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A MULTITRAIT-MULTIMETHOD MODEL WITH MINIMAL ASSUMPTIONS 
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A new model of confirmatory factor analysis (CFA) for multitrait-multimethod (MTMM) data sets 
is presented. It is shown that this model can be defined by only three assumptions in the framework of 
classical psychometric test theory (CTT). All other properties of the model, particularly the uncorrelated- 
ness  of the trait with the method factors zce logical c o n s e q u e n c e s  of the definition of the model. In the 
model proposed there are as many trait factors as different traits considered, but the number of method 
factors is one fewer than the number of methods included in an MTMM study. The covm'iance structure 
implied by this model is derived, and it is shown that this model is identified even under conditions under 
which other CFA-MTMM models are not. "Ihe model is illustrated by two empirical applications. Fur- 
thermore, its advantages and limitations are discussed with respect to previously developed CEA models 
for MTMM data. 
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1. Introduction 

Since Campbell's and Fiske's (1959) seminal work on convergent and discriminant valida- 
tion, the multitrait-multimethod (MTMM) design has become a standard approach for validating 
personality questionnaires (for an overview, see Shrout & Fiske, 1995). Several methods for an- 
alyzing multitrait-multimethod data have been developed over the last forty years of research, 
in particular models of confirmatory lactor analysis, models of covariance component analy- 
sis, and the direct product model (e.g., :Browne, 1984; Cudeck, 1988; Millsap, 1995; Schmitt 
& Stults, 1986; Wothke, 1996). Among all methods proposed, the confirmatory factor analysis 
(CFA) approach has become the most widely applied alternative to the Campbell-Fiske criteria 
(e.g., Marsh & Grayson, 1995; Saris & Andrews, 1991; Saris & van Meurs, 1991; Widaman, 
1985). Despite their popularity and sophistication, some CFA models for MTMM data, however, 
are affected by several problems, particularly nonproper solutions, nonidentification under spe- 
cific conditions, and interpretation problems (Bagozzi, 1993; Brannick & Spector, 1990; Kenny 
& Kashy, 1992; Marsh, 1989; Marsh, Byrne, & Craven, 1992). In this paper, a new CFA-MTMM 
model is proposed that overcomes some of the problems in CFA of MTMM data. The paper is 
organized as follows: In the next section, a brief overview of the CFA approach to MTMM data 
and its problems is given. Then, a new model is introduced that was developed in the tradition 
of Zimmerman's (1975, 1976) and Steyer's (1989) work on classical psychometric test theory 
(CTT). It is shown that the trait and method factors can be defined as functions of the true-score 
variables. The covariance structure implied by this model is derived, and it is demonstrated that 
this model is identified even under conditions under which other CFA-MTMM models are not. 
Finally, this model is illustrated by applications to two data sets. 

2. The CFA Approach to MTMM Data 

Considering different trait and method structures, Marsh (1989) distinguished between 20 
different CFA-MTMM models. To illustrate the problems of CFA-MTMM models relevant for 
understanding the advantages of the new model proposed in this paper, it is sufficient to consider 
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only three CFA-MTMM models: the correlated trait~correlated method model, the correlated 
trait~correlated uniqueness model, and the fixed method model (Kenny & Kashy, 1992; Marsh, 
Byrne, & Craven, 1992; Marsh & Grayson, 1995). 

In the correlated trait/correlated method model (CFA-CTCM model), each observed vari- 
able Yik designed to measure a trait i by a method k is a linear combination of  a trait factor T/, a 
method factor Me, and an error variable Eit:. Assuming three traits (i = 1, 2, 3) and three meth- 
ods (k = 1, 2, 3), for example, the model l)r  mean-corrected data can be presented as follows: 

Y11 
I"21 
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Y~2 
I':22 
II32 

Y13 
Y23 
Y33 

Y(9x 1) = 
t(3xl) t 
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= [AT2 [ 0 AM2 0 -- - - - -  +e(9xl) ,  
M1 

/AT3 [ 0 0 AM3 M2 

M3 

where y is a vector of observed variables Yik, AT is a matrix of trait-related factor loadings 
,~Tik, AM is a matrix of method-related factor loadings ,~Mik, t is a vector of trait variables/) ,  m 
is a vector of method factors Mk, e is a vector of error variables Eik, ATi = diag(LTik) is a (3 x 3) 
matrix of  trait loadings, and ~Mk is a 3 x 1 vector with elements "~Mik. Thus, in this model each 
observed variable is decomposed into a trait factor, a method factor, and an error variable. The 
trait- and method factor covariance matrix is assumed to be block-diagonal: 

(:) I Tl 0 (2) 
E = (~(6×6) = di)M , 

where ~T denotes the (3 x 3) covariance matrix of  the trait factors, and ~M denotes the (3 x 3) 
covariance matrix of  the method factors. Furthermore, the error variables are presumed uncor- 
related with each other, having a (9 x 9) diagonal covariance matrix ®, and the error variables 
are uncorrelated with the trait and method factors. When g denotes the covariance matrix of the 
observed variables Yik, this model states that it is structured 

= A T ~ T A [  I. + AMC])MA~ + ~ .  

The scaling indeterminacies are removed in the usual CFA manner by either constraining the 
covariance matrix • to be a correlation matrix or by constraining one factor loading for each 
factor to unity. 

The CFA-CTCM model is widely applied to MTMM data, because it includes trait as well 
as method factors and assumes that both factors contribute independently to explaining the vari- 
ation in an observed variable (Brannick & Spector, 1990). Therefore, the variance of an observed 
variable can be partioned into trait, method, and error components. The CFA-CTCM model, 
however, is affected by three shortcomings (Kenny & Kashy, 1992; Marsh, 1989). (a) Nonproper 
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solutions. Iterative procedures often do not converge to a unique solution or result in estimates 
that are outside the permissible range of values, for example, negative variances of  the method 
factors or the error variables (Bagozzi, 1993; Kenny & Kashy, 1992; Marsh, 1989; Marsh & 
Grayson, 1995). These improper solutions might often be due to underidentified models. Grayson 
and Marsh (1994) as well as Kenny and Kashy (1992) have shown that the CFA-CTCM model is 
not globally identified. Therefore, it is not applicable in general. For example, the CFA-CTCM 
with equal factor loadings for all observed variables that load on the same factor is not identified. 
(b) Problems in the interpretation of trait and method factors. Ix the CFA-CTCM model it is 
assumed that there are as many trait factors as traits considered and as many method factors as 
methods included in an MTMM study. The model, however, does not give an answer to the ques- 
tion what the factors really measure. In particular, it is not clarified what the difference between a 
trait and a method factor is. The only difference is that they are indicated by different indicators. 
It is unclear, however, whether there is a more fundamental difference in meaning between both 
types of  factors. This causes some problems of  interpreting the method and trait factors, partic- 
ularly when all method factors are correlated. (c) Uncorrelatedness of trait and method factors. 
Although it is desirable to separate trait f?om method effects, the assumption of  uncorrelated 
trait and method factors can be questioned, and less restrictive models with correlated trait and 
method factors are applied as well (e.g., Schmitt & Stults, 1986). It is still an open question under 
which conditions it is reasonable to assume that trait and method factors are correlated and under 
which conditions it is not. 

