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This paper presents an analysis, based on simulation, of the stability of principal compo- 
nents. Stability is measured by the expectation of the absolute inner product of the sample 
principal component with the corresponding population component. A multiple regression 
model to predict stability is devised, calibrated, and tested using simulated Normal data. Re- 
sults show that the model can provide useful predictions of individual principal component 
stability when working with correlation matrices. Further, the predictive validity of the model 
is tested against data simulated from three non-Normal distributions. The model predicted very 
well even when the data departed from normality, thus giving robustness to the proposed 
measure. Used in conjunction with other existing rules this measure will help the user in 
determining interpretability of principal components. 

Key words: sampling stability, PCA, simulation, regression analysis. 

1. Introduction 

In principal components  analysis (PCA), one must  often decide how many  com- 
ponents ,  m,  are needed to provide an adequate  description of  the latent s tructure in the 
p manifest  variables (m < p) .  C om m on  approaches  to this problem,  such as looking for  
the " e l b o w "  in the scree plot, or  retaining all components  with corresponding eigen- 
values greater  than 1, are ad hoc rules of  thumb,  whose pr imary  justification, despite  
some at tempts  to put them on a more formal basis,  is that they are intuitively appealing. 
Yet,  there are other  more formal approaches  like Vel icer ' s  Partial Correlation Proce- 
dure where  that many  components  are retained for which the average squared partial 
correlation is minimized. (For a review of  these and other  procedures  see Jackson  
19911). Moreover ,  given that a principal component  is kept,  the next  task often is to 
provide some form of  interpretation for it; that is, to examine the values of  its coeffi- 
cients and to describe its relationship with the manifest  variables.  Indeed,  one often 
finds in practice that  a componen t  is likely to be kept  to the extent  that its coefficients 
yield a plausible interpretation. 

The  processes  of  componen t  retention and interpretation are complicated by  the 
fact  that the est imated coefficients have themselves  some sampling variability. Thus,  
components  obtained f rom PCA are likely to differ f rom one randomly drawn sample to 
another  and may,  in fact,  possess  very little stability. I f  one takes stability to be a 
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prerequisite to useful interpretation, then it behooves the analyst to know whether or 
not the component he or she is attempting to interpret is stable. The focus in this paper 
is to provide the user with a simple measure by which to judge whether or not a 
component can be interpreted with confidence. Such a measure is to be used in con- 
junction with other existing rules. 

Sampling theory does exist for some special cases of PCA, such as when the 
covariances of manifest variables form an identity matrix (Srivastava & Khatri, 1979, 
p. 86), and more generally for the largest and smallest eigenvalues (Srivastava & 
Khatri, 1979, p. 205). And a number of statistical tests for PCA have been described 
(e.g., Anderson, 1951, 1963; Girschik, 1936, 1939). But on the whole analytical results 
pertaining to the stability of principal components are limited by their requisite distri- 
butional assumptions or asymptotic nature. 

Further, the analytical results are mostly developed for PCA from covariance 
matrices. According to Anderson (1963, p. 136) the asymptotic distribution theory of 
components extracted from correlation matrices is much more complicated than for 
covariance matrices; general results cannot be given in a simple form. What has been 
developed for some special cases is extremely complicated (Jackson, 1991, p. 99). Also, 
in situations where the original variables are in different units or the variances of the 
variables differ widely it is preferable to use the correlation matrix. As a matter of fact 
a large number of applications of PCA have employed the correlation matrix (Morrison, 
1976, p. 268 and Jackson, p. 65). 

The paucity of useful analytical results relating to PCA led to the development of 
a number of studies using simulation. Our study follows that tradition. The purpose of 
this study is to develop an approach for assessing the stability of principal components 
when working with correlation matrices. Such an approach, based on simulation and 
free of restrictive distributional assumptions can be applied to reasonably small sam- 
pies. Once the stability of a component is known, the analyst can make a judgment as 
to whether or not it is stable enough to warrant an interpretation. Given this objective 
there is need for a model which the analyst can easily use. Regression modeling pro- 
vides an answer to this need. We regressed on the variables which are most likely to 
impact the stability measure as defined by us. 

