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A review of model-selection criteria is presented, with a view toward showing their simi- 
larities. It is suggested that some problems treated by sequences of hypothesis tests may be more 
expeditiously treated by the application of model-selection criteria. Consideration is given to 
application of model-selection criteria to some problems of multivariate analysis, especially the 
clustering of variables, factor analysis and, more generally, describing a complex of variables. 
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Model Selection Versus Hypothesis Testing 

Model-selection criteria take account simultaneously of both the goodness-of-fit 
(likelihood) of a model and the number of parameters used to achieve that fit. The criteria 
take the form of a penalized likelihood function, that is, the negative log likelihood plus a 
penalty term, which increases with the number of parameters. 

Often one is in an exploratory phase of data analysis, trying to find a model. For 
example, one may be planning to compare two treatment means but allowing possibly 
unequal population variances, Then, rather than doing a preliminary test of equality of 
variances, one could consider and evaluate four different models. 

Multiple comparison of means is another situation in which thinking in terms of 
evaluation of the members of a set of alternative models may be more appropriate than a 
sequence of hypothesis tests. The possible clusterings constitute alternative models. For 
example, if there are three groups, then the possible clusterings are as in Table 2. 

Fitting a polynomial is another such situation. In the simplest case, that of fitting a 
quadratic or a linear function, instead of testing the hypothesis of nullity of the coefficient 
of the quadratic term, why not assign figures of merit to the linear and quadratic models 
and choose between them accordingly? There is an obvious generalization here to fitting 
higher-order polynomials and to choosing the order of an autoregressive scheme. 

Test procedures involve choice of significance levels; application of test procedures to 
multiple-decision problems involves choice of a number of dependent significance levels. 
Also, as Akaike states (1987), test procedures do not penalize for overparametrization 
because usually a saturated model is used as a reference. 

Hypothesis testing is well suited to some problems, where Type I and Type II error 
probabilities have frequency interpretations in actual populations, for example, treatment 
populations in a clinical setting, or when in sampling inspection for quality assurance the 
error rates correspond to consumers' and producer's risk. But, often model-selection will 
provide a viable alternative to hypothesis testing. 
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TABLE I 

Four Different Models for Comparison of Means, 
Allowing Inequality of Variances 

Number 
Model Means Variances of parameters 

1 equal equal 2 
2 equal unequal 3 
3 unequal equal 3 
4 unequal unequal 4 

Review of Model-Selection Criteria 

This section of the paper treats some aspects of the development and application of 
criteria for model-selection. Criteria such as those of Akaike (1973, 1974, 1981, 1983), 
Schwarz (1978) and Kashyap (1982) are considered. 

Consider, then, the problem of choosing from among a number of models, indexed 
by k (k = 1, 2 . . . . .  K), and let L(k) be the likelihood (joint probability density function of 
the observations, considered as a function of the parameters, with the observations held 
fixed) given the k-th model. Various model-selection criteria taking the form 

- 2  log [max L(k)] + a(n)m(k) + b(k, n), (1) 

have been developed in relatively recent years. Here n is the sample size, "log" denotes the 
natural logarithm, max L(k) denotes the maximum of the likelihood over the parameters, 
and re(k) is the number of independent parameters in the k-th model. For a given criterion 

TABLE 2 

The Five Possible Cluster ings of Three Objects 
wi th  App l i ca t ion  to Mu l t i p l e  Comparison of Three Means 

Number 
Model  Clustering of parameters (means) 

1 {1,2,3}  1 
2 {1 ,2} ,  {3} 2 
3 {1 ,3} ,  {2} 2 
4 {2 ,3} ,  {1} 2 
5 {1}, {2}, {3} 3 



STANLEY L. SCLOVE 335 

a(n) is the cost of fitting an additional parameter and b(k, n) is an additional term 
depending upon the criterion and the model k. A model is good if it gives a small value of 
(1), relative to the values given by competing models. 