To overcome the problems of the CFA-CTCM model, Marsh (1989) recommended to apply 
a model without method factors, but with correlated uniqueness variables. This model was origi- 
nally proposed by Kenny (1979). The correlated trait/correlated uniqueness model (CFA-CTCU 
model; Kenny, 1979; Marsh & Grayson, 1995) for mean-corrected data is defined by the equa- 
tion Yik = )~Tik Ti -J- Eik and the assumptions (a) that all trait variables ~ are correlated, (b) all 
error variables Elk with the same index i are correlated, and (c) all other latent variables are un- 
correlated. This model converged to proper solutions in most applications. Marsh et al. (1992), 
however, discussed two limitations of this model: (a) Correlated method effects (across different 
methods) cannot be considered, and (b) this model is not parsimonious because of many error 
correlations. Furthermore, random error is confounded with method specificity (Bagozzi, 1993) 
and, consequently, the reliability coefficients of  the observed variables might be underestimated. 

To overcome the identification problems of  the CFA-CTCM model and to get more appro- 
priate estimates of  the reliability coefficients than in the CFA-CTCU model, Kenny and Kashy 
(1992) proposed a fixed method model in which the number of  method factors is restricted to 
one fewer than the number of  methods included in the design. This model is defined by the 
assumption that the sum of method effects for each individual equals zero. The matrix of  factor 
loadings has an effect coding structure, meaning that all manifest variables belonging to the same 
method have the same factor loadings on the method factors. Each method factor is indicated by 
two different methods with factor loadings of  1 and ( - 1 ) ,  and the factor loadings of  all other 
methods equal zero. According to Kenny and Kashy (1992), the major limitation of this model 
is that the method effects for each individual sum to zero. Consequently, each variable has to be 
measured in the same metric and the bias due to one method is exactly offset by the bias due to 
another method. Because of this restriction, Kenny and Kashy (1992) conclude that this model 
might be too restrictive for empirical applications. Furthermore, the trait and method factors are 
correlated in this model. Hence, the variance of an observed variable cannot be additively decom- 
posed in components due to trait, method, and error effects, and these correlations might cause 
interpretative problems. 

In this paper, a new CFA model will be introduced, that overcomes several shortcomings of 
previous models for MTMM data sets. Like the fixed method model, there are only m - 1 method 
factors in this model, where m denotes the number of methods considered in a design. In contrast 
to the fixed method model proposed by Kenny and Kashy (1992), however, (a) a method factor is 
indicated by the variables belonging to only one method, (b) the loadings do not have to be equal 
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FIGURE 1. 
A multitrait-multimethod model with twelve observed variables Yik measuring three traits (i = 1, 2, 3) with three meth- 
ods (k = 1,2, 3). The first method is taken as comparison standard. ~k:  true-score variables (trait factors); M 1 : method 
factors; Elk: error variables. The definitions of the latent variables are explained in the text. 

for all variables of the same method, (c) the method and trait factors are uncorrelated, and (d) it 
is possible to estimate variance components due to trait, method, and error effects. In this model, 
one method k is chosen as a comparison standard for all other methods I. A method-specific 

latent variable is defined as that part of a true-score var iable / ) l  = Yil --  E i l  measuring a trait 
i by a method I that cannot be predicted by the true-score variable T/k measuring the same trait 
i with the method k that was chosen as comparison standard. Thus, the model structure equals 
a CFA-CTCM model with one method factor less than the number of methods included. For 
example, if the first method is chosen as comparison standard, the model is a special version of 
the CFA-CTCM model in (1) and (2) obtained by setting ~tM1 to 0(3× 1), and setting the variance 
of the first method factor and the covariances between the first method factor and the two other 
ones to 0 in ~M (see Figure 1). 

In contrast to the full CFA-CTCM model, however, the model proposed in this paper is 
identified, even under conditions under which the CFA-CTCM model is not. In contrast to the 
CFA-CTCU model, the model presented in this paper allows the estimation of variance compo- 
nents due to trait, method, and error variables. Furthermore, the model differs from all the CFA- 
MTMM models developed so far in the way it is defined. In contrast to previous CFA-MTMM 
models, the model is defined as a stochastic measurement model on the basis of classical psycho- 
metric test theory (CTT; Steyer, 1989), and all trait and method factors are defined as functions 
of the true-score variables. 1 Therefore, the trait and method factors are well-defined and have a 
clear meaning. As will be shown, there is a fundamental difference in meaning between the trait 
and the method factors. Furthermore, the model can be defined by only three assumptions. All 
other properties of the model, for example, the uncorrelatedness of trait variables with method 
factors and the uncorrelatedness of the error variables with all other latent variables, are logical 

1In the CFA-CTCM model (and in other CFA-MTMM models) it might be implicitly assumed that an observed 
variable is decomposed into a true-score variable ~k  and an error variable Elk, and each true-score variable is a linear 
function of trait factor ~ and a method factor M k: 

Yik = Tik -}- Eik, where 

Tik = )~Tik Ti + )~Mik Mk. 

However, the trait and method factors are not explicitly defined as functions of the true-score variables. 
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consequences of the definition of the model. Therefore, this model  provides a rationale for the 
uncorrelatedness of trait and method factors in M T M M  models. 