The structure of this paper is as follows. In section 2 we review some analytical 
results on the stability of principal components, and draw some intuitive conclusions 
from them. The literature in this area is vast. To conserve space throughout this paper 
we reference only those articles that are relevant to our work. We refer the reader to 
the book by Jackson (I991) for a comprehensive review. In section 3 we describe the 
measure of component stability that will be used in our analysis. In section 4 we 
describe our simulation procedure and relate it to other studies which have used sim- 
ulation or bootstrap methodology. In section 5 we develop a predictive model of com- 
ponent stability, then calibrate and test it using the results of the simulation procedures. 
In section 6 we demonstrate the usefulness of the model with the help of three exam- 
ples. We conclude with some remarks concerning limitations and applications of  the 
model. 

2. Review of Analytical Results 

We review a few relevant analytical results that help in drawing some conclusions 
regarding the important variables that go into the regression model. As stated above, 
for correlation matrices it is difficult to obtain results in a simple form. We decided, 
instead, to learn by studying results for covariance matrices. We did this solely for the 
purpose of identifying the important variables in order to build our measure, being 
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aware that there is no one-to-one correspondence between the components obtained 
from a correlation matrix and those obtained from a covariance matrix (Jackson, 1991). 

Consider, as above, p manifest variables. Let the population mean vector be Ix and 
the covariance matrix be 1~. Denote the eigenvalues of];  by A1 > • • • > A t, (we assume 
components are ordered by decreasing eigenvalue) and the corresponding eigenvectors 
by e t l , . . . ,  Otp. Suppose we have n independent p-tuplet observations from the pop- 
ulation just described, denoted xl, • • • ,  Xn. These observations will have sample mean 
vector m and sample covariance matrix S. The p sample eigenvalues will then be l l 
> • • • > l p ,  and their corresponding normalized eigenvectors al ,  • • • ,  ap, so that S = 
/lala~ + . ' .  + I p a p a ' p .  

If these observations are drawn from a multivariate Normal population, and the p 
eigenvalues are distinct, then according to Morrison (1976) the asymptotic sampling 
properties of the coefficients of the i-th eigenvector are given by the following covari- 
ance matrix 

COY (ai -- oti) = - -  Ai ~ Ah 
n ~ (A h -~ 'Ai)  20 thOth '  

h¢,i 

(1) 

This equation shows that the sampling variances of the coefficients of the sample 
eigenvector, and thus, the stability of the sample principal components, depend qual- 
itatively on two factors. First, the sampling variances are inversely proportional to the 
sample size. Second, the coefficients of the i-th vector have smaller sampling variances 
to the extent that its corresponding eigenvalue is d i s t i n c t  from other eigenvalues. That 
is, to the extent that all other eigenvalues are either greater or less than Ai, the sampling 
variances of the coefficients of a i will be less. This is shown by the denominator of (1). 
As A h approaches Ai, the denominator goes to zero and the cov (ai - ot i) goes to 
infinity. These two factors--the sample size and the distinctness--are used in our 
model. The importance of distinctness in determining the stability of individual com- 
ponents is also borne out in the theoretical influence function developed for eigenvec- 
tors (see Pack, Jolliffe, & Morgan, 1988, Equation 2, p. 42). 

Geometrically, the above result is obvious when we consider that any two succes- 
sive principal components form the basis of a plane in the p-dimensional space (see 
Morrison, 1976, p. 275 for a geometrical interpretation with a figure). The projection of 
the sample points onto this plane will be more and more ellipsoidal (i.e., more elon- 
gated) to the extent that the two eigenvalues are more distinct from each other; and 
more and more circular to the extent that they are equal. If the projection is more 
ellipsoidal, then it is easy to determine the major and minor axes of the projection, and 
hence the eigenvectors corresponding to the larger and smaller eigenvalues. But as the 
projection becomes more circular, the major and minor axes become more difficult to 
determine and are, in the limit, indeterminate. 

Krzanowski (1984) investigated the issue of component stability through the effect 
that e-perturbation in eigenvalues have on the stability of principal components. The 
author analytically derived the maximum change in the coefficients of the principal 
components for a given e change in the variance of the component. He found that "it  
is not the absolute size of the variance of any component which determines whether 
that component is stable or not, but rather its separation in terms of variance from the 
next component. Relatively isolated (early) components with large variance should 
therefore be fairly stable, but later components which all have similar variances will not 
be stable" (p. 562). Analytically he shows that the effect on the component coefficients 
ot i, of an e-reduction in Ai, is an inverse function of A i - Ai+ 1 . 
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Pack et al (1988) have studied the problem of influential observations in PCA. They 
demonstrated, through a case study, that the theoretical influence functions provided 
good estimates of the actual changes observed when individual observations are deleted 
from a principal components analysis. Green (1977) recognized that interpretation of 
parameters of  multivariate models requires knowing how much the fit of the model to 
the data is impaired by changes in the parameters. His study focused on how sensitive 
principal components are to rounding and zeroing of coefficients. 