Akaike, in an important sequence of papers, including Akaike (1973, 1974, 1981, 
1983), developed such a criterion as an estimate of the expected entropy (Kullback-Leibler 
information). Akaike's information criterion (AIC) is of the form (1) with 

a(n) = 2 for all n, b(k, n) = 0. (2) 

Schwarz (1978) and Kashyap (1982) work from the Bayesian viewpoint, expanding 
Pr (Model k l data), the posterior probability of model k, given the data. The multiplier of 
re(k) in this expansion is log n; that is, in Schwarz's and Kashyap's criteria, a(n) = log n, 
rather than a(n) = 2 as in AIC. So Schwarz's criterion is of the form (1) with 

a(n) = log n, b(k, n) = 0. (3) 

Since, for n greater than 8, log n exceeds 2, Sehwarz's criterion favors models with fewer 
parameters than does Akaike's. I(ashyap's criterion will be discussed more fully shortly. 
First let us note other developments yielding criteria similar to (3). Rissanen (1978) 
obtained a criterion of the form (1) as a solution to a problem of minimum-bit repre- 
sentation of a signal. His criterion, for this reason referred to as SDD (shortest data 
description), is given by 

a ( n ) = i o g I ~ 4 2 ] ,  b(k ,n )=21og(k+ 1) (Rissanen'scriterion). (4) 

See also Rissanen (1983, 1985). 
Boekee and Buss (1981) studied the performance of several criteria, namely Rissa- 

nen's and the criteria given by 

and 

In  + 2]  a(n) = log b(k, n) = 0, (5) 

a(n) = log(n + 2), b(k, n) = 0. (6) 

Note that (6) is essentially Schwarz's criterion. Boekee and Buss simulated a second-order 
autoregression with autoregression coefficients -0 .8  and --0.9 for n = 50, 100, 200 and 
400 (fifty times for each case). Table 3 summarizes their results; some of the contents of 
Table 3 appear in their paper, but here several columns, those for the means, mean 
squared errors and square root of mean squared errors, have been appended. The results 
indicate that (6), the criterion which is essentially Schwarz's, gave good results, better than 
the AIC criterion. (It should be mentioned that the b(k, n) in (4) is specific to the problem 
of fitting a k-th order autoregression.) The criteria (4) and (5) gave mediocre results, 
similar to AIC. This assessment by Boekee and Buss was based on the distribution of the 
order estimate in the simulation experiments (the true value being 2, for second order), for 
the various criteria. 

Note that, of the criteria, only AIC has a(n) a constant function of n. Various 
researchers, including Kashyap (1982), Rissanen (1978, 1980) and Schwarz (1978) have 
mentioned that AIC is not consistent; for consistency a(n) needs to depend upon n. 
However, consistency is an asymptotic property, and any real problem has a finite sample 
size n. 

Since there are different choices of a(n), suppose for example that one considered the 
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TABLE 3 

S i m u l a t i o n  R e s u l t s  of  Boekee and Buss ( 1 9 8 1 ) ,  
Comparing Four Mode l -Se lec t ion  C r i t e r i a  

n= 50 
AIC 
IA 
IB 
IC 

n=lO0 
AIC 
IA 
IB 
IC 

n=200 
AIC 
IA 
IB 
IC 

n=400 
AIC 
IA 
IB 
IB 

Estimate of o rder :  
1 2 3 4 5 

Sq. roo t  
Frequencies:  Tota l  Mean MSE of MSE 

0 33 I0 6 1 50 2.500 .860 .927 
0 44 5 1 0 50 2.140 .180 .424 
0 14 lO 13 4 41 3.171 2.390 1.546 
0 20 12 II 3 46 2.935 1.804 1.343 

0 35 lO 3 2 50 2.440 .800 .894 
0 43 7 0 0 50 2.140 .140 .374 
0 20 16 10 4 50 2.960 i .840 1.356 
0 36 9 3 2 50 2.420 .780 .883 

0 40 9 1 0 50 2.220 .260 .510 
0 47 3 0 0 50 2.060 .060 .245 
0 40 9 l 0 50 2.220 .260 .510 
0 40 9 1 0 50 2.220 .260 .510 

o 39 8 3 0 50 2.280 .400 .632 
0 50 0 0 0 50 2.000 .000 .000 
0 47 3 0 0 50 2.060 .060 .245 
0 49 1 0 0 50 2.020 .020 .141 

IA:  a (n)  = l o g ( n + 2 ) ,  b ( k , n )  = 0 
IB:  a(n)  = l o g [ ( n + 2 ) / 2 4 ] ,  b ( k , n )  -- 0 
IC: a(n)  = I o g l ' ( n + 2 ) / 2 4 ] ,  b ( k , n )  = 2 
AIC: a(n) = 2, b(k ,n)  = 0 

log (k+l) 

criterion given by a(n) = 2 and that given by a(n) = 3 to be reasonable. These choices of 
a(n) give the criteria 

and 

g(k; 2) = - 2  log [max L(k)] + 2m(k), 

g(k; 3) = - 2  log [max L(k)] + 3re(k). 