3. CTT as a Formal Framework for Defining M T M M  Models 

In classical test theory, it is assumed that an observed variable Y can be decomposed into a 
latent true-score variable T and an error variable E (Lord & Novick, 1968): Y = T + E. Using 
the concepts of conditional expectation and conditional independence, it can be demonstrated 
that the main results of CTT can be derived with minimal assumptions. Using this approach, it 
was shown that some of the axioms in CTT are not assumptions, but immediate consequences 
of defining the true-score and error variables (Lord & Novick; Steyer, 1989; Zimmerman; 1975). 
For example, the uncorrelatedness of the true-score and the error variables is such a consequence 
that cannot be wrong in empirical applications. 

In order to define an M T M M  model on the basis of CTT, the starting point is the decompo- 
sition of each observed variable Yik into a true-score variable iqk and an error variable Eik: 

Yik = Tik + Eik.  

The general properties of the error variables are described by Lord and Novick (1968) as well as 
Steyer (1988). The most important consequences of these poperties are: Ca) The expected value 
of an error variable as well as the conditional expected value of an error variable given a true- 
score variable iqk are 0. (b) The error and true-score variables are uncorrelated. Consequently, 
the variance of an observed variable can be decomposed into the variance of the true-score vari- 
able and the error variable: var(Yik) = var(T/k) + var(Eik). Based on this decomposition, the 
reliabili ty coefficient is defined as follows: rel(Yik) :=  Var(Tik)/Var(Yik), if 0 < var(Yik) < oc. 

To define the models of essentially r-equivalent  variables and r-congeneric  variables, it is 
assumed that the true-score variables of all observed variables are perfectly correlated, because 
they are either translations (essentially r-equivalent  variables) or linear functions of each other 
( r -congeneric  variables). Both models imply the existence of one common factor (Steyer, 1989). 
In M T M M  models, the assumption of unidimensionali ty is weakened, because the indicators 
measuring the same latent trait are not perfectly homogeneous and contain a method-specific 
component.  To define an M T M M  model, the true-score variables have to be decomposed.  In this 
paper, an M T M M  model is based on the decomposition: 

~ l  : E ( ~ l l ~ k )  + Mil. (3) 

Thus, a true-score variable T/l is decomposed into the latent regression E(T/ll T/k) and a residual 
Mi~. The residual Mi~ indicates that part of a true-score variable iq~ that is not due to another 
true-score variable iqk supposed to measure the same trait i. Hence, this residual indicates the 
method-specific effect of a method l with respect to a method k that is chosen as a comparison 
method. The major advantage of defining a method-specific variable in this way is that the true- 
score variable T~k and the method variable Mi~ are uncorrelated, because Mil is a residual with 
respect to the regression E(T/lIT/k). Consequently, the variance of a true-score variable T/l can 
be additively decomposed in the following way: 

var(T/z) : var[E(T/zIT/k)] + Var(Mil). (4) 

The coefficient of determination con(iql)k = var(E(iql l iqk)) /var( iql) ,  0 < var(iql) < oc, is the 
part of the variance of a true-score variable T/l that is explained by another true-score variable T/k 
with the same index i. As this coefficient characterizes the consistency in the trait measurements 
across different methods, it is called consistency coefficient of a true-score variable Til with 
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respect to the true-score variable T~k. This coefficient quantifies the convergent validity. The 
coefficient of indetermination ms(i~l)k = var(Miz)/var(Tiz), 0 < var(i~l) < ~c, on the other 
hand, is the part of the variance of a true-score variable that is not explained by another true-score 
variable T~k. As both variables should measure the same trait i, this variance component indicates 
that part of the variance of the true-score variable it)~ that is due to the specific method 1 and is 
called the method specificity coefficient of a true-score variable ~ with respect to the true-score 
variable Tik. 

Because of  (4) the reliabili ty coefficient of  an observed variable can be decomposed into 
two components as well: 

Var(Til) Var[E(7)tlT)k)] Var(Mil) 
r e l ( Y i l ) -  var(Yil--~ --  var(Yi~) + var(Yil-------~' 

i f 0  < var(Yik) < oo. The first variance component con(Yiz)k : =  var[E(~llTik)]/var(Yit)in- 
dicates the part of the variance of  an observed variable that is due to interindividual differences 
on a true-score variable ~k  and is called consistency coefficient of an observed variable Yi~ with 
respect to the true-score variable ~k. The second component ms(Yit)k : =  var(Mil)/var(Yiz) 
measures the proportion of  variance of  an observed variable that is due to true method-specific 
differences and is called method specificity co@cient of an observed variable Y~ with respect to 
the true-score variable Tik. 

All  equations described so far do not depend on any restrictive assmnption, and they cannot 
be wrong in any empirical application. However, without further assmnptions the variances of 
the true-score variables, error variables, and method-specific residuals as well as the reliability, 
consistency, and method specificity coefficients are not identified. Hence, further assumptions 
have to be made that define specific M T M M  models. Because the M T M M  model defined in the 
next section is a CFA-CTCM model with one method factor less than methods considered, it is 
called CFA-CTC(M-1)k model, where k denotes the method chosen as comparison standard. 

4. A CFA-CTC(M-1)k Model  for M T M M  Data 

In order to define a M T M M  model within the formal framework described in the last section, 
it is necessary to select one method as comparison standard. This means that the true-score 
variables of this method are taken as regressors and the true-score variables of the remaining 
methods as regressands in (3). The CFA-CTC(M-1)k model is defined by three assumptions. 

Definition: CFA-CTC(M-1)k model. The variables Yll . . . . .  Yik . . . . .  Ytm, i • I = 
{1 . . . . .  t}, k • K = {1 . . . . .  m}, are variables of  a CFA-CTC(M-1)k model, i f  and only i f  
TH . . . . .  T~k . . . . .  Tt,~ are the true-score variables, and E l l  . . . . .  Eik . . . . .  Elm are the error 
variables defined in Appendix A, k • K is the method chosen as comparison standard, and: 

1. Given k • K ,  there are one #i~ and one ;~Til • R, ~-'ril > 0, for each pair (i, l),  i • l ,  1 • K,  
such that 

E(TiIITik ) = fl4I -t-)~Till)k, (5) 

where E(i~lli~k) denotes the i~k-Conditional expectation of  itil. 
2. For each pair (i, l),  i e I ,  l e K,  l ¢ k, there is a LMiZ • IR, )~Mil > 0, and for each l • K,  

l ¢= k, there is a variable Ml such that 

Mil = )~MilMI, (6) 

where Mil = ~ l  - -  E ( ~ l l ~ k ) .  