3. A Measure of Principal Component Stability 

Our approach starts from a correlation matrix• In devising a scalar measure to 
summarize the sampling properties of eigenvector coefficients, we did the following: 

Let ~ i  be the unit vector in p-dimensional space described by the population 
coefficients of ot i. Then let Yi be a unit vector of the i-th principal component, de- 
scribed by the coefficients ai, from a sample of size n randomly drawn from the 
population. (Note that the population and sample eigenvectors oti and a i both have unit 
norm.) The stability of the sample i-th principal component is determined by the extent 
to which, on average, the directionality of Yi corresponds to that of ~ i  over repeated 
independent samples. A simple way to capture this correspondence is to project Yi onto 
~ i -  This is done by taking the inner product of the two unit vectors Yi and ~ i .  Since 
we are dealing with unit vectors this inner product represents the cosine of the angle 
between the two vectors Yi and ~ i .  The choice of signs in PCA is arbitrary. Hence we 
take the expectation of the absolute values of the inner product to arrive at an average 
measure of stability (STB). The average is taken over independent samples of size n. 
This quantity can be written in terms of the eigenvector coefficients as 

STB = E[la~ai[]. (2) 

This is our measure of principal component stability; namely, the expectation of the 
absolute value of the inner product between the sample vector and the population 
vector, where the expectation is taken over independent samples of size n. 

4. Simulation 

First we describe the principle underlying the simulation. Then we describe how 
the simulated data was created. 

Consider a set o f p  manifest variables. From a particular "population" of  N p-tu- 
plet observations xl, • • • ,  XN, we draw samples of  size n from the distribution P[x = 
xi] = 1 / N ,  for i = 1, 2, . . . ,  n. In other words, we draw a sample of  size n, with 
replacement, from the "population". We do this a total of B times to obtain B samples. 
In the simulation p and n are varied over a range of values. The choice of N as the 
"population" size and B as the number of samples is based on judgment. 

We perform a PCA on the "population" correlation matrix to get a set of eigen- 
values (A l, • ° ° , • p )  and corresponding eigenvectors ( a l ,  • • • , a p ) .  We then perform 
PCA on correlation matrices from the randomly drawn samples (denoted by s), ob- 
taining eigenvalues (l{, . . .  , l~) and eigenvectors (a{, . . .  , a~) from each s E B. For, 

• ~ . r S t  

say, the i-th component, we calculate the set of B absolute tuner products lai ~til for all 
s E B. The estimated stability of  the i-th component is then the mean of these absolute 
inner products across all B samples 

I B 
STBi = ~ ~ l a S ' a i l  (3) 

s = l  



ATANU R. SINHA AND BRUCE S. BUCHANAN 359 

There is a rich tradition of using simulation to investigate different aspects of 
principal components analysis. For the sake of brevity we shall mention only a few 
studies. Zwick and Velicer (1986) used simulation to compare the performance of the 
five methods used for determining the number of components to retain. These methods 
include Horn's parallel analysis, Velicer's minimum average partial correlation, Cat- 
tell's scree test, Bartlett's chi-square test, and Kaiser's eigenvalue greater than 1.0 rule. 
The authors systematically varied several factors including sample size, number of 
variables, number of components, and component saturation (defined as the magnitude 
of the correlation between the manifest variables and the components). It was found 
that under a variety of situations the parallel analysis and the minimum average partial 
correlation gave the best results. 

Guadagnoli and Velicer (1988) used simulation to study the relation between sam- 
ple size and sampling stability of the components. Stability was defined relative to the 
population pattern. Besides sample size they systematically varied number of variables, 
number of components, and component saturation. The authors concluded that sample 
size as a function of number of variables was not an important factor in determining 
stability. Component saturation and absolute sample sizes (defined as sample size per 
se, as distinct from sample size relative to the number of variables) were the most 
important factors, with number of variables per component (= p/m) being important as 
well. Their study provided credence to our use of sample size and number of variables 
in the regression model. 

Some researchers have applied the bootstrap method to principal components 
analysis. Diaconis and Efron (1983) used the bootstrap to assess the variability of 
individual eigenvector coefficients, and Daudin, Duby and Trecourt (1988) studied the 
stability of principal component subspaces using a stability measure based on the 
bootstrap. But as far as we know this is the first study to assess the directional stability 
of individual eigenvectors in PCA. 