The choice a(n) -- 2, that is, the criterion g(k; 2), favors larger models, since it costs only 2 
units, rather than 3, to fit an extra parameter. If a small model is best according to g(k; 2), 
then it will be best also according to g(k; 3); if a large model is best according to g(k; 3), it 
will be best according to g(k; 2). Thus, by use of two criteria, a range of reasonable values 
of m(k) results. The minimum plausible number of parameters, in the situation where just 
these two criteria are considered, is that number favored by g(k; 3); the maximum plausi- 
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ble number of parameters is that favored by g(k; 2). 
More generally, consider alternative model-selection criteria taking the form 

g(k) = - 2  log [max L(k)] + a(n)m(k). (7) 

Different approaches lead to different choices of a(n); however, for consistency the fastest 
increasing is a(n) = log n and the slowest increasing is a(n) = log (log n). Define 

l(n) = min {2, log log n, log n} = min {2, log log n}, 

and 

u(n) = max {2, log log n, log n}, = max {2, log n}. 

Use of a(n) = l(n) favors large models; use of a(n) = u(n) favors small models. If a small 
model is best according to l(n), it is globally best, because it will also be best according to 
u(n). If a large model is best according to u(n), it is globally best, because it will also be 
best according to l(n). 

Kashyap (1982), also taking the Bayesian approach, took the asymptotic expansion 
of the logarithm of the posterior probabilities a term further than did Schwarz. The 
Kashyap criterion is given by 

a(n) = log n, b(k, n) = log [det B(k, n)], (8) 

where det denotes determinant and B(k, n) is the negative of the matrix of second partials 
of log L(k), evaluated at the maximum likelihood estimates. In Gaussian linear models 
this is the covariance matrix of the maximum likelihood estimates of the regression 
coefficients; in general, the expectation of B(k, n), evaluated at the true parameter values, 
is Fisher's information matrix. Kashyap's derivation is perhaps somewhat more general 
than Schwarz's, in that Schwarz's development is explicit only for exponential families. 
Since Kashyap's criterion is based on reasoning similar to Schwarz's, but contains an 
extra term, it could be expected to perform better. 

Next, a review of some applications of model-selection criteria to various specific 
problems will be given. 

Multisample Clustering 

The procedure of multisample clustering, the grouping of samples, is treated in 
Bozdogan (1981, 1986), and Bozdogan and Sclove (1984); numerical examples and dis- 
cussion are given in these papers. Stated briefly, the situation is the K-sample problem 
(one-way analysis of variance), with an emphasis on grouping the samples into fewer than 
K clusters. The use of model-selection criteria in this situation can provide an alternative 
to multiple-comparison procedures and avoids the difficult choice of levels of significance 
in such problems. Here in the Gaussian case with p variables one has a mean vector for 
each population. With separate covariance matrices, m(k)= kip + p(p + 1)/2]. With a 
common covariance matrix, re(k) = kp + p(p + 1)/2. Model-selection criteria can also be 
used to decide whether or not to assume a common covariance matrix. 

Mixture-Model Clustering of Individuals 

Bozdogan (1983) applies model-selection criteria to the choice of the number of 
populations in the population mixture model. (See, e.g., Wolfe, 1970.) Here there are k - 1 
independent mixture probabilities. In the Gaussian case with p variables and different 
covariance matrices, re(k) = k - 1 + k[p + p(p + 1)/2]. The algorithm and computer pro- 
grams of Wolfe can be used to obtain the maximum-likelihood estimates for fixed k. Then 
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model-selection criteria can be used to estimate k. In this context some analyticity con- 
ditions required for series expansions yielding the model-selection criteria are not met, 
and though the criteria can be regarded as heuristic figures of merit, more research is 
required. 