3. COv(Eil, Ef t / )  = O, (i, l) 5~ ( j ,  lt),  i, j e I; l, I t e K. (7) 
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4. The vec tor /x  I and the matrices AT, AM, di)T, (I}M, and O are defined as follows. 

] Ill = (#11, . . .  , # i l ,  . . .  , # t l ,  . . .  , # l l  . . . . .  # i l ,  . . .  , # t l  . . . . .  # l m ,  . . .  , # i r a ,  . . .  , # t i n )  

with #il = 0, if  1 = k. 

l i AM2 0 . . .  0 [ATl[ and A M =  . . . . . . . . . . . . . .  , 

iA~rml 0 . . .  0 AMm 

where AT/ = diag(XTi/) is a (m × m) matrix of  trait loadings with ATk = I (unity) for 
l = k, and ~,M~ is a (t x 1) vector with elements ;~Mil for l ~ k, and ~t.Mk = I) for l = k. 
(I)T is a fully free (t x t) matrix with elements cov(Yi, 7)),  i, j c I .  @M is a (m × m) 
matrix with elements qSzl~ = cov(M~, M~,) for 1 ¢ k and F ¢ k, and ~bH, = 0 for 1 = 
k or I ~ = k. O is a (tin x tm)  diagonal matrix of  error variances with diagonal elements 
var (EH)  . . . . .  var (Et l )  . . . . .  v a r ( E l m ) , . . .  , var(Etm). 

To define an M T M M  model in the framework of  CTT, it is necessary to choose one method 
k as a comparison standard. According to Assumption 1, the regressions of  all true-score vari- 
ables with the same index i on the true-score variable lik are assumed to be linear functions of 
2~k. Hence, the true-score variable 2~k of the method k that is chosen as comparison standard is 
the common latent trait variable of all true-score variables with the same index i. Assumption 
2 means that all residuals belonging to the same method 1 measure one common method factor 
Ml. This assumption is equivalent to the assumption that all residuals Mil belonging to the same 
method I are linear functions of each other (see Appendix B): M i l  = ~ , M i j l M j l .  This means that 
all residuals Mil belonging to the same method l are perfectly correlated indicating a homoge- 
neous method effect across traits. There is no additive constant (intercept) in (6) because the 
variables Mil are residuals and, therefore, E(Mil)  = 0. The common method factors Ml, how- 
ever, are not uniquely defined by (6), because several combinations of ,~Mil and Ml fulfill (6). 
The method factors Ml and the corresponding loading parameters ,~Mil  are uniquely defined only 
up to similarity transformations, that is, multiplying Ml with a real constant o~ and dividing ,~Mil 
by the same constant o~ do not change (6). Consequently, some standardizations must be made to 
select specific representations. One possible standardization is to set either one item parameter 
)~Mil or the variances of the method factors Mz to any real value larger than 0 for each I c K.  As-  
sumptions 1 and 2 show that there is a fundamental difference in what a trait and what a method 
factor is. Whereas the trait factors are the true-score variables of the comparison method, method 
factors are linear functions of  true-score residuals. Assumption 3 means that all error variables 
are uncorrelated. 

Because of  (5) and (6), the following equation holds for all observed variables: 

l~il -t-) , .TilTik+)~.MilMl+Eil,  fo r /  ~=k 

YiI  = [ T i k  -I- E i k ,  for I = k. (8) 

The CFA-CTC(M-1)k model implies that (a) the trait factors are uncorrelated with the method 
factors and the error variables, and that (b) the method factors are uncorrelated with the error vari- 
ables (see Appendix C). Furthermore, the error variables are uncorrelated with each other because 
of  (7). Consequently, the CFA-CTC(M-1)k model  implies the following covariance structure: 

= AT(I)TA~tlp -H AMq'bMA~ -t- O, 

where the matrices have the structure described in the definition of the CFA-CTC(M-1)k model. 
Using computer programs for structural equation modeling, for example, AMOS (Arbuckle, 
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1995), EQS (Bentler, 1992), LISREL (J6reskog & S6rbom, 1993), or Mplus (Muthdn & Muth6n, 
1998), it can be tested whether the covariance structure implied by the CFA-CTC(M-1)k model  
holds for an empirical application. 

4.1. Ident i f ica t ion  

One major problem of the CFA-CTCM model is that it is not globally identfied. Grayson 
and Marsh (1994) discussed conditions for nonidentification of  the CTCM model. They showed 
that the CFA-CTCM model is not identified if  the M T M M  loading matrix is rank deficient. Fur- 
thermore, they specified the conditions under which the M T M M  loading matrix is rank deficient 
(Grayson & Marsh, 1994, Theorem 3). One condition leading to rank deficiency, for example, 
is the situation when all loading parameters are set equal to one. Other conditions are discussed 
by Grayson and Marsh (1994). Because there is one method factor less than methods included 
in an M T M M  study, the CFA-CTC(M-1)k model is identified even in the case where all loading 
parameters are equal to 1. 2 The following theorem shows that the CFA-CTC(M-1)k model is 
globally identified when there are at least three traits and flaree methods. Furthermore, this the- 
orem specifies the conditions under which the model is identified when there are less than three 
traits or less than three methods. 

Theorem:  Ident i f icat ion.  If the variables Y l l  . . . . .  Yik, . . . , Y,m, i c I ,  k c K ,  are variables 
of a CFA-CTC(M-1)k model, then the parameters of the vector t* and the matrices AT, AM, 
~W, ~M, and E are identified, if  either one factor loading )VMil for each method factor Ml or the 
variances of the method factors are set to any real value larger than 0, and 

(a) t > 2 and m > 2, 
(b) t > 2, m = 2, and (I) T is fully free with non-zero elements, 
(c) t = 2, m > 2, and (I) T and dP M a r e  fully free with nonzero elements. 

(Proof, see Appendix D). 

According to this theorem, the CFA-CTC(M-1)k model is identified if  there are at least three 
traits and three methods included in an M T M M  study. If  there are less than three traits or less 
than three methods, further conditions must be fulfilled to get an identified model. The minimum 
condition, however, is that either the number of traits or the number of methods is larger than 2. 
In the case of two traits and two methods the model is not identified without further restrictions 
on the parameters. For example, a model  in which all loading parameters are set equal to one is 
identified in the case t = 2 and m = 2. 