In the context of factor analysis Lambert, Wildt and Durant (1991) used bootstrap 
to construct approximate confidence intervals for the factor loadings. Their purpose 
was broadly similar to o u r s ~ s s e s s i n g  sampling variability of loadings estimated by 
exploratory factor analysis. But there are some key differences. One, we are using our 
approach for principal components analysis. Secondly, we are proposing a different 
approach to assessing stability--a regression model. We believe our measure is very 
simple to implement and can be computed with a calculator. 

Creating Simulated Data 

To perform the modeling described in the next section, we first had to create a large 
number of simulated data sets to serve as "populations". These varied by their eigen 
structures and number of variables (p).  The procedure used to create each of these 
"populations" is in the Appendix. 

For the purpose of calibration of the measure we used Normal "populations". We 
realized that in order for the measure to have validity it was necessary to test the 
measure beyond settings of the Normal distribution. There are a variety of situations 
where the data may not conform to a Normal distribution. Thus, we tested for robust- 
ness against departures from Normality using three other distributions--uniform dis- 
tribution, gamma distribution with shape parameter 1, and gamma distribution with 
shape parameter 2. These three between them cover a wide variety of distributions--on 
the one hand the uniform distribution, and on the other hand a right-tailed distribution 
with mode at zero, that is, gamma with shape = 1. 

"Populations" were created for I 1 different values o fp  (from 7 to 27 in increments 
of 2). For each of these 11 different values of p, a "population" was created with a 
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different eigenstructure (the p eigenvalues in each "population" were obtained by 
taking p draws from uniform random number generator and constraining their sum to 
be p, and the p eigenvectors were obtained as described in the Appendix). 

Next, a sample size n was set. For a given n, 50 samples were created from each 
"population". For each principal component, i, from each sample, s (s = 1, . . . ,  50), 
an inner product was calculated with the corresponding component from the "popula- 
tion"; then its absolute value enumerated. These 50 absolute inner products were then 
averaged to obtain an estimated stability measure, as indicated in (3). This average 
stability measure is for a given n and p. As mentioned earlier we used 11 different 
eigenstructures corresponding to l 1 values ofp.  We used 18 different values of n (from 
30 to 200 in increments of 10), Altogether 11 × 18 -- 198 combinations ofp  and n were 
used. 

5. Modeling Component Stability 

The discussion in section 2 suggests that a principal component will be more stable 
to the extent that (i) the sample size increases, and (ii) its corresponding eigenvalue is 
distinct from those of the preceding and succeeding components. Actually, we define 
two forms of distinctness. The predistinction (PREDST) of component i is measured 
with respect to component i - 1; it is given by ( l i _  1 - l i ) / l i _  1 . Post-distinction 
(PSTDST) is measured with respect to the succeeding component, and is given by ( l  i 

- l i + l ) / l  i .  The values of both distinction measures are bounded on the range (0, 1). By 
definition, the first component cannot have a predistinction and the last (or p-th) com- 
ponent cannot have a postdistinction. Thus for components 2 through p - 1 we used 
both PREDST and PSTDST in the regression model. However in PCA the first com- 
ponent is important and cannot be ignored. Hence, for the first component we devel- 
oped a separate regression model using PSTDST 2. The last component is rarely of 
practical relevance in PCA and was not considered a candidate for modeling. 

In addition to these three factors, it is reasonable to expect that, other things being 
equal, a principal component will be less stable to the extent that the number of 
variables, p, increases because the number of eigenvector coefficients that must be 
estimated increases with p 2, while the size of the data matrix only increases with p. 
This intuition was borne out by the results we obtained as shown in Table 1. Table 1 
shows how average stability increases with sample size n and decreases with number 
of components p. Thus for a given sample size, say, 30, the average stability decreases 
from 0.77 for p = 7 to 0.27 for p = 27. Similarly, for a given value of p,  say, I9, the 
average stability increases from 0.34 for n -- 30 to 0.67 for n = 200. 

E s t i m a t i o n  

The model was estimated on multivariate Normal simulated data. To quantify the 
relationship between these variables, viz., PREDST, PSTDST, n, and p, and the sta- 
bility of principal components STB, we performed regression analysis. The stability 
measure was bounded (0, 1). So, to obtain a more tractable dependent variable in the 
regression, we employed a logit transformation. Because we expected the effects of 
sample size n and, of number of variables p to be proportionate rather than absolute, 
we took logarithms of these two variables. 

