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A new model, called acceleration model, is proposed in the framework of the heteroge- 
neous case of the graded response model, based on processing functions defined for a finite or 
enumerable number of steps. The model is expected to be useful in cognitive assessment, as 
well as in more traditional areas of application of latent trait models. Criteria for evaluating 
models are proposed, and soundness and robustness of the acceleration model are discussed. 
Graded response models based on individual choice behavior are also discussed, and criticisms 
on model selection in terms of fitnesses of models to the data are also given. 
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Samej ima (I972) has proposed a general theoretical f r amework  of  the graded re- 
sponse model,  in which the homogeneous case is distinguished f rom the heterogeneous 
case. The general graded response model represents  a family of  mathematical  models  
which deal with ordered polychotomous categories in general. These  ordered catego- 
ries include: A, B, C, D and F in the evaluation of  s tudents '  per formance ,  strongly 
disagree, disagree, agree and strongly agree in a social atti tude survey,  partial credit 
given in accordance with the individual 's degree of  at ta inment  toward the solution of  a 
problem,  to give some examples .  

With a rapid progress  of  computer  technologies,  today we can: (a) program a 
well-controlled cognitive exper iment  in computer  software, (b) accommoda te  the soft- 
ware  in a number  of  microcomputers ,  and (c) have each trained exper imenter  car ry  one 
of  the microcomputers  and collect data, conducting the cognitive exper iment  on indi- 
viduals,  as we do in a smal l - room experimental  situation. In this way,  we can easily 
collect data  for several  hundred individual subjects within a limited amount  of  time. 
This is a sample size comparable  to those for  a paper-and-pencil  test  in a college 
campus  environment .  Thus with such a set of  data not only can we obse rve  each 
individual 's  behavior  intensively just  as in a cognitive experiment ,  but also we can 
analyze such a rich set of  data  applying psychometr ic  theories,  put the results in 
perspective, clarify individual differences, et cetera.  

The present  paper  proposes  a mathematical  model,  called acceleration model, in 
an effort to provide a mathemat ical  model  in the f ramework  of  general graded response  
model  which is sound and useful in analyzing such intensive cognitive data as well as 
more  traditional psychometr ic  data. 

General  Graded Response  Model 

Le t  0 be the latent trait, or  ability, which represents  a construct  hypothes ized 
underneath  certain human behavior ,  and is assumed to take on any  real number .  Le t  g 
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denote an item, which is the smallest unit of manifest entity for measuring 0. Let Xg be 
a graded item response to item 9, and xg (= 0, l ,  . . . ,  rag) denote its realization. The 
operating characteristic, Px,(O), of the item score xg means the conditional probabil- 
ity, given 0, with which the individual of ability 0 gets xg, that is, 

Px~ (0) = Prob [Xg = xglO], 

which is assumed to be five times differentiable with respect to 0. For convenience, 
hereafter, xg will be used both for a specific discrete response and for the event X a = 
xg, and a similar usage is applied for other symbols. 

For a set of n( > - 1) items, a response pattern, denoted by V, indicates a sequence 
of Xg for 9 = 1, 2, . . .  , n, and its realization, v, can be written as 

v = { x g } ' .  

It is assumed that local independence (Lord & Novick, 1968) holds, so that within any 
group Of individuals all characterized by the same value of ability 0 the distributions of 
the item responses are all independent of each other. Thus the operating characteristic, 
Pv(O), of the response pattern v is defined as 

ev(o)~-Prob [ V = v l 0 ] =  1-I Px,(O), (1) 
X~ ~v 

which is also the likelihood function, L(vlO), for V = v. 

Processing Functions 
Suppose, for example, that a cognitive process, like problem solving, contains a 

finite or enumerable number of steps. The graded item score xa should be assigned to 
the individuals who have successfully completed up to the step xg but failed to com- 
plete the step (xg + 1). Let Mx,(O) be the processing function of the graded item score 
xg, which is the joint conditional probability with which the individual completes the 
step xg successfully, under the conditions that: 

I. the individual's ability level is 0, and 
2. the steps up to (xg - 1) have already been followed and completed success- 

fully. 

It is assumed that Mx,(O) is either strictly increasing in 0 or constant for all 0, for 
xg = I, 2, . . . ,  m a. This assumption is reasonable considering that each item has 
some direct and positive significance to the ability measured. Let (mg + 1) be the 
hypothesized graded item score adjacent to and above mg. Since everyone can at least 
obtain the item score 0, and no one is able to obtain the item score (mg + I), it is 
reasonable to set 

f = l  for x g = O  
Mx~ (0 ) 

= 0  for xg =rag + 1, 

for all O. 

Fundamental Framework 
Thus the operating characteristic, Px,(O), of the graded item score xg is given by 

ego(O) = 1--I Mu(OI[1-M(x,+I)(O)]. (2) 
u<-x~ 
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This provides the fundamental framework for the general graded response model. Let 
P*(O) denote the conditional probability with which the individual of ability 0 follows 
and completes the cognitive process successfully up to the step xg, or further. Thus 

e x , ( o )  = I-[ Mu(O). (3) 
tg<Xg 

This function is called the cumulative operating characteristic although cumulation is 
in the opposite direction. Note that P*(O) becomes the operating characteristic, 
Pg (0), of the positive response to item g, when the graded item score Xg is changed to 
the binary score, assigning 0 to all scores less than Xg and 1 to those score categories 
greater than or equal to Xg. From (2) and (3) the operating characteristic, Px,(O), can 
also be expressed by 

Px,(O) = P *  (0) - P~x,+l)(O). (4) X #  

It is obvious from (3) that P*(O) is also either strictly increasing in 0 or constant for all 
0, and assumes unity for xg = 0 and zero for xg =mg + I for the entire range of 0. 