5. Applications 

To illustrate the CFA-CTC(M- 1)k m o d e l ,  it is applied to two data sets: (a) the Mount (1984) 
data set that was reanalyzed with C F A - M T M M  models by Kenny and Kashy (1992), and (b) data 
from a study on sun protection behavior (Eid, 1997; Eid, Klusemann & Schwenkmezger,  1996). 
The applications refer to mean-corrected data sets. 

5.1. A p p l i c a t i o n  I: 77~e M o u n t  (1984)  S tudy  

Mount (1984) compared self-ratings of  managerial  performance to those of  supervisors and 
subordinates. Each rating was given on a nine point scale. The responses of  the subordinates 

2If the CFA-CTC(M- 1)k model is defined by a reduced matrix A M that does nol contain ~Mk = O, then the loading 
matrix of the CFA-CTC(M-1)k model is not rank deficient. In this article, ~-Mk = 0 is included in A M because it 
simplifies the description of the model. Both presentations are equivalent. 
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were aggregated for each manager. Kenny and Kashy (1992) reanalyzed a (3 x 3) M T M M  matrix 
from the Mount (1984) study with CFA models (N = 80). The traits were administrative ability, 
ability to give feedback to subordinates, and consideration when dealing with others. The three 
methods were the self-ratings and the ratings of the supervisors and the subordinates. Kenny 
and Kashy (1992) reported several difficulties in fitting CFA-CTCM models with and without 
correlations between the method and the trait factors. Both, the application of the CFA-CTCU 
model as well as the fixed method model resulted in proper solutions and an appropriate fit of 
the model (CFA-CTCU model: X 2 = 18.73, d f  = 15, p = .23, CAIC = 180.02; fixed method 
model: X 2 = 18.56, df  = 15, p = .23, CAIC = 180.19). 

The (3 x 3) M T M M  matrix was reanalyzed by the CFA-CTC(M-1)k model. In order to 
apply this model  one of the three methods has to be chosen as comparison standard. Because 
there is one self-report method and two other-report methods it is reasonable to take the self- 
report as comparison standard and to contrast it with the two other-report methods. Therefore, 
the method factors measure deviations of  the other-report variables from the values predicted 
by the self-report variables, and the correlations between the method factors indicate the degree 
of  convergence of  method-specific effects due to different other reports. The fit of  the model  
with correlated method factors is X 2 = 19.51, d f  = 17, p = .30, CAIC = 170.26. In or- 
der to check the fit of  the models if one of  the other-report methods is chosen as comparison 
standard, these models are analyzed as well. The fit of  the model with the supervisor ratings as 
comparison method is )~2 = 23.68, df  = 17, p = .113, CAIC = 174.37, and the fit of the 
model with the subordinates ratings as comparison method is X 2 = 24.73, df  = 17, p = .10, 
CAIC = 175.43. These results show that the fit of the CFA-CTC(M-1)k model depends on the 
choice of the method chosen as comparison standard. The model  is not symmetrical  and, there- 
fore, the comparison method has to be adequately selected. F'urthermore, the results confirm that 
the self-report method is a suitable comparison standard in the current application. Comparing 
the different M T M M  models by their CAIC coefficients shows that the CFA-CTC(M-1)k mod- 
els are more parsimonious than the other two CFA-M' IMM models, the CFA-CTCU and the 
fixed method model. In contrast to the two other Ct~A-MTMM models, only the CFA-CTC(M- 
1)k model allows the estimation of variance components due to trait, method, and error effects. 
Taking the properties and the fit coefficients together, the CFA-CTC(M-1)k model with the self- 
report method taken as comparison standard seems to be the most appropriate model of all the 
CFA-MTMM models considered in this article for analyzing the managerial  performance data 
set. 

The estimated parameters of the C F A - C T C ( M - l h  model (where k = 1 denotes the self- 
report  method) and the estimated reliability, consistency, and method specificity coefficients are 
presented in Table 1. The estimated reliability coefficients range between .28 and .72. The method 
specificity coefficients are very large for the rating of the ability to give feedback indicating that 
both other reports differ largely from the self-report with respect to this trait. For the two other 
traits, the method specificity is lower, particularly for the supervisors. This shows that for these 
two traits the self-ratings are more similar to the supervisors '  ratings than to the subordinate 
ratings. The correlation between the administrative ability and the ability to give feedback is 
relatively large, whereas the other correlations as well as the correlations between the method 
factors are comparably small. 

5.2. Application II: Sun Seeking Behavior 

The second application refers to a study on sun protection behavior (Eid, 1997; Eid et al., 
1996). In this study N = 531 participants were asked to report various aspects of  their sun-related 
behavior in the last summer, their health attitudes, and their health behavior in general. After 
reading a short text on sun-protection behavior, the participants had to answer several questions 
related to risk appraisal. Finally, they were asked to report how they intended to behave in the 
next summer. The CFA-CTC(M-1)k model was applied to three items (methods) measuring the 
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sun-related behavior in the last summer (Trait 1) and the intended behavior in the next summer 
(Trait 2). This application differs in two aspects from the first application: (a) The different items 
are considered as different methods, but all items were answered by self-report. Thus, method 
specificity in this application is due to item specificity, that is, differences in the formulation 
of the items that were constructed to measure the same latent construct. (b) The sample size is 
much larger than in the first application. Therefore, the test statistic has much more power to 
detect a misfit of the CFA-CTC(M-1)k model. The instruction for the assessment of the sun- 
related behavior in the last summer was: ' qh i s  summer, I . . .  " and the items were: (i) " . . .  
tried to get as dark a tan as possible" (suntan), ( i i ) " . . .  avoided the sun as far as possible," (sun 
avoidance) (iii) " . . .  I often lied out in the sun taking a sunbath" (sunbathing). The instruction 
for the items assessing the intended sun-related behavior in the next summer was: "Next summer, 
I . . .  " and the items were: (a) " . . .  will try to get as clark a tan as possible (suntan); '  (b) " . . .  
will avoid the sun as far as possible" (sun avoidance), (c) " . . .  I will often lie out in the sun 
taking a sunbath" (sunbathing). Each item was rated on a four-point rating scale with labels is 
definitely true, is mainly true, is mainly wrong, is definitely wrong. 