We used two separate models---one, for estimating the stability of Components 2 
through p - 1, and another, for estimating the stability of Component I. This was 
necessary because the variable PREDST is defined for Components 2 through p - 1, 
and not defined for Component I. 

2 We thank the first a n o n y m o u s  reviewer for this suggestion.  
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Table 1 

Change in Stability (STB) with Sample Size n, and Number of Manifest 

Variables p 

361 

a.mple Number of Manifest Variables p 
ize n 

7 13 19 23 27 

30 0.77 0.48 0.34 0.28 0.27 

60 0.90 0.58 0.45 0.39 0.39 

100 0.93 0.62 0.54 0.46 0.48 

150 0.96 0.72 0.63 0.53 0.50 

200 0.98 0.65 0.67 0.64 0.60 

Estimation o f  Model for Components 2 through p - 1 

Across 198 combinations of p and n, a total of 2,970 stability measures were 
generated. The 2,970 simulated data points were then randomly divided such that the 
model was calibrated on 1,989 data points. The remaining 981 points formed the holdout 
sample. The regression model we obtained using data from the calibration sample is: 

Logit(STB) 3 = -2.485 + 3.616 PREDST + 2.732 PSTDST 

+ 0.784 loge n -  0.735 loge p, (4) 

where all variables were defined above. On the calibration sample, the model yielded an 
adjusted R 2 of 0.881. All coefficients were significantly different from 0 at the 0.001 
level of significance, and all signs were as expected. It should be pointed out that one 
could try to fit other regression models to the simulated data. But the model we used 
with the logit transformation of the dependent variable and the logarithmic transfor- 
mation of the independent variables n and p, has considerable intuitive appeal as 
explained above. 

Estimation o f  Model for  Component 1 

Recall that for component one PREDST is not defined. Thus, as stated already, for 
modeling stability of component 1 we made use of only three variables--PSTDST, n 
and p. Across 198 combinations of p and n, a total of 198 stability measures were 
generated. Then the 198 simulated data points were randomly divided such that the 
model was calibrated on 127 data points. The remaining 71 data points formed the 
holdout sample. The regression model we obtained using data from the calibration 
sample is: 

Logit(STB) = -2.709 + 6.579 PSTDST + 0.996 1Ogen -- 0.647 I o g e p ,  (5) 

where all variables were defined above. On the calibration sample, the model yielded an 
adjusted R 2 of 0.940. All coefficients were significantly different from 0 at the 0.001 
level of significance, and all signs were as expected. Further analysis failed to detect the 

3 Logit(STB) = V ~ STB = exp(V)/ ( l  + exp(V)) .  
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Table 2 

Correlation and Absolute Differences between STB and PSTB for Components 

2 through p - l ,  for some Typical Distributions 

Distributions Correlation Percentage of  Percentage of  
between STB absolute absolute 

and PSTB differences differences 
within + / -  within + / -  

0.05 0.10 

Normal 0.931 49.5 80.2 

Gamma(Shape= 1) 0.899 32.9 67.1 

Gamma(Shape=2) 0.912 44.4 73.3 

Uniform 0.908 46.7 78.2 

presence of outliers or deviations from the usual regression assumptions. The models 
fitted the data very well. Thus, we felt these models were appropriate for the purpose 
of modeling component stability. 

Prediction 

The models were tested for predictive validity using the data from the holdout 
samples. Predicted stability, PSTB were computed using the above models and com- 
pared with the measure of stability, STB using (3). The STBs are called observed 
stability. 

Prediciive Validity o f  Model for Components 2 through p - 1 

PSTB was computed using (4) for each of the 981 data points. The result of the 
comparison of PSTB with STB is depicted in Table 2. 

Using Normal Distribution. The correlation between PSTB and STB is 0.931. 
Additionally, the table of the absolute differences between PSTB and STB (row 2, 
Table 2) shows 49.5% of all predicted stability PSTB within +/ -0 .05,  and 80.2% within 
+ / - 0 .  I0 of the observed stability STB. 

