeros). The 
p = 27 solution is displayed in Table 3 (with elements larger than .30 or smaller than 
- . 3 0  set in bold face), and it can be verified that, in contrast to the solutions from the 
five well-known simple structure rotation techniques, the present solution does indeed 
agree completely with the original constituting rules used to construct the data. The 
correlation between the components 1 and 2 is .20, between components I and 3 is .27 
and between 2 and 3 is .28. For comparison, Table 3 also displays the pattern resulting 
from HKM 1/2 rotation, and it can be seen that differences are substantial indeed. For 
this solution, the correlations between the components are .16, .21 and .18, respec- 
tively. 

To give some insight in computation times for the SIMPLIMAX method, we mea- 
sured, for each value of p, the computation times on a 80386/80387 machine for the 20 
randomly started runs (which constitute the major part of a full SIMPLIMAX analysis). 
For p ranging from 25 to 30, we found computation times of 23.5, 22.3, 23.2, 21.8, 21.7, 
and 20.8 seconds, respectively, which seems acceptable from a practical point of view. 

Fixing the Variable Complexities in the Target 

In the above described SIMPLIMAX method, only the average complexity of the 
variables needed to be specified in advance. In certain cases, however, the user may 
wish to specify the complexity of each variable a priori. For instance, the user may be 
interested in obtaining that rotation that gives the best solution assigning each variable 
to one and only one factor (complexity one for each variable). Other situations are 
those where each variable is to be assigned to (at most) two factors, or where, for each 
variable, the complexity can be specified in advance, on the basis of substantive rea- 
sonings. Although such procedures limit the range of possible solutions and may hence 
miss a solution which is more parsimonious than the one obtained, they also have the 
advantage of limiting the number of analyses to be done and avoiding the possibly 
difficult decision as to which is the "right" value for p. Therefore, it will now be 
described how a rotation to a truly simple pattern with the complexity specified per 
variable can be obtained. 

As above, the problem is to minimize the function (3) over W for given T. In 
contrast to the above, now for the matrix W it has been specified how many zeros it 
should have per row. Given this specification, we can obtain the optimal matrix W 
updating one row of W at a time. Let w} denote row i of W, and assume that w i is 
constrained to have at least Pi zero elements. The elements of W should again be found 
such that they minimize the function (3), hence the elements of wi, i -- 1 . . . . .  m, 
should be chosen so that they minimize 
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r 

f i ( T ,  w i )  = ~ ,  (1 - wij)a~. 
j=l  

(4) 

The solution is given at once by setting those Pi elements ofwi to zero that correspond 
to the Pi smallest elements of {a 2 , . . .  , a2m}, while the other elements are set to one. 
Thus, one can obtain the complete solution for W, given T. Combining this with (one 
cycle of) Browne's (1972b) procedure for updating T, one has an algorithm that de- 
creases the function monotonically, until the function value stabilizes. For instance, in 
the case where each variable is specified to have complexity one, the unit elements in 
W are assigned to the positions corresponding to the rowwise highest (in the absolute 
sense) values of PT. In this case, the method minimizes the sum of (r - 1) rowwise 
smallest squares of the elements of the transformed pattern matrix. 

Analysis of Twenty-four Psychological Tests Data by SIMPLIMAX with 
Complexity One 

To illustrate the SIMPLIMAX method with the constraint that each variable in the 
target has complexity one, we analyzed an empirical data set that has been subjected to 
various simple structure rotations in the literature. The data set (Holzinger & Swine- 
ford, 1939; also, see Harman, 1976, p. 124) consists of scores on 24 psychological tests. 
The correlation matrix was analyzed by PCA, and the resulting four-components so- 
lution was rotated by SIMPLIMAX with complexity one. The results are displayed in 
Table 4. For comparative purposes we also used the HKIC procedure (as this technique 
was explicitly designed to reveal a simple structure of complexity one). The HKIC 
results are also reported in Table 4. All elements larger than .35 (in the absolute sense) 
are set in bold face. It can be seen that the solutions are slightly different. The function 
values for (4), the sums of rowwise smallest squares, are 1.99 for the HKIC solution, 
and 1.68 for the optimal oblique complexity one solution. The latter solution was 
obtained from 3 of the 9 random starts used in this analysis. When the HKIC solution 
was used as a start, a local minimum was found (f = 1.71); local minima were also found 
for the six other starts (f ranging from 1.71 to 2.01). 

The pattern matrices differ mainly in terms of a few variables, with variables 20 and 
22 belonging mainly to component 1 in the HKIC solution, and to component 2 in the 
SIMPLIMAX solution. Other differences can be observed as well. For instance, if we 
consider only values higher than .35 (bold face), which is the lowest value such that 
each variable is associated to at least one component, the SIMPLIMAX solution yields 
exactly complexity one for all variables, whereas in the HKIC solution, variables 13, 
16, and 21 belong to two components. 

Discussion 

As reported by Cureton and Mulaik (1975), the Box Data have a long tradition of 
withstanding attempts to recover the original constituting rules by analytic simple struc- 
ture procedures, as was confirmed by the analyses of these data by the five well-known 
simple structure techniques employed here. The fact that the SIMPLIMAX procedure 
proposed in the present paper does succeed in recovering the underlying structure 
demonstrates that SIMPLIMAX can indeed perform better than the most popular ex- 
isting techniques. There is at least one alternative technique that also recovered the 
underlying structure for the Box Data: Cureton and Mulaik's weighted varimax proce- 
dure. However, their procedure is based on assuming certain symmetries in a pattern, 
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which happen to be present in the current data set, but for which there is no reason to 
expect their presence in real-life data sets. If the symmetry is not present, their pro- 
cedure may well fail to recover a truly simple pattern, as was found after some exper- 
imentation with artificial data. 

The SIMPLIMAX method generally yields oblique rotations. In some cases, how- 
ever, one might want to restrict the class of rotations to orthogonal rotations. For such 
cases, one can modify the SIMPLIMAX method by minimizing (1) subject to the 
constraint that T is orthonormal. To do so, we could simply replace the Browne (1972b) 
procedure by the Browne (1972a) procedure, using his Formula (3) (on p. 116). Alter- 
natively, we could construct a possibly simpler algorithm by exploiting the fact that 
there now is an explicit solution (Cliff, 1966) for the problem of minimizing tr(T, G) over 
T (considering G fixed); the problem of minimizing cr over G (considering T fixed) is 
solved by setting gij equal to 0 for the pairs (i, j) corresponding to the p smallest values 
of ai 2, and setting gij = aij for the other values of (i, j) .  Alternating these procedures 
of updating G and T, we also have a monotonically convergent algorithm for the present 
minimization problem. 

The SIMPLIMAX method seems to have two disadvantages compared to the 
well-known oblique simple structure rotation methods. The first is its severe local 
minimum problem. The second is the possibly problematic choice of the number p. As 
to the local minimum problem, it seems important to note that it can be mitigated by 
taking a sufficient number of random restarts (as was illustrated for the artificial data), 
where only 3 out of 40 complete analyses resulted in a locally optimal solution. There- 
fore, it should be emphasized that a user employs many different (usually random) 
restarts for one SIMPLIMAX analysis. With modern computational facilities and the 
introduction of parallel processing computers (which are particularly suitable for han- 
dling independent analyses of the same data as is the case with multistart procedures), 
this limitation may be of minor importance in the near future. Moreover, the 
SIMPLIMAX algorithm usually converges fast and requires little computational effort, 
as indicated by the reasonable computation times for the Box Data. The second dis- 
advantage (the possibly problematic decision with respect to the value of p) seems 
somewhat more disturbing. It resembles the decision problems the user is faced with in 
the orthoblique, oblimin and Promax methods. In all these methods the user also has to 
specify a certain parameter (viz., the power of M in orthoblique, 3' in oblimin, and the 
power parameter in Promax) which may affect the solution considerably. For those 
methods some more or less standard choices have been suggested (based on results 
from simulation studies), but there are no choices that are good for all situations. So, 
although for such methods the decision problem is usually ignored, it is nevertheless 
present. In the SIMPLIMAX method the decision problem cannot be ignored as easily. 
Without the use of external substantive information on the data at hand, the choice for 
the value of p must be made on the basis of comparing different results for different 
values of p. Fortunately, this comparison can be based on the fit values after rotation 
of the pattern matrix at hand. These values are straightforward measures for simplicity 
of the solution, and are comparable across solutions with different values for p. In this 
respect, one can view the fact that the value for p in SIMPLIMAX has to be chosen on 
the basis of results for the data at hand as an advantage rather than a disadvantage over 
the parameter choice procedures in orthoblique, oblimin and Promax: For the latter, no 
choice procedures seem to be available that are based on results for the data at hand. 
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