In this application, it is less obvious which of the three methods should be selected as com- 
parison standard. Therefore, the method that is most appropriate as comparison standard was 
detected by an empirical analysis. First, the total sample was randomly split into two subsamples 
of sizes n l  = 265 (Subsample 1) and n2 = 266 (Subsample 2). Then, the covariance matri- 
ces of the six observed variables were calculated for the two subsamples after listwise deletion 
of missing values (corrected n's:  n l  = 256, n2 = 259). Finally, the fit of the three possible 
CFA-CTC(M-1)k models with different methods taken as comparison standard were analyzed 
by LISREL 8 (J0reskog & S6rbom, 1993) for each subsample and the generalizability of the re- 
sults across the two subsamples was analyzed. The results of these analyses are given in Table 2 
(all method loadings are set equal to one in these applications). In both subsamples, the model 
with the suntan item as comparison standard Shows the best fit, followed by the sun-avoidance 
item and the sunbathing item. After this cross-validation of the model fit coefficients it seems 
reasonable to take the suntan item as comparison standard. This model is also interesting for 
psychological reasons. The suntan item refers to more appearance-related motivational aspects 
(motivation to get tan) whereas the other two items assess sun-related behavior (sun-seeking vs. 
sun-avoiding behavior). Therefore, correlated method factors would indicate behavior-specific 
convergence. Hence, in this model motivational and behavioral aspects are contrasted. 

For simplicity reasons, the model parameters are reported for the total sample. The covari- 
ance matrix of the total sample is depicted in Table 3 (N = 515). The CFA-CTC(M-1)I model 
(where k = 1 denotes the sun-tan item) fits the data well (X 2 = 6.59, d f  = 5, p = .25, 
CAIC = 122.50). The CAIC coefficient of the CFA-CTC(M-1)1 model is smaller than the CAIC 
coefficients of the CFA-CTCU model ()¢2 = 9.06, d f  = 5, p = .11, CAIC = 124.97) and 
the fixed method model 0¢ 2 = 0.66, d f  = 1, p = .42, CAIC = 145.54). Furthermore, the 

TABLE 2. 
Fit Coefficients of Three CfaA-CTC(M-1)k Models in Two Randomly Selected Subsamples 

Comparison method Subsample 1 Subsample 2 

Sun t an  ;(2 = 7.11, p = .21 ;(2 = 9.60, p = 0.9 

CAIC = 111.83 CAIC = 114.51 

;(2 = 19.17, p < 0.1 
CAIC = 123.89 

;(2 = 8.36, p = .14 
CAIC = 113.80 

Sun avoidance 

Sunbathing 

X 2 = 18.09, p < .01 

CAIC = 123.00 

;(2 = 11.70, p = .04 

CAIC = 116.61 

Note. d f  = 5. 
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TABLE 3. 
Covariance Matrix of the Sun Seeking Behavior Items 

Behavior 

Suntan 1.08 

Sun avoidance 0.35 0.80 

Sunbathing 0.70 0.36 0.95 

Intentions 

Suntan 0.72 0.33 0.57 

Sun avoidance 0.37 0.51 0.37 

Sunbathing 0.62 0.38 0.68 

0.92 

0.40 0.94 

0.64 0.42 0.90 

Note. N = 515. The sun avoidance items are recoded. 

application of the CFA-CTCM model resulted in improper solutions and identification warnings. 
Hence, the CFA-CTC(M-1)k model is a suitable model for the present application. 

Table 4 contains the estimated parameters and coefficients of the CFA-CTC(M-1)I model. 
The reliabilities of the items are relatively large (between .57 and .83) and are clearly larger 
than the reliabilities estimated in the CFA-CTCU model (between .25 and .78, not reported in a 
table). The sun-avoidance items and the sunbathing items differ in their consistency and method 
specificity coefficients. The consistency is relatively large for the sunbathing items and relatively 
small for the sun-avoidance items. This result shows that the motivation to get a suntan is more 
closely related to the sunbathing behavior than to the sun-avoidance behavior. Both latent trait 
variables are highly correlated indicating that the intentions largely depend on previous behavior. 
The correlation between the method factors is moderately large and significant showing that both 
behavior related items have more in common than is explained by the correlations of the trait 
factors. 

6. Discussion 

Both applications demonstrate that the CFA-CTC(M-1)k model is a useful model for the 
analysis of MTMM data. In contrast to the CFA-CTCM model, it is globally identified. From 
this point of view, the problems of the CFA-CTCM model might be due to an overfactoriza- 
tion. This problem of overfactorization due to considering as many method factors as methods 
included in a MTMM design might not only be relevant for MTMM models but also for multi- 
method models of longitudinal data analysis (for a discussion of method factors in longitudinal 
studies, see Eid, 1996; Eid, Schneider & Schwenkmezger, 1999). Thus, the CFA-CTC(M-1)k 
model gives some reasons why the variance of one method factor is often not significantly differ- 
ent from 0 in an empirical application. Compared to the CFA-CTCU model, the CFA-CTC(M-1)k 
model (a) allows correlated method factors, (b) is parsimonious, and (c) provides more appro- 
priate estimates of the reliability coefficients. In contrast to the CFA-CTCU model and the fixed 
method model, only the CFA-CTC(M-1)k model allows the estimation of variance components 
due to trait, method, and error effects. These variance components can be used to select items 
and scales with small method specificity. Furthermore, all latent variables of the CFA-CTC(M- 
1)k model can be defined on the basis of the true-score variables of classical psychometric test 
theory. This does not only clarify the meaning of the latent variables, but gives clear reasons for 
uncorrelatedness restrictions usually made in structural equation models of MTMM data. 

Besides the advantages of the CFA-CTC(M-1)k model, there are three limitations that might 
restrict its applicability. The first limitation is that one method has to be selected as a compari- 
son standard. The CFA-CTC(M-1)k model is not symmetrical and the choice of the comparison 
method affects the fit of the model as it was shown in the two empirical applications. The choice 
of an appropriate comparison standard might be a problem for the empirical application of the 
model. The selection of a comparison method is certainly best guided by theoretical assumptions 
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and research interests. In the first application of the CFA-CTC(M-1)k model, for example, the 
research interest was in contrasting self-report with other-report methods. In many applications, 
however, theoretical reasons for preferring one method to the others might not be obvious. In 
this case, a cross-validation strategy might be a suitable way to select an appropriate comparison 
method. This strategy was demonstrated in the second application. It is a worthwhile task for 
future research to explore the conditions that makes a method a good comparison standard. 