Using non-Normal distributions. The model in (4) was estimated using multivari- 
ate Normal simulated data. We tested for the model's robustness to non-Normality 
using three different cases-- two right skewed multivariate distributions, namely, 
gamma distribution with shape parameter I, and gamma distribution with shape pa- 
rameter 2, and uniform distribution (Table 2). The rationale behind choice of these 
distributions is that between these and the Normal distribution we are able to cover a 
lot of distributions that one is faced with in dealing with real data. For each of these 
three non-Normal distributions we created "populations" using the procedure as de- 
scribed in section 4 for different eigenvalues and eigenvectors structure. Then values of 
STB were calculated using (3). These were our observed stability for each component. 
We computed the predicted stability PSTB for each component using (4). The predicted 
stability was compared with observed stability using two measures--correlation and 
absolute differences. Table 2 shows that based on the correlation measure (Column 2) 
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Table 3 

Correlation and Absolute Differences between STB and PSTB for Comoonent 

1. for some Tvoical Distributions 

Distributions Correlation Percentage of  Percentage of  
between STB absolute absolute 

and PSTB differences differences 
within + / -  within + / -  

0.05 0.10 

Normal 0.928 91.5 95.8 

Gamma(Shape = 1) 0.891 74.7 94.9 

Gamma(Shape = 2) 0.93 87.9 100.0 

Uniform 0,929 84.8 99.0 

there is hardly, if any, degradation in going to non-Normal data. The correlation mea- 
sures are 0.899 for the gamma distribution with shape parameter I, 0.912 for the gamma 
distribution with shape parameter 2 and, 0.908 for the uniform distribution. These 
compared very well with that of 0.931 for the Normal distribution. Now, based on the 
table of absolute differences (columns 3 and 4 of Table 2) there is some degradation 
from Normal distribution (80.2% of absolute differences lie within +/-0.10)  to the 
gamma distribution with shape parameter 1 (67.1% of absolute differences lie within 
+/-0.10).  For the gamma with shape = 2 and the uniform distribution, these values 
were 73.3% and 78.2% respectively. Hence moving away from the Normal distribution, 
the degradation for the two latter distributions were not significant. Certainly there are 
other distributions for which we have not tested for robustness. But the distributions 
for which we tested represent a reasonable variety and thus give us confidence in our 
results. 

Predictive Validity of Model for Component 1 

PSTB was computed using (5) for each of the 71 data points. The result of the 
comparison of PSTB with STB is depicted in Table 3. 

Using Normal Distribution. The correlation between PSTB and STB is 0.928. 
Additionally, the table of the absolute differences between PSTB and STB (row 2, 
Table 3) shows 91.5% of all predicted stability PSTB within +/ -0 .05,  and 95.8% within 
+ / -0 .10  of the observed stability STB. 

Using non-Normal distributions. The model in (5) was estimated using multi-Nor- 
mal simulated data. We tested for the model's robustness to deviations from Normality 
using the three different distributions as in the previous case. The rationale behind 
choice of these distributions has been described above. We calculated observed sta- 
bility STB using (3) and the predicted stability PSTB for Component 1 using (5). Table 
3 shows that based on the correlation measure (Column 2) there is hardly, if any, 
degradation in going to non-Normal data. The correlation measures are 0.891 for the 
gamma distribution with shape parameter 1, 0.93 for the gamma distribution with shape 
parameter 2 and, 0.929 for the uniform distribution. These compare very well with that 
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Table 4 

Results for Example 1 

PSYCHOMETRIKA 

Component Eigenvalue Variance PSTB 
t 1 i Explained (%) 

1 2.12 23.56 0.66 

2 2.06 22.89 0.67 

3 1.24 13.78 0.78 

4 1.10 12.22 0.73 

5 0.66 7.33 0.73 

6 0.65 7.22 0.49 

7 0.56 6.22 0.71 

8 0.38 4.22 0.85 

9 0.23 2.56 N/A 

of 0.928 for the Normal distribution. Now, based on the table of absolute differences 
(Columns 3 and 4 of Table 3) there is some degradation from Normal distribution 
(95.8% of absolute differences lie within +/-0.10)  to the gamma distribution with shape 
parameter 1 (94.9% of absolute differences lie within +/-0.10).  For the gamma with 
shape = 2 and the uniform distribution, these values are 100.0% and 99.0% respec- 
tively. (Note that moving away from Normality produced even better results; it is due 
to sampling error. There is no significant difference in the numbers.) Hence moving 
away from the Normal distribution, there is no degradation for the two latter distribu- 
tions. 