Segmentation of Time Series 

A model for clustering or segmentation of time series is given by assuming that each 
instance of observation gives rise not only to an observation x but also to a label, equal to 
1, 2 . . . . .  or k, where k is the number of classes. Model-selection criteria are used to 
estimate k. In the context of this model, clustering is merely estimation of the labels. 
Sclove (1983b, 1984) treats the problem of segmentation of time series by modeling the 
label process as a Markov chain. An algorithm and computer programs are discussed; 
numerical examples are given. The parameters are the transition probabilities, the margin- 
al probabilities of the classes, and the parameters of the class-conditional densities, so m(k) 
can be taken to be g(k - 1) + (k - 1) + c(k), where c(k) = k[p + p(p + 1)/2] in the Gaus- 
sian case with separate covariance matrices. 

Segmentation of Digital Images 

Similar ideas are applied to digital images in Sclove (1983a, 1984). In Sclove (1984) 
the label process is modeled as a one-sided Markov random field. In the first-order case 
the label of each pixel is conditioned on the labels immediately to the north and west of it. 
The number of independent transition probabilities is k2(k - 1). Further details and ex- 
amples are given in Sclove (t984). Note the large number of parameters in this model. A 
review of Akaike's development of AIC shows that he is to a great extent motivated by 
such large-scale problems, for example, multivariate time series. 

Clustering Variables 

Heuristic algorithms have been applied to the problem of clustering variables, based 
on use of correlations as similarity measures and applying the maximum, minimum, or 
average pairwise correlation as a measure of similarity between two clusters of variables. 
Also, variables can be clustered by using principal components of factors as axes and 
plotting the variables, using their loadings as coordinates. Here an alternative approach is 
suggested. Why not consider various configurations of the covariance matrix as corre- 
sponding to clusterings of variables, and evaluate the special configurations as alternative 
models, using model-selection criteria? 

The approach is to identify each clustering with an appropriately restricted covari- 
ance (or correlation) matrix. 

Let us consider in detail the special cases p = 2 and p = 3 variables. In the case of 
two variables the possible clusterings are Model 1 : {1, 2}, and Model 2: {1}, {2}. Model 1 
has an unrestricted covariance matrix but Model 2 has Cov(1, 2 ) =  0. For multivariate 
normal samples, model-selection criteria of the form (7) become 

g(k) = np log(2x) + n log [det Sk] + n p +  a(n)m(k), (9) 

where S k is the maximum-likelihood estimate of the covariance matrix under model k. 
This is just the matrix of sample covariances (with divisors of n), except that a zero 
replaces the sample covariance in the restricted positions. 

The restriction imposed by Model 2 is that the variables be uncorrelated, that is, 
their covariance is set equal to zero rather than being estimated by its maximum likeli- 
hood estimate. One chooses Model 1 over Model 2 if g(1) is less than e(2). The difference 



STANLEY L. SCLOVE 339 

9(1) - 0(2) can be written as 

which equals 

det Sl~ 
n log k, det S2J + a(n), 

n log(1 -- r 2) + a(n), 

where r is the sample correlation, so that Model 1 is better than Model 2 if r 2 > 1 - 
exp(-a(n)/n). For example, with a(n)= 2 (as in AIC) and n = 8, this is rZ>  1 -  
e x p ( -  1/4), or about .22, or absolute value of r > .47. Such a value, if viewed as a cut-off 
point for a hypothesis test, implies a significance level. A value r 2 =  .22 with n = 8 
corresponds to a t-value of 0.55 with 6 d.f.; the corresponding one-tailed P-value is 
between .25 and .40. When a(n) = log n (Schwarz's criterion), this becomes r 2 > 1 - n-1/,. 
If a(n) were proportional to n, say a(n) = cn, then this would become r 2 > 1 - exp( -c ) ,  a 
constant not dependent upon n. 

For  three variables the covariance matrix contains 6 parameters. The clustering {1, 2, 
33 (all three variables in a single cluster) uses all six parameters, placing no restrictions on 
them. The clustering {13, {23, {33 (each variable forming its own cluster) corresponds to 
restricting the covariance matrix to be diagonal and hence uses only 3 of 6 possible 
parameters, the off-diagonal elements (covariances) in the dispersion matrix being re- 
stricted to zero. The clustering {1, 2}, {33 corresponds to Coy(l, 2) nonzero, Coy(l, 3) = 0 
and Cov(2, 3) = 0 and hence involves only 4 rather than 6 free parameters. Similarly for 
the clusterings {1, 3}, {2} and {13, {2, 33. 

One could score all 2 a = 8 models resulting from setting each of Coy(l, 2), Cov(1, 3) 
and Cov(2, 3) equal to zero or not. Five of these eight models correspond to the above 
clusterings. The other three do not correspond to clusterings. For example, setting only 
Cov(2, 3) equal to zero means only that Variables 2 and 3 should not be in the same 
cluster and could be viewed as no clustering or as being consistent with all three clus- 
terings {1, 23, {33; {1, 3}, {23; and {13, {23, {3}. 

More generally, for p variables, one approach is to score all 2 ptp- 1)/2 models resulting 
from setting each of the p(p - 1)/2 covariances equal to zero or not. Some of these will 
indicate clusterings, others will not. 

An important feature of the application of model-selection criteria to clustering is 
that clustering is not forced; the alternative of no clustering is evaluated along with all the 
others. In the present context this means that {1, 2, 3}, representing no clustering (i.e., all 
variables in the same cluster) is evaluated along with the other possibilities. This deals 
with a frequent criticism of clustering algorithms, namely, that they force clustering on the 
data. 

Setting one or another of the off-diagonal elements equal to zero may affect the 
requirement that the covariance matrix be positive definite (p.d.). A simple example of this 
is given by the case of a correlation matrix for p = 3 variables with equal correlations, r. 
The condition for positive definiteness is r > -1 /2 .  Now suppose the (1, 3)-element is 
changed to zero. The resulting matrix is p.d. iff (i) 1 - r 2 > 0, and (ii) the determinant is 
positive, that is, 1 - 2r 2 > 0. It is still given that. r > -½,  so Condition (i) is satisfied, but 
(ii) requires _½1/~ < r < ½1/2. We have r > _½~/2 (because it is still given that r > -½), 
but r < ~1/2 is a further restriction. If the (2, 3)-element as well as the (1, 3)-element is set 
equal to zero, it produces a covariance matrix corresponding to the clustering {1, 2}, {33, 
and this matrix is p.d., regardless of the value of r. 

In theory, then, the approach given would be improved by imposing some conditions 
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to insure that the covariance matrix will remain p.d. when setting one or another of the 
off-diagonal elements equal to zero. The need for conditions to insure positive definiteness 
could limit somewhat the applicability of the technique; only those clusterings corre- 
sponding to a set of p.d. matrices are allowable. (It may indeed be the case that those 
restrictions corresponding to actual clusterings do maintain positive definiteness; this 
point needs further research.) In practice there is no problem (except for computer time) 
with trying all possible patterns of off-diagonal zeros, letting the computer program first 
check the current pattern for positive definiteness (e.g., check that all eigenvalues are 
positive). If not, skip the current pattern of zeros and go on to the next one. 

The notion of clustering variables treated here is that separate clusters imply zero 
covariances. Within clusters, some of the correlations may be negative. This admits easy 
interpretation when the negatives are removable by reflection; in other cases the interpre- 

tation may be problematic. 

E x a m p l e  

Consider clustering p = 3 variables; systolic blood pressure, diastolic blood pressure, 
and height. The correlations are given near the beginning o~ Table 4. These correlations 
are consistent with those between these three variables for the first 20 cases in Table 2-2a 
of Dixon and Massey (1969). The results of clustering of these variables are given in Table 
4. This example was chosen for illustration because it is small, so that a list of results for 
all possible cases can be shown. Also, it may be helpful to show a situation where one 
feels he can guess the answer; here it seems clear that the two blood pressure measure- 
ments should be in one cluster and height in the other, since (presumably) height is not 
strongly related to blood pressure (at least not in the general population; there may be 
particular syndromes characteristic of people at one or the other extreme of height where 
the blood pressure is abnormally high or low). Table 4 gives the correlations and the 
values of AIC and Schwarz's criterion. The clustering {Sys, Dias}, {Ht} is indeed that 
chosen by both criteria, 

Factor Analysis 

A model for factor analysis can be written 

x = A f + u ,  

where x is the p-variate observation, f is the vector of m uncorrelated factors (m < p), 
taken to have unit variance, and u is the vector of residuals, the variances of which are 
called the uniquenesses. The variables in u are uncorrelated with one another and with the 
variables in f. The p-by -m  column-orthogonal matrix A consists of the factor loadings. 

An important problem is the choice of the number of factors, m. 
According to this model, the covariance matrix ~ of x takes the form 

1~ = AA' + q j , 

where W, the covariance matrix of , ,  is diagonal, its diagonal elements being the unique- 
nesses. Thus factor analysis can be viewed as fitting restricted estimates of ~, of this 
specified form. The number of parameters is m p +  p, since q' has p elements and there are 
m factors, each having p loadings. The condition that A be column-orthogonal imposes 
m(m - 1)/2 constraints. Thus the number of free parameters is m p +  p - m(m - 1)/2. In 
order for a factor analysis to make sense, the number m of factors must be limited so that 
this quantity is less than p(p + 1)/2, the number of variances and covariances. Equating 
these two expressions gives a logical upper limit, say M, for m. The choice of the number 
of factors as being 1, 2, . . . ,  or M is a multiple-decision problem--a  choice between 
alternative models-- to  which model-selection criteria can reasonably be applied. This 
matter is discussed in Akaike (1987) and Bozdogan and Ramirez (1987). 
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TABLE 4 
Resu l t s  fo r  Example of  C l u s t e r i n g  of  Three V a r i a b l e s  

C l u s t e r i n g  of  the p = 3 V a r i a b l e s ,  
S y s t o l i c  and D i a s t o l i c  Blood Pressure and He igh t  

I1 12 

Sample covar iance  m a t r i x ,  S: 

354.800 164.179 4.158 
164.179 127.713 4.039 

4 . 1 5 8  4.039 6.513 

Sample c o r r e l a t i o n  m a t r i x ,  R: 

1.OOO .771 .O86 
.771 1.OOO .140 
.O86 .140 I.OOO 

Minus 2 Log No. of  
13 L i k e l i h o o d  Parameters 

M o d e l - S e l e c t i o n  
C r i t e r i o n :  

Schwarz 
AIC C r i t e r i o n  

0 0 

0 0 

0 1 

0 i 

1 0 

1 0 

l l 

1 1 

0 422.176 3 

1 421.780 4 

0 422.026 4 

i 422.011 5 

0 404.105 4 

1 404.082 5 

0 404.672 5 

1 403.686 6 

428.17& 431.163 

429.780 433.763 

430.026 434.009 

432.Oll 436.989 

412.105 416.O88 

414.082 419.061 

414.672 419.651 

415.686 421.660 

C l u s t e r i n g  

{Sys}, {bias}, {Ht} 

{Sys} ,  { D i a s , H t }  

{ S y s , H t } ,  {D ias}  

{ S y s , D i a s } ,  {Ht} 

{ S y s , D i a s , H t }  

coy( l ,2 )  = 0 
= s(1,2)  

coy(i,3) = 0 
= s ( I , 3 )  

c0v(2,3)  = 0 
= s (2,3) 

IF I1 = 0 
IF I1 = 1 
IF 12 - 0 
IF 12 = 1 
IF 13 = 0 
IF 13 = I 
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Describing a Complex of Variables 

The goal in describing a complex of variables could be stated as a t tempt ing  to arrive 

at a maximal ly  pars imonious  descript ion or summar iza t ion  of the set of variables. This  
could involve factor analysis, or  clustering variables, or  both.  

Given  the above view of clustering variables, each clustering corresponds  to a re- 

stricted estimate of ]g. Fac to r  analysis also corresponds to fitting restricted estimates of ~.  

This means  that  factor analysis and  clustering variables can be s imul taneous ly  scored by 

model-select ion criteria. To  do this, note  that, given a sample from a p-variate no rma l  
dis t r ibut ion,  one has 

- -2  log max  L(k) = n p  log(2rr) + n log det S k + n tr (Sk- iS), 

where tr denotes the trace of a matrix,  S is the sample covar iance matr ix  (the unrestr icted 
maximum-l ike l ihood  estimate of X), and  the subscript  k ranges over the u n i o n  of the set of 

factor analysis models and  the set of models cor responding  to the possible clusterings of 
variables. 
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