The second limitation is that there is only one indicator for each trait-method combination. 
The very low reliabilities of some items in the first application show that the error variables 
might not only reflect measurement error but item-specific variance that is due to item-rater in- 
teractions. To get better estimates of the reliabilities, a model with multiple indicators for each 
trait-method combination might be more appropriate (Marsh & Hocevar, 1988). Thus, the de- 
velopment of an M T M M  multiple indicator model in which all latent variables are defined as 
functions of the true-score variables seems to be a valuable task for future research. The sec- 
ond application, however, illustrates how the model  can be used to estimate the degree of i tem 
specificity if  all ratings are self-reports. In this case, different items were considered as different 
methods, but all items are developed as indicators of one latent construct. Hence, method effects 
are due to differences in the semantic formulation of the items. In this application the reliabil- 
ity coefficients are reasonably high and the model fits the data well. Thus, the CFA-CTC(M-1)k 
model is particularly useful for the analysis of item-specificity in multidimensional test models, 
in which the same items are administered under different conditions. 

The third limitation might be due to the assumption of linear relations between the observed 
and the latent variables. In both applications, as in most CFA-MTMM studies, rating scales with 
ordered categories were analyzed. For this kind of response scale non-linear models of i tem 
response theory might be more appropriate. Therefore, the development of an item response 
M T M M  model on the basis of the stochastic measurement theory considered in this paper is 
another important task for future psychometric research. In the present applications, however, it 
can be expected that the bias of analyzing rating scales with linear models is relatively small. 
Al l  rating scales have more than three categories, the variables in the second application are 
only slightly skewed (between - . 8 7  and - .  14), and they are skewed in the same direction (the 
skewness of the managerial  performance variables are not reported by Mount, 1984). Under these 
conditions, the normal theory maximum likelihood estimation method works well even for rating 
scales (West, Finch & Curran, 1995). In conclusion, the M T M M  model developed in this paper 
supplements the class of CFA models for M T M M  data, overcomes some limitations of previous 
M T M M  models, demonstrates how trait and method factors can be defined as functions of the 
true-score variables, and gives important hints for the future development of further M T M M  
models. 

Appendix A: Definition of the True-score and Error Variables 

In this Appendix it is shown how the true-score and the error variables of the CFA-CTC(M- 
1)k model can be defined using the concepts of probabili ty spaces and random variables. As 
the definitions do not differ from CTT, the basic principles of CTT will be shortly summarized 
following Steyer 's (1989) and Zimmerman's  (1975, 1976) definitions. The formal framework of 
CTT will shortly be described according to Steyer 's formulation. 

The kind of random experiment considered in CTT is defined by the following set g2 of 
possible outcomes: ~2 = U x A. The set ~2 of possible outcomes is the Cartesian product of 
two different types of sets: (1) U is the set of individuals from which a subject u is drawn, 
and A is a set of possible outcomes of the items or the possible values of a scale or another 
kind of measurement (e.g., hormone levels, etc.). The random variables Yik:~ ~ R map the 
possible outcomes into the set of real numbers R = 1R U {oc} U { -oc} .  The values of one random 
variable Yik are the scores on an item or scale measuring a trait i by a method k. The variances 
of the variables Yik are assumed to be positive and finite. For defining a latent variable model  
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on the basis of CTT, the starting points are the conditional expectations E(Yik IPu). The values 
of the mapping pu:S2 --+ U are the individuals• A value E(Yik IPu = u) of the random variable 
E(Yik IPg) is the expected value of the intraindividual distribution of Yik• In CTT, this value is 
called true score and E(Yiklpg) is called true-score variable, with /)k :=  E(Yiklpg), i e I, 
k e K. The error variables Eik  are defined as residuals: Eik  := Yik --  E(YiklPv). 

Appendix B: Method Factors 

In this Appendix it is shown that Assumption (2) of the Definition of the CFA-CTC(M-1)k 
model is equivalent to the following assumption: 
(2 I) For each tripel (i, j ,  l), i, j e I ,  l e K, l ~ k, there is a )VMijl C •,  )VMijl > 0, such that 

m i l  = ,~MijI M j l •  (9) 

Proof Because (6) holds for two variables Mil and Mjl, it follows that Mil = )VMi l (Mj l / )VMj l ) •  

Hence, (9) results from (6) by defining )VMijl : :  )VMil/)VMj I. Equation (6) results from (9) by 
defining, for example, "~Mil : "~Mill and Ml = Mll for each I e K and j = 1. Inserting these 
new defined parameters in (9) results in (6)• Therefore, (6) and (9) are equivalent• [] 

Appendix C: Uncorrelatedness of Trait Factors, Method Factors and Error Variables 

The CFA-CTC(M- 1)k model implies that 

COV(~k, MD = 0; (10) 

COV(~k, Ejl) = 0; (11) 

cov(m/,  Ell,) = 0. (12) 

Proof (i) Derivation of (10). Because Ml = (1 / )VMi l )Mi l  (i.e., (6)), it follows that 
COV(l)k, M l )  = (1/)VMil)COV(Tik,  M i l ) .  Because M i l  is a residual with respect to /)k, both vari- 
ables are uncorrelated (Steyer, 1988, Equation (9)). Therefore, cov(T/k, Ml) = 0. (ii) Derivation 
of(ll). See Steyer (1989, Equation (10)). (iii) Derivation of(12). From (5) and (6) it follows that 
M l  = ( 1 / L M i l ) [ T i l  --  # i l  --  LTil Tik]. Because the true-score variables/)k and/ ) l  are uncorrelated 
with the error variables Eil ,  , it follows that cov(M~, Eil ,  ) = O. 

Appendix D: Proof of the Identification Theorem 

For simplicity reasons, the identification of the CFA-CTC(M-1)k model is demonstrated for 
three traits and three methods• The proof of identification for more than three traits and methods 
is straightforward. Without loss of generality, the first method is chosen as comparison standard, 
and for each method I the loading parameter )VM1 / is set equal to one for standardization reasons• 
Then, the covariance matrix of the observed variables is partioned into ( m x  m) submatrices 
Ell,(/, 11 e K) of size (t x t) in the following way (t = m = 3): 

[-Ell E12 E13] 
E = /E21 E22 E23 / 

LE31 E32 E33J 

F CI)T -[- (~)1 
= / AT2CI)T 

L AT3 (I)T 
AT2(I)TA~F2 -[- AM2(I)MA~vI2 -[- (~)2 

! ! 
AT3 qbTAT2 q- AM3 qbMAM2 

-] 
• • •  | 

AT3 qbTA~F3 q- AM3qbMAM3 q- (~3 
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w h ~ e  

ATk : 
)V~ll 0 0 1 

LT21 0 , Ok: = 
0 )VT3! 