6. Examples 

To demonstrate the use of this model we consider three examples---one simulated 
and two from real data. 4 In the following examples we computed PSTBs for Compo- 
nent I using (5), and for components 2 through p - 1 using (4). This can be done using 
a hand held calculator. (Recall that the last component is hardly useful to know about 
and has been dropped from consideration.) 

Example 1 

Consider the example summarized in Table 4. Here we simulated a data matrix of 
9 manifestvariables, with a sample size of 100. The correlation matrix for the data has 
eigenvalues as summarized in the second column. The questions an analyst might ask 
include: how many components to retain? and, how strong an interpretation to put on 
any retained component? The third column contains the percentage of total variance 
explained by the components. Examination of the second and third columns show that 
the "e lbow,"  in so far as there is one, occurs between the third and fourth component 
(eigenvalues of 1.24 and 1.10, respectively). Further, the first four components account 
for 72.45% (23.56% + 22.89% + 13.78% + 12.22%) of the total variance. Thus, given 

4 We would like to thank Professor Margaret Campbell of  UCLA for giving us access to these data. 
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that the eigenvalue of the fourth component is greater than 1, we might be inclined to 
retain the first four components. 

Are all the four components interpretable? Results in the fourth column (Table 4), 
where we have calculated PSTB for Components 1 through 8, shows that the third 
component with PSTB 0.78 is definitely more stable than the first and the second 
component with PSTBs 0.66 and 0.67, respectively. The fourth component, with PSTB 
0.73, is slightly more stable than the first and the second component. Thus, given that 
four components are to be retained, the third component can be interpreted with rea- 
sonable confidence; however, the first or the second component does not beckon in- 
trepretation individually. Though these components explain roughly 24% and 23% of 
the total variance, respectively, they do not do so in a very stable way, hence the 
interpretation ascribed to them may vary randomly from sample to sample. The fourth 
component suffers from instability as well but not as much as the first two components. 
Thus the objective of data reduction is attained; however, overall, interpretation of 
components is suspect. 

Note that the measure being proposed, namely, PSTB is used as supplemental to 
rules such as eigen value greater than 1. Hence, we won't go beyond retaining four 
components though some later components have very high stability (the 7th and the 8th 
components have PSTB of 0.71 and 0.85). Moreover, in this situation, going up to the 
7th or 8th component would defeat the very purpose of data reduction since there are 
only 9 manifest variables. 

Example 2 

Here we have data obtained from 140 respondents on 22 psychological variables. 
The data were obtained as part of a dissertation research on advertising effects, in an 
experimental setting. Table 5 provides a summary of the findings. Both the "eigenvatue 
greater than one" and the "elbow" rule applied to this analysis would suggest the first 
four components be retained. They all have stability of at least 0.78. If we now look at 
the fifth component its eigenvalue 0.97 is only marginally less than 1. Also, the amount 
of variance explained by the fourth and the fifth component is very similar. But the 
stability measure PSTB is very low for the fifth component, namely, 0.40, and does not 
suggest inclusion of the fifth component in the analysis. Hence here the stability mea- 
sure provides added confidence in retention and interpretation of the coefficients of the 
four components. 

Example 3 

These data were obtained from a different 140 respondents on a different set of 22 
psychological variables as another part of the dissertation research mentioned above. 
The summary information is given in Table 6. The "elbow rule" suggests retaining the 
first four components, whereas the "eigenvalue greater than one rule" suggests retain- 
ing five components. Here the two rules do not lead to an unambiguous answer. The 
stability measure PSTB may be of help in such a situation. The stability measures in 
Table 6 suggest that the fourth and the fifth components have very low sampling 
stability, namely, with coefficients 0.48 and 0.54. Any interpretation of the correspond- 
ing coefficients is suspect. Hence, if interpretation is the objective it is not advisable to 
use more than 3 principal components. If the objective is data reduction then one would 
be hard pressed to justify using four components as per the scree rule. The eigenvalues 
of the fourth and the fifth component are so near to each other and component five has 
a higher stability than component four. It maybe advisable to use a five components 
solution for purposes of data reduction. 