The homogeneous case of the graded response model represents a family of models 
in which P* (0)'s for x,  = 1, 2, . . . ,  mg are identical in shape, and these mg functions 

. . g . ~  

are posmoned alongside the abscissa in accordance with the item score Xg. The het- 
erogeneous case of the graded response model represents all mathematical models that 
provide a set of cumulative operating characteristics, P* (0)'s, not all of which are 
• . , . . g 

identical m shape, that ~s, those which do not belong to the homogeneous case. 
The basic function, Axe(O), is defined by 

a 0 0 
a x , ( o ) - ~ l o g e x , ( O ) =  ~ ~ l o g M , , ( 0 ) + ~ 1 o g [ 1 - M ( x g + , ( 0 ) ] ,  (5) 

which has an important role in computer algorithm for obtaining the maximum likeli- 
hood estimate of the individual's ability from his/her response pattern, et cetera (see 
Samejima, 1969, 1972, 1973b). 

The item response information function (Samejima, 1973b, 1994) of the graded item 
response xg is defined by 

0 2 t9 0 2 

Ix,(O)-~--~logPx~(O)= oo Ax~(O)= ~ O021ogMu(O) 
ll "¢: X g 

0 2 

002 log [I - M(x,+l)(O)]; (6) 

and the item information function, is obtained as its conditional expectation, given O, so 
that 

lg(O) =- E[Ix~ (O)[O] = ~ Ix~ (O)Pxg (O), (7) 
Xg 

which includes Birnbaum's item information function for the dichotomous test item 
(Birnbaum, 1968) as a special case. The response pattern information function (Same- 
jima, 1973b) is given by 

l~(O)~--~71oge~(o) ; ~ -o--~logPx,(O) -- ~ L,(O), 
m x o ~ v  x g  ~ v  
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and the test information function is defined as the conditional expectation of Iv(0),  
given 0, to obtain 

n 

I(0) = E[Iv(O)lO] = ~_, lv(O)Pv(O) = ~'~ la(O), 
v g = l  

which includes Birnbaum's test information function on the dichotomous response 
level as a special case. This has been used as a local measure of accuracy in ability 
estimation, and its modified formulas (Samejima, 1994) have also been proposed, using 
the MLE bias function. 

Acceleration Model 

The acceleration model is a model which belongs to the heterogeneous case of the 
graded response model. It has been built in an effort to provide a model which is useful 
in cognitive assessment (Samejima, 1995), as well as in more traditional analysis of test 
data, et cetera. 

Consider a situation, such as problem solving, that requires a number of subpro- 
cesses before attaining the solution. It is assumed that there is more than one step in the 
whole process which is observable. Graded item scores, or partial credits, 1 through 
mg, are assigned to the successful completions of these separate observable steps. 

The processing function in this model for each xg (= 1, 2, . . . ,  mg) is given by 

Mx,(O) = [*x,  (0)] Cx* , (8) 

where ~x (>0)  is the step acceleration parameter. The acceleration model represents a 
family ogmodels in which qtx~(O) is specified by a strictly increasing, five times differ- 
entiable function of 0 with zero and unity as its two asymptotes, and the ratio 

decreases with 0. 

o o 0 2 
o--0 log ~ -  *x ,  (0) xItx, (O)~---~ qtx ° (O) 

0--~ log ~x~(O) -~x.(O) 

From (3) and (8) the cumulative operating characteristic, P*x~(0), is given by 

Xg 

P*  (O) = 1-[ 
u : O  

(9) 

We obtain from (2) and (8) the operating characteristic such that 

xg 

P x , ( O )  = l--[ 
u=O 

(lO) 

From (8), we can write 

0 0 
0--'0 Mx~(O) = ~x ~x~(O) ~ -1 0"-0 ~x~(O), 
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and 

oo 2 Mx, (0) = ~x. ~x~ (O)ex~ -2 (~xg - 1) ~ ex~ 

Setting the above equal to zero, we obtain 

2 02 ] 
(0) + ~x,(O) - ~  %~,(0) . 

F~- - -  --- ~ -. 

Thus from (9) the value of 0 at which the discrimination power of Mx~(O ) is maximal 
increases with ~x~- 

l_~t w denote a subprocess, which is the smallest unit in the cognitive process. 
Thus each step contains one or more w's. Let ~w(>0) be the subprocess acceleration 
parameter, and then the step acceleration parameter, ~xg, for each OfXg = 1, 2 , . . . ,  
m a is given as the sum of ~w'S over all w ~ x o. The name, acceleration parameter, 
comes from the fact that, within each step, separate subprocesses contribute to accel- 
erate the value of 0 at which the discrimination power is maximal to its ultimate 
position. 

It is assumed that the whole process leading to the solution consists of a finite 
number of clusters, each containing one or more steps, and within each cluster the 
parameters in ~xg(O) are common. Thus, if two or more adjacent Xg'S belong to the 
same cluster, then the parameters in ~x  (0) are the same for thesexg 's, and, otherwise, 

• • g 

at least one of the parameters is different. 

Example 
It will be worthwhile to give a simple example to clarify the relationship between 

a step xg and subprocesses w's.  Consider the following problem solving. 

Prove that 

f~®exp[-X---~]dx=[27r] in. 

If this question is presented in a computerized test and software has been prepared so 
that the examinee's performance is appropriately recorded, then we may be able to 
consider nine observable steps in this particular problem solving as shown below. 

Step 1: 

f0 exp - d x = 2  exp - d x > 0 .  

Step 2: 

fo ® exp [ -~2  -~] f :  exp [ - ~ ]  d.x d a =  fo ~ exp [-~-~] da f o  exp [ - ~ ]  dx 

[S:expl 
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Step 3: Setting y = x/a (a > 0), 

I: I: exp - dx = exp - ~yy d Y = f o e X p [ - ~ - ~ - ~ d Y -  

Step 4: Substituting Step 3 into Step 2, 

fO" [--~1 f0 ® [-x---~]dxda= fo® [-~] fo ® [ -a2y2]zj exp exp exp exp .-W-i a dy da 

Step 5: 

fo fo ® a2(1 +y2)] = e x p  'i .ja da dy. 

Step 6: Substituting Step 5 into Step 4, 

f0 ~ [ ~ ]  f0 ® [ ~ ]  f0 ® 1 ~" 
exp - exp - dx da = 1 -]- y 2 dy ~- tan-1 Y I~ = ~-- 

Step 7: From Steps 2 and 6, 

[f0~ exp [ - ~ ]  d°c]2 = 2 

Step 8" Taking the square root of each side of Step 7, 

exp - dx = 

Step 9: Substituting Step 8 into Step 1, 

f ~® exp - dx = 2 x = [2~r]1/2 

If two or more steps, or sequences of steps, are reversible in order, we shall say 
they are parallel, as distinct from serial steps, whose order cannot be changed. In this 
example, Step 2 and the sequence of Steps 3 through 6 are parallel. 

Each of the above steps contains more than one subprocess. For example, Step 1 2 includes four subprocesses, that is, (a) realizing that exp [x /2] is symmetric atx = 0, 
(b) thus rewriting the original integration as two times the second integration, (c) real- 
izing that exp [-x2/2] is positive for 0 < x < ~, and (d) thus the result of the 
integration is greater than 0. 

Note that in Step 8 the sequential order between the two subprocesses is arbitrary, 
that is, the square root of whichever side is evaluated first the step will be successfully 
completed. If there are two or more subprocesses within a step whose sequential order 
is arbitrary, then these subprocesses are said to be parallel, as distinct from serial 

 :Ia2,X y2,1 1 oxp[a2 l Y2'll" 1 
exp ~ ja da = 1 + y2 2 Jlo 1 _~y2- 
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subprocesses. It is assumed that for any number of parallel subprocesses the subpro- 
cess acceleration parameters are invariant across shifts of the positions of the subpro- 
cesses in the sequence. Thus the step acceleration parameter, ~xg (= ~w.a, + ~ q ,  + 
• • .), will be unchanged regardless of the sequential order of these parallel subpro- 
cesses. 

It will be safer to treat each step as one which belongs to its own cluster because 
of slightly different natures of these tasks, although the results may indicate that some 
successive steps belong to one cluster, 

A Specific Model 
As a specific model that belongs to this family of acceleration model, consider one 

in which ~x,(O) is given by the logistic distribution function, such that 

• :,~ (0) = I + exp [-Dotx~(O -/3Xg)] ' (11) 

where D = 1.7, and ax,(>0) and/3x are the discrimination and location parameters, 
• • . g . 

respectively. It is obwous from (11) that the ratio gwen by (9) becomes 

o o 
0-0 log ~ ~xo (0) 

log %,° (o) 

q%(o) ] 
= I -  1 - - - ~ ( ' - 0 )  ' 

which is a strictly decreasing in 0, and, therefore, (11) satisfies the condition for ~x.(O). 
Thus we have for the processing function 

1 

Mx,(O) = [1 + exp [-Daxo(O -/3x.)]](', ' (12) 

and the first partial derivative of the processing function becomes 

0 
O-O Mx~ (0) = gxDax~ [~x~ (0)] ~ [1 - ~xg (0)] > 0, (13) 

and the second partial derivative is obtained from (13) such that 

02 
002 Mx~ (0) = ¢xD2a2x.[~x.(O)]¢~[1 - ~x~ (0)][¢x~{1 - ~xo (0)} - ~x.  (0)],  

(14) 

respectively. 
It should be noted that, in (12), the location parameter,/3x, does not necessarily 

• . q 

increase with xa. For instance, In the example of problem solving, Step 2 may be the 
most critical step, and the location parameter,/32 , is likely to be substantially higher 
than/33 and 134. If the tasks involved in the sequential steps leading to the problem 
solution become progressively more difficult, as is observed in some problem solvings, 
however, it is likely that/3x9 increases with xg. 

The basic function, Axg(O), in this model is obtained from (5) and (12), so that 
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Example of a set of operating characteristics of six steps in the acceleration model. 

A x . ( O ) = D I  ~ < , u a , [ l - ' ~ , ( O ) ]  

L td ~--.Xg 

- exo+,,~xo+, T=-t,~x~+,>-----~(.7);l~,----;r ], (15) 

fOrXg = 1, 2, . . . ,  mg - 1, and fo rx  0 = 0 a n d x  0 = m o the first term and the second 
term on the right hand side of (15) disappear, respectively. Item response information 
function, Ixo(O), for this specific model is obtained from (6) and (15) by 

I xo ( O)= D2[  ~<: ,u 2 a u ~ . ( O ) { 1  - ~u(O)} + ~xo+lOt2g+l[att(xg+X)(O)] ex°+' 
[u~-.xo 

which assumes positive values for the entire range of 0 for x o = 0, 1, . . . ,  m0. 
Substituting (10) and (16) into (7), the item information function is obtained. 

Figure 1 illustrates the six operating characteristics by  a solid line, with mg = 5 
and the parameters a x = 1.36517, 1.03244, 0.87524, 1.09083, 0.58824, fix = 
-0 .94260 ,  -0 .76985,°0 .03941,  1.35406, 0.80000, and ~x~ = 0.41972, 0.51"I41, 
0.54196, 0.60004, 1.00000, fo rxg  -- 1, 2, 3, 4, 5. 

Odmax at Which the Processing Function is Most  Discriminating 
Setting (14) equal to zero, we obtain 

ir ~xo 1 
0'm-- *x0 (17) 
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where Odmax indicates the value of 0 at which the processing function Mx.(O) is steep- 
est, or most discriminating. It is obvious from (17) that Odmax is a strictly increasing 
function of ~xa, and 

Odmax < ~xa if ~x, < 1 

Odmax=13~, i f g ~  = 1  

Odmax > fix, if ~x, > 1. 

Note that the same set of relationships will hold if we replace ~x, by ~w in (17). From 
this we can say that within each step separate subprocesses contribute to accelerate 
Odmax to its ultimate position. 

Parameter Estimation 
Parameter estimation in this specific model can be done using the following 

method• 

1. Use a nonparametric estimation method like Levine's (1984) or Samejima's 
(1983, 1993, 1994, in press), and estimate the operating characteristics, Px,(O)'s. 

2. Tentatively parameterize the results using a very general semiparametric 
method, such as Ramsay and Wong's (1993). A strength of this method is that 
the fit is considered not only for the function in question, but also for its first 
derivative. 

3. From these results obtain the estimated processing function ~lx,(O) and its 
partial derivative with respect to 0 by means of (3) and (4). 

4. Select three arbitrary probabilities, P l ,  P2 and P3, which are in an ascending 
order, and find out 01, 02 and 03, at which ~x~(O) equals P i ,  P2 and P3, 
respectively. 

5. From (12) the estimated acceleration parameter ~x, is obtained as the solution of  

03 - 02 log [(p2) -1/e~, - I] - log [(p3)-1/¢~ - 1] 
(18) 

02 - 01 - log [ ( p l ) - 1 / ~  - 1] - log [ (pE) - l /~xg  -- 1 ]"  

6. Obtain the estimate, flxa, as the solution of 

~ / x ,  ( ~ 3 x , )  = . 

7. From these results obtain the estimate of ax, by 

2L, +' 0 ^ 

&x, D~x, 00 lfIx,(O) at 0 = fix,. 

(19) 

(20) 

Note that this method can be applied for any curve as long as 0/00 l~x,(O) is 
available. 

Suggestion of the initial nonparametric estimation of the operating characteristics 
comes from the fact that in the acceleration model the parameters belong to the pro- 
cessing functions, M x (0) 's,  rather than the operating characteristics, Px (0) 's ,  and 

. g . . • • • g 

that the operating characteristics can be esUmated more dwectly and easily from data, 
and that nonparametric estimation enables us to discover the shapes of the actual 
functions without molding them into some mathematical function as parametric esti- 
mation does. 
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Criteria for Evaluating Models 

The general graded response model includes many specific mathematical models. 
In an effort to select a right model, or models, for a specific psychological reality, the 
following features will be considered as desirable. 

1. The principle behind the model and the set of accompanied assumptions agree 
with the psychological reality in question. 

This indeed is by far the most important criterion. The mathematical modeling 
and the curve fitting are two different things, although many research papers 
have been published in which goodnesses of fit of the estimated operating char- 
acteristics based on two or more mathematical models to the data are evaluated, 
and their comparison is used as the sole criterion for accepting one of the 
models and rejecting the other. Even though the fit is good, if the principle 
behind the model and the set of accompanied assumptions contradict the psy- 
chological reality in question, acceptance of such a model is hardly justifiable in 
scientific research; if it is accepted and research is continued, then we will 
eventually come across a dead-end street with no meaningful findings. If they 
agree with the psychological reality, then it should be accepted and research 
should proceed, unless the fit is intolerably bad. (A good example will be given 
in a later section, which includes comparison of Figure 8 with Figure 1.) 

. The model provides additivity of the operating characteristics of  the item scores 
Xg'S. 

Additivity holds if the operating characteristics belong to the same mathemat- 
ical model under finer recategorizations and combinings of two or more cate- 
gories together. This implies that the unique maximum condition, which will be 
discussed soon, is satisfied by the resulting operating characteristics, if it is 
satisfied by those of the original xg's. 

This criterion is all the more important if a model be selected for cognitive 
assessment with the kind of rich set of data described above, for we come 
across constant discoveries of new subprocesses or sets of subprocesses as 
research proceeds. Even under other circumstances, graded item scores, or 
partial credits, are more or less incidental. For example, on college campuses, 
it is a general practice to reevaluate the grades, A, B, C, D, and F, in a required 
course to pass and fail. Also, with the advancement of computer technologies, 
it is quite possible to obtain more abundant information from the individual's 
performance in computerized experiments as we proceed in research, and thus 
we need finer recategorizations of the whole cognitive process. 

3. The model can be naturally generalized to a continuous response model. 

This criterion is a natural extension of additivity. Examples of such models can 
be seen in the normal ogive and logistic models in the homogeneous case of the 
graded response model (Samejima, 1969, 1972), which can be naturally ex- 
panded to the normal ogive and logistic models on the continuous response level 
(Samejima, I973a), respectively. In general, in the homogeneous case, the cu- 
mulative operating density characteristic, P*zg(O), and the operating density 
characteristic, Hz,(O), for the continuous response Zg are defined by 
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and 

P* z, (0) = f : ~  O(u) du 

Hzo(O) = lim P*°(O) - P*(z'+'~z")(O) [dbz,,] 

respectively, where $(o) is some density function, and bz, is the difficulty pa- 
rameter for the continuous response z a and is a strictly increasing function of z a 
(Samejima, 1973a). 

4. The model satisfies the unique maximum condition (Samejima, 1969, 1972). 

A sufficient, though not necessary, condition that the likelihood function pro- 
vides a unique maximum for every conceivable response pattern is that 

and 

0 
0-0 Ax, (0) < 0, (21) 

lim 
o~-~ Axg(O) >-0 

lim Axo (0) <- 0, (22) 
0--~oo 

for every xg to every item 9. From the condition given by (21), it is obvious that 
an equality does not hold for both asymptotes of Ax,(O) in (22) for a single x a . 
When an equality holds for the same asymptote for all elements of v, a terminal 
maximum will be obtained for the likelihood function, and by assumes one of 
the two extreme values of 0. It is obvious that (21) can also be expressed by 

Ix ° (0) > 0, (23) 

where lx,(O) is the item response information function given by (6). Thus (21) 
and (23) can be used interchangeably when the unique maximum condition is 
discussed. Since Px (0) is a bounded function between 0 and 1, forAx (0) to be 

• . . o  g .  

strictly decreasing m 0, a/a 0 Px,(O) cannot be zero at more than one fimte value 
of 0, and hence in (21) and (23) a strict inequality must hold, indicating that it 
must be either (a) strictly increasing in 0, (b) strictly decreasing in 0, or (c) 
unimodal, and at no points its partial derivative equals zero except for the modal 
point in (c). The fact that Pxo(O) is a bounded function further implies that 

0 O 
lim ~ Px, (0) = lim - -  Px, (0) = 0, 

0--~-~ 0-~oo O 0 

indicating that, in (22), an equality must hold in the second formula for (a), in the 
f rs t  formula for (b), and in neither for (c), and 

f0 
Hmo~ P~o (0) = 0 for (a) and (c) 

lim Pxo (0) = 0 for (b) and (c). 
0-.~o0 
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For simplicity, this set of conditions is called the unique maximum condition 
(Samejima, 1972), and these three types of Px~(O)'s which satisfy the unique 
maximum condition are said to be of types i, ii and iii, respectively. Satisfaction 
of this condition assures that the likelihood function, given by (1), of any re- 
sponse pattern consisting of such response categories has a unique local or 
terminal maximum. 

Not only satisfaction of the unique maximum condition assures the uniqueness 
of the maximum likelihood estimate, but also it contributes to the identification 
of the uniqueness of other estimates, which maximizes 

w(O)L(vlo), 

where w(O) is some weight function, for the likelihood equation can be written 
a s  

0 0 
O-O log L(vlO) + ~ log w(O) =-- O. 

Thus, if the unique maximum condition is satisfied, then the additional condi- 
tion is that 0/00 log w(0) satisfies the analogous condition as the one assigned for 
Axe(O). These estimators include the Bayes modal estimator (Samejima, 1969), 
where a prior is used for w(O), and Warm's weighted likelihood estimator 
(Warm, 1989), whose w(O) does not depend on any specific ability distribution. 

5. The model provides the ordered modal points of the operating characteristics in 
accordance with the item scores. 

Using the basic function defined by (5), a sufficient, though not necessary, 
condition for the strict orderliness of the modal points of the operating charac- 
teristics, Pxo(O)'s, is that 

A(x -1)(O) < Ax, (0) (24) 

for all 0for  x a = 1, 2, . . .  , m a. 

From its definition it is obvious that for any mathematical model in the homoge- 
neous case: 

1. Additivity of the operating characteristics always holds. 
2. A natural expansion of the model to a continuous response model can be done. 
3. If  the unique maximum condition is satisfied, then a strict orderliness among the 

modal points of Px,(O)'s also holds, for it can be shown (Samejima, 1972) that 
the relationship, 

a(x,-D(O) < Ax, (O) < ax, (O), 

holds for x# = 1, 2, . . .  , mg, where Ax,(O) is the asymptotic basic function 
(Samejima, 1969, 1972) defined in the homogeneous case by 

02 

0 [ 0 , ] 0 0 2 M ' ( O - A x g )  
Xx~(O)-- lim Ax~(O)= '~  l°g -0-0 Px`(O) = 0 

oO 
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with Ax being zero for x,  = 1 and increases with x~, which is identical in shape 
for all xg = 1, 2 . . . . .  m a except for the position alongside the dimension 0. 
Thus (24) is satisfied. 

It has been demonstrated (Samejima, 1969, 1972) that both the normal ogive model and 
the logistic model belong to this class of models. 

While models in the homogeneous case that satisfy the unique maximum condition 
have most of the other desirable features also, those in the heterogeneous case fulfill- 
ment of  these criteria becomes more difficult. Models in the heterogeneous case tend to 
provide greater varieties in the configuration of  the operating characteristics, however. 
This implies that search of  a model in the heterogeneous case may be more successful 
in obtaining one which satisfies the most important criterion, that is, agreement of  the 
rationale behind the model with the psychological reality in question. 

Soundness and Robustness of  the Acceleration Model 

If we observe the acceleration model in terms of each of the five criteria, the 
following will be noted. 

1. The principle behind the model and the set of accompanied assumptions fit 
problem solving and other cognitive processes fairly well, as well as many other 
psychological processes that involve ordered categories or partial credits. 

2. The model can be generalized to a continuous response model  as the limiting 
situation in which there are infinitely many subprocesses within each step. 

As for each of the other three criteria, observations and discussion will be made for the 
special case in which (12) is used for the processing function. 

Additivity 

If our experimental setting is improved and allows us to observe the individual's 
performance in more finely graded steps, then m u will become larger. It is obvious from 
(12) and the definition of  ~x, that the resulting operating characteristics still belong to 
the acceleration model: a partial satisfaction of the additivity criterion. 

Suppose, on the contrary, we need to combine two steps which do not belong to 
the same cluster. Note that the resulting combined step will not belong to the acceler- 
ation model. By virtue of the robustness of the acceleration model, however, in most 
cases the operating characteristic of the combined step can be well approximated by the 
acceleration model. Thus additivity of the operating characteristics practically holds in 
this model. 

To illustrate this, Figure 2 presents six step processing functions, the first three of 
which belong to a cluster with ax = 1.0 and/3x = - 1 . 0 ,  and the second three to 
another with ax = 1.0 and /3 x = 1.0, respectively, and the third parameters are 
~x, = 0.5, 1.0, ~ .5, for the thre~ steps in each cluster. 

It is obvious that the operating characteristic of the combined category of  any two 
adjacent steps still belongs to this specific acceleration model, except for the combi- 
nation of x v = 2 and x a = 3, for it does not belong to (12). This product (solid line) is also 
shown in Figure 2, and so is its approximation (a dash and two dots repeated) obtained 
by fitting a single Mx,(O) through (18), (19) and (20). Figure 3 presents the operating 
characteristics of the seven steps, 0 through 6, plus the sum of the two operating 
characteristics for x a = 2 and x a = 3 (solid line) and the approximated operating 
characteristic (a dash and two dots repeated) obtained by using the approximated 
Mx~(O), which was fitted to the product of M3(0 ) and M4(0 ). The values o f p l ,  P2, P3 
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FIGURE 2. 

Six step processing functions, three of which belong to one cluster and the other three to another cluster, plus 
the product of the two processing functions for xg = 3 and xg = 4 (solid line) and its approximation by the 
processing function in the acceleration model (a dash and two dots repeated). 

used in this approximation were 0.21109, 0.48884, 0.79446, and the corresponding 01 , 
02, 03 were -0.3,  0.5, 1.4. The resulting estimated parameters turned out to be: ~x0 = 
1.11338, ~x = 0.43006, and &x = 0.86888. The two curves for the combined 
category in ~igure 3 overlap almos~ completely, showing the robustness of the model. 
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Operating characteristics of seven steps plus the sum of two operating characteristics for xg = 2 and xg = 
3 (solid line) and the approximated operating characteristic for this combined category in the acceleration 
model (a dash and two dots repeated). 
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The reason for the robustness of this model comes from the fact that the two 
parameters, ax and ~x, work compensatorily to determine the steepness of M~,(O), 
while gx alone ~account~ for the shape of the curve. Thus a set of a large ax, and a small 
~x, will t)rovide the steepness of the curve similar to the one resulting from a set of a 
small ax~ and a large gx,. The shape of the curve is largely determined by gx~, however, 
as we can see in the earlier observation that Odmax changes as a function of gx,, thus 
together providing various shapes and steepnesses. 

Robustness of the model also saves the situation in which the assumption that a 
single set of ax and/~x exists within each step is violated, which may occur especially 

g g , 

when mg is small• Suppose that we did not know there were two clusters revolved, and 
treated them as a single step, estimating the step parameters following this specific 
acceleration model, and, later, with the improvement of the experimental setting, they 
were disclosed as two separate steps which belonged to two different clusters. The 
result obtained by treating them as a single step still provides good approximations, as 
illustrated in Figure 3. 

Satisfaction of the Unique Maximum Condition 
From (15), the two asymptotes of the basic function are given by 

~ lim Ax , (O)=D ~ ~uau>O forxg  1, 2, . ,  mg 
0 _ . . ~  _ a o  ~ • • 

u<-x, (25) 
]lira for xg = O, I, mg - I I.o__,~ o Ax,(O) = -Dax,+l < 0  " ' ' '  ' 

and both the upper asymptote for xg = 0 and the lower asymptote for Xg =mg become 
zero. Although the first line of (25) can be obtained easily, the second line needs some 
work. Since gx, is a positive real number, we can find a rational number within the 
interval, (~:xg - e, ~:x ), and also within the interval, (~x~, ~x + e), however small e(>0) 
may be. Thus ~x, is considered as the hmlt of these two rahonal numbers when e tends 
to zero. 

Let k and m be positive integers, which satisfy 

m ~xo+l < e, (26) 

and define 

rx, (0)  = [,I,x, (0) ]  'tin 

From (15) and (27) we obtain 

(27) 

lim Ax, (0) = -Daxo+l lim lim 
0---)oo e---)0 0--)~o 

k m - I  

g[r(x,+'(°)] [r(,,+,(o)]" 
u=O 

k - I  

[r(x,+,)(o)]" 
u=O 

= - D o t x g + l ,  

the result shown in the second line of (25). 
To prove that (21) holds with this model, from (5) it is sufficient to show that 
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~ 02 
log Mx,(O) < 0 

[: o-~ log [1 - Mxo (0)] < O, 

for Xg = 1, 2, . . .  , mg. From (12), (13) and (14) we can write 

0 2 

0302 log Mx, (O) = -~x D2a2 Wx, (O)[l - ~x, (0)] 

(28) 

2 = - D  2 ~ ~ w a x ~ x , ( O ) [ 1 - ~ x , ( O ) ] < O ,  
WEX a 

for xg = 1, 2 . . . .  , m a, that is, the first line of  (28) has been demonstrated.  
To prove the second line of  (28), it is sufficient to show 

0-~ log ~ Mx, (0)  - ~-~ log [1 - Mx, (0) ]  > O. 

From (12), (13), (14) and (26) with the replacement of  ~x,+l by ~x,, we have 

o[o ] 
O---O log ~-ff Mx, (O) = Dctx.[~x.(1 - ~xo (O)) - ~x,  (0)] ,  

0 
2-= log [I - Mx, (0)]  = -- 
fro 

~x Dax,[~x,(O)]g ' , [1  - ~xg (0)]  

(29) 

and then 

1 --~ 10g ~ Mx,(O) - - ~  log [1 - Mx~(O)] 

Dax,  [~x, {1 - ~xo (0)} - ~x ,  (0){1 - [~x~ (0)]¢x, }] 

1 - [ , x .  (0)]~..  

=lim ~] Z [ r x , ( O ) ] " - [ r x , ( o ) ]  m+' > o ,  
e--~O k - 1  t=O u=O 

E (0)] 
s=O 

that is, satisfaction of  (29), and hence of  the second line of  (28). Thus (21) holds 
throughout the entire range of  0 for x a = O, 1, 2 , . . .  , rag. The unique maximum 
condition is satisfied, therefore, for this specific acceleration model. 

Orderliness o f  the Modal Points o f  the Operating Characteristics 

The orderliness of  the modal points of  the operating characteristics practically 
holds in this model, except  for certain unusual cases. In general, we have 
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A(xg  + 1 ) ( 0  ) - Axa  ( 0 )  - 

0 0 0 
~'ff Mx o ( O ) - O'--ff Mx. ( O ) - O'-~ M ( x o + l ) ( O ) 

Mx , (O)  1 - M x , ( O )  1 - M ( x , + l ) ( O )  
(30) 

0 0 
0"0 iVl x o (0)  0---0 M ( x ~ +1)(0 ) 

Mx~(O)(1 - M x ~ ( O ) )  1 -M(x~+l ) (O) '  

and from (12), (13) and (27) we can write 

0 1 m-1 
- -  - E O0 Mx. (O)  m t=o 

Mx,(O)(1 - M x ~ ( O ) )  
= D a %  lim 

e---~0 1 k - 1  

E [rxo(O)y 
u=O 

(31) 

and 

0 
-00 M(x, +1)(0 ) 

- 1 - M ( x ~ + l ) ( O )  = - D a ~ + l  ~--,olim [F(x,+l)(O)] h 

1 r - - |  

r E [r~.+,(o)]' 
t=O 

1 h - 1  

~: [ r ~ . + ~ ( o ) ]  u 
u=O 

(32) 

Substituting (31) and (32) into (30), we obtain 

A(x,+l)(O) - A x , ( O )  = D axo lim 
e----~0 

1 m - 1  

m Y [rx0(0)]' 
t=0  

1 k - 1  

E [rxo(0)y 
tt=0 

- ax,+l lim [F(x~+l)(O)] h 
e ---)O 

1 r--I 

- Y [ rx~+~(0 ) ] '  
r 

t=0 

1 h - 1  

~ [rx0+l(0)Y 
u=0 

(33) 

Thus possibilities of nonorderliness exist if (33) is less than zero at the value of 0 where 
A x (0) = 0. This can happen, for example, when ~ +1 << ~ and/3x0 << /3x0+1. Note, 
ho~vever, that in such a situation M(x +1)(0) becomes~very flat,°and the unidimensionality 
of this step should be questioned. T[ais is rather an unusual case, and, in practice, it is 
expected that orderliness o f  the modal points of the operating characteristics usually 
holds. 

Figures 4 through 7 illustrate the case in which reversal of the modal points occurs 
between two adjacent item scores, showing the processing functions, the cumulative 
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FIGURE 4. 
Example of a set of processing functions of five steps in the acceleration model. The processing function for 

x a = 2 is unusually flat. 

operating characteristics, the operating characteristics and the basic functions. In this 
example, mg = 3, ax, = 1.0 for all xg's, and/31 = -1.5,/32 = 3.0 and/33 = -1.0,  and 
the acceleration parameters are 1.5, 0.05, 2.5 for xa = 1, 2, 3, respectively. From 
Figure 7 it is obvious that the relationship between the values of A l (0) and A2(0) is 
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The set of five cumulative operating characteristics in the acceleration model, resulting from the processing 
functions illustrated in Figure 4. 
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The set of four operating characteristics in the acceleration model, resulting from the processing functions 
illustrated in Figure 4. The modal points for xg = l and xg = 2 are reversed. 
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The set of four basic functions in the acceleration model, resulting from the processing functions illustrated 
in Figure 4. The two curves for xg = 1 and xg = 2 are reversed before reaching the abscissa, causing the 
reversal of the modal points of the operating characteristics. 
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reversed before either of them equals 0 and thus the reversal of the two modal points 
in Figure 6 occurs. 

Graded Response Models Based on Individual Choice Behavior 

Samejima (1972) has pointed out that Bock's  multinomial model (Bock, 1972), 
represented by 

exp [ak~ O + /3ka ] 

Pkg(O) = ~ exp [ot.O + f lu] '  (34) 

u ~Kg 

where kg denotes a nominal response to item 9 and ot k ( > O) and/3ko are item response 
g 

parameters, can be considered as a graded response model m the heterogeneous case, 
if the nominal response kg in (34) is replaced by the graded item response xg and the 
parameter axg satisfies 

Oto < 31 < 32 <-" " " <- amg, (35) 

where a strict inequality should hold at least at one place. The basic function Axg(O) in 
this model is obtained from (5) and (34) by 

mg mg  

~, [Oexg - au] exp [au 0 + flu] ~, a .  exp [ a .  0 + flu] 
u = O  u = O  

Axe(O) = = axg - ; 
Fntl trig 

exp [oeu0 + flu] ~ e x p  [a~0  + flu] 
u = 0  u = 0  

and the item response information function can be written from (6) and (34) as 

/'Fig 

2 exp [asO + /3s ]  as  
s = O  

/ x g ( 0 )  = 
m g  

exp [auO + flu] 
u-----0 

rng 

y 
s = O  

as exp [as#  + fls 

m9 

e x p [ a , 0 + / 3 u ]  
• u = 0  

= Ig(#) ,  (36) 

which is identical for every xg, 0 through rag, and thus equals the item information 
function Ig ( O). 

It has been demonstrated (Samejima, 1972) that the model satisfies the unique 
maximum condition, and the perfect orderliness o f  the modal points of the operating 
characteristics is realized if in (35) strict inequality holds between every pair of axg'S, 
or, otherwise, the same modal point is shared by two or more xg ' s  whose axg'S are 
equal, indicating that multi-incorrect responses exist when such xg 's  include 0, and 
multi-correct responses exist when they include m o- 

Samejima did not pursue those models, however, for the reason that Bock's  model 
is based upon the assumption that the conditional ratio, given 0, of the probabilities of 
any two discrete responses to item 9 is invariant regardless of the set of alternatives 
selected from the answer space, the same assumption used in the individual choice 
behavior (Luce, 1959). This ratio is given by 
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Pk,(O) exp [ak O + fl,,] 

Pho(O ) e x p  [ahg  /9 + f lhg]  
= exp [(ak~ -- Cth,)O] exp [/3k~ - f l h , ] ,  (37) 

where hg is a discrete response to item g which is different from kg. If we translate to 
the graded response model, this assumption requires that, if we add B + between A and 
B in the original grading system of A, B, C, D and F, for example, the ratio of the 
conditional probabilities for, say, B and F, given 0, be unchanged: the assumption 
which does not fit the reality. 

Bock used his nominal model for multiple-choice test items and discovered their 
implicit orders among the distractors. The assumption is legitimate in this application. 
Let us consider a distractor space, which is a subspace of the answer space and 
elements of which can be used as distractors of a specific multiple-choice question. We 
can select a subset of the distractor space as the actual distractors for the item, or some 
other subset. Suppose that the two subsets have two distractors, kg and hg, in com- 
mon, and all the others are different. If we consider answering the multiple-choice test 
item as a choice behavior, it is reasonable to assume that the operating characteristics, 
Pk,(O) and Ph (0), are different when put in different subsets, but the conditional ratio, 

• g . . . .  

given 0, of selecting kg and hg, which IS given by (37), stays the same• Thus the item 
response parameters for kg and hg are meaningful, and can be used across two or more 
subsets of distractors which include kg and hg. After the item response parameters 
have been estimated for every member of the distractor space, we shall be able to use 
any subset of the distractor space as graded responses, ordering them in terms of the 
parameters ak ' s ,  as shown in (35). 

This assumption is not acceptable in typical graded response or partial credit 
situations, however, as was exemplified above. Thus applicabilities of those models 
based upon the individual choice behavior are very narrowly limited, for additivity of  
the operating characteristics and the generalizability to a continuous response model 
do not hold in such a graded response model. 

Also the meanings of item parameters in those models become unclear. For ex- 
ample, Masters (1982) has proposed a partial credit model whose operating character- 
istic of xg is a special case of (34) in which 

Otxg = Xg + I 

for xg = 0, 1, 2, . . . ,  mg, and 6xg is defined to satisfy 

/3x 
u=0 

Muraki (1992) has proposed the generalized partial credit model, the operating charac- 
teristic of which is another special case of (34), and in which ag and bx, are defined to 
satisfy 

Otxg = (Xg + 1)ag 

and 

Xg 

flxg = - a g  ~ bu. 
u = 0  
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A problem common in these two models lies in the fact that ax is defined as a function of 
. . • # . . 

the graded score x a , which Is incidental. Thus a change m the grading system easdy 
affects the value of  this parameter, and the meaning of the item response parameter 
itself becomes unclear. 

Suppose, for example, a model based on the individual choice behavior, or any 
other model, has been used, and then the researcher decides to switch to the specific 
acceleration model for further r~'search. In such a case, the method represented by (18), 
(19) and (20) can be used directly. Figure 8 presents the operating characteristics in 