-var(Etk) 
0 
0 

AM2 = [0[AM210], AM3 = [0101AM3], and 

0 0]  
var (E2k) 0 , 

0 var(E3k) 

)tMk = )~M2k • 

L,LM3kJ 

In the definition of  the CFA-CTC(M-1)k model, it is assumed that all trait and method loadings 
are larger than 1. However, there are no restrictions on the covariances of  the trait factors and the 
covariances of  the method factors. In this Appendix the identification of  the CFA-CTC(M-1)k 
model is proved for four conditions: (1) OPT and OPM are fully free with nonzero elements, (2) OPT 
is fully free with nonzero elements and OPM iS diagonal, (3) OPT is diagonal and OPM is fully free 
with nonzero elements, and (4) OPT and OPM are diagonal. 

Condition 1: OPT and OPM a m  fully free with nonzero elements. The off-diagonal elements 
of  OPT are identified from those of 211. The elements of  ATZ are then identified from the off_ 
diagonal elements of Nn (l > 1). The diagonal elements of OPT are then identified from OPT = 
[ATI]- INII( I  > 1). The elements of ®~ are now identified from ®1 = EH - OPT. The matrix 
AM3 OPMA~I 2 is now identified from ~32 -- AT3 OPTA~r2. The matrix AM3 OPMA~2 has structure 
cov(M3, M2)AM3AM2 , and coy(M3, M2) iS identified from the element in the first row and first 
column of AM3OPMA~I 2 (where ;VM13 = ;VV12 = 1). Then, AM3 and AM2 are identified from 
the first column and row, respectively. Given the AMI are known, the diagonal elements of OPM 

: 1). Fi- (method variances) are identified from the off-diagonal elements of Ell - AT/OPTATI (I > 
nally, the error submatrices Of, I > 1, are identified from (~)~ = ~11 -- AT10PTA~F1 -- AM/OPM OPMI': 
These identification rules show that at least two different traits and three different methods are 
required. 

Condition 2: OP T is fully free with nonzero elements and OPM is diagonal. The trait part of 
the model (OPT, AT) and the matrix ®1 are identified according to the identification rules of 
Condition 1. The method part is identified from the matrices Ez~:(l > 1): 

~ var(Y1/) .... 1 

= XM~/Var(M/) + Lixtva~r21 ) +var(E~ i ~.mZtvar(Mt ) . X.raeX.rlF.ov(r2 v rx 0 2 2 

[~.M3/var(M/) + ~r3~lFXW(T3t, /'1i) hM31XM21var(M/) ÷ ~q,3~2/eov(T31, T21) 

(See Figure 2 for a larger and more readable copy of  this matrix). The loading parameter )~M2/ 
is then identified from [COV(Y3/, Y2l) -)VT31)VT21COV(731, l?l)]/[cov(Y3t, Ylt) -~'T31)VTllCOV(T31, 
Tll)]. The other loading parameter )VM3Z is identifed from cov(Y3t, Y2z) and cov(Y21, Yll) in an 
analogous way. Then, var(Ml) is identified from [cov(Y2z, Y1z) - )VT2fiVTllCov(T21, Tm]/)VM21. 
Finally, the error variances are identified from the diagonal. These identification rules show that 
at least three different traits and two different methods are required. 
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Condition 3: OPt is diagonal and OPM fully free with nonzero elements. The variances of the 
method factors and the method loadings are identified from the matrices Nil (l > 1): 

Z// = ~ ,,a~(rlt) . . . .  ] 
vCr~, r u) w~O'~) 
v(r:u, Yal) cov(r~ r~) va£r3O 

F 
ar(M/) + 41/var(Tll) + var(El/) 

= kM2/var(M/) 

kM3/var(M/) kM3/~.M2/var(M/) 
] 

(See Figure 3 for a larger and more readable copy of this matrix). The loading parameter )VM2 / 

is identified from cov(Y31, Yel)/Cov(Y31, Yll). The other loading parameter )VM3 / is identifed 
from cov(Y31, Yel) and cov(Yel, Yll) in an analogous way. Then, var(Ml) is identified from 
cov(Ye, Yll)/)VMel. The method covariances are identified from the matrix N3e:cov(M3, Me) = 
cov (Y13 ,  Y22)/)VM22. 

The trait part of the model  is then identified from 

£i 

var(Ya) . . . . . .  ] 

I cov(~2, Y,,) var(~2) 

[c°v(g,3, El) c°v(Y,3, Ya) var(Y3) 

Var(T1) + var(Eil ) 

= Llavar(T,1) 

[ ~'li3var(~l) 

2 . t 2i2var(M2) £r,2Var(7il ) + + var(Ei2 ) 

~.ri3J~ri2Var(~l) + )~Mi3~.Mi2COV(M3 , M 2) )~].i3var(Ti3) + 2 -  )~Mi3var(M3) + var(Eifl 

(See Figure 4 for a larger and more readable copy of this matrix.) The parameter )VTi 3 is identified 

f r o m  [cov(Yi3 , Yi2) - )VMi3)VMi2Cov(M3, M2)]/COv(Yi2,  Y i l ) .  The parameter LTi2 is identified 
in an analogous way from cov(Yi3, Yi2) and cov(Yi3, Yil). The trait variance var( iql)  is then 
identified from cov(Yi2, Yi 1)/)VTi2. Finally, the error variances are identified from the diagonal of 
Ni. These identification rules show that at least three different traits and three different methods 
are required. 

Condition 4: OP T and OPM are diagonal. The identification rules are the same as the identi- 
fication rules of Condition 3 with the additional restriction that coy(M3, M2) = 0. 

Identification of the constants #il. Under all four conditions, the constants #i l ,  l > 1, are 
identified from the expectations of the observed variables and the loading parameters whose 
identification has been shown above: #i l  = E(Yil) - )~TiIE(Yil), because E(Yil) = E(#il q- 
,~TiITil q- ,~MiIMl q- Ei l )  = # i l  q- "~TilE(T/1) and E(Yil) = E(7)l  + E i l )  = E ( ~ I ) .  
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