366 

Table 5 

Results for Example 2 

PSYCHOMETRIKA 

Component Eigenvalue Variance PSTB 
t .... 1 i Explained (%) 

1 7.27 33.04 0.98 

2 2.83 12.85 0.87 

3 2.25 10.23 0.78 

4 1.09 4.94 0.78 

5 0.97 4.4 0.40 

6 0.94 4.26 0.45 

7 0.74 3.38 0.49 

8 0.72 3.27 0.38 

9 0.64 2.93 0.43 

10 0.59 2.68 0.46 

11 0.50 2.26 0.44 

12 0.48 2.20 0.36 

13 0.45 2.06 0.40 

14 0.41 1.84 0.41 

15 0.38 1.76 0.40 

16 0.35 1.60 0.49 

17 0.28 1.27 0.48 

18 0.27 1.21 0.34 

19 0.26 1.18 0.37 

20 0.24 1.08 0.49 

21 0.19 0.86 0.61 

22 0.15 0.70 N/A 

7. Discussion 

We have shown that a simple regression model can provide a reasonably accurate 
assessment of the stability of individual principal components. Though approximate, 
such a model avoids the need for relying on asymptotic results and on strict distribu- 
tional assumptions. Of course, one could also perform a simulation, but such analyses 
are computer intensive and require access to the original data matrix. Our model can be 
applied after the fact on a calculator using only the sample eigenvalues, sample size, 
and number of variables. Thus used in conjunction with existing rules it may provide a 
useful benchmark for the analyst who does not have the resources or inclination to 
perform a simulation, or who does not have access to the original data matrix. 
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Table 6 

Results for Example 3 
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Comp.onent Eigenvalue Variance PSTB 
t l i Explained (%) 

1 9.22 41.89 0.99 

2 2.71 12.31 0.95 

3 1.43 6.52 0.78 

4 1.20 5.47 0.48 

5 1.11 5.06 0.54 

6 0.79 3.60 0.57 

7 0.75 3.43 0.43 

8 0.64 2.92 0.47 

9 0.59 2.67 0.41 

10 0.54 2.44 0.44 

11 0.47 2.12 0.53 

12 0.38 1.74 0.51 

13 0.35 1.60 0.45 

14 0.30 1.35 0.45 

15 0.28 1.29 0.37 

16 0.27 1.22 0.34 

17 0.26 1.18 0.50 

18 0.19 0.86 0.66 

19 0.15 0.69 0.56 

20 0.13 0.57 0.45 

21 0.12 0.57 0.46 

22 0.10 0.46 N/A 

This model is appropriate for PCA when working with correlation matrices. There 
are a variety of situations when one wants to work with covariance matrices. This, 
model would have to be revised for use with PCA from covariance matrices. 

Appendix 

Creating the "populations"--a step by step exposition of the procedure used: 

i. The number of variables, p, was set, and the eigenvalues (A 1 , • • • , Ap) and the 
eigenvectors (o~ 1 . . . . .  Otp) of the "population" were specified. We wanted to 
have a wide variety of eigenstructures represented in our simulated data. That 
would provide strong internal validity to the development of our measure and 
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ii. 

guard against biases that could arise if only some typical eigenstructures were 
used. For a given choice of  p,  the (p) eigenvalues (A 1, - - -  , Ap) were obtained 
by drawing randomly from a uniform distribution U[0, p] and constraining 
their sum to be p.  
In order to obtain the eigenvectors use was made of several correlation matri- 
ces. For a given correlation matrix R = ( ( r i , j ) )  a principally partitioned sub- 
matrix of order p was drawn out randomly. Here is how it worked. Let  the size 
of  the correlation matrix be q x q, where q > p.  Draw a random integer 
between 1 and q - p + 1, call it u. Now extract the principally partitioned 
submatrix: 

r u,u • r u,u wp_ 1 
e 

ru+p_l, u ru+p-l,u+p-1 

A decomposition of  this p-dimension correlation submatrix gives the eigenvec- 
tors ( a l ,  • •.  , ~p). 

iii. The eigenvalues (A1 . . . .  , Ap) from (i) and the eigenvectors ( o r 1 , . . . ,  ap)  
from (ii) were used to create the "popula t ion"  covariance matrix ~ using 
matrix multiplication; that is, ~ = Al~tl¢~ + " "  + ApOtpOtp. 

iv. A Cholesky decomposition was performed on ~ ,  yielding a factor matrix C 
such that X = CC'.  

v. A univariate random Normal generator was used to create p independent stan- 
dard Normal samples of size N. These were arranged into p-tuplets, as such 
constituting an N - b y o p  independent Normal sample, denoted X I. N was cho- 
sen to be 2000. 

vi. The independent Normal sample was converted to a "popula t ion"  with the 
desired eigenstructure by post multiplication with the Cholesky factor of  the 
covariance matrix for the desired population; that is, X e = XIc .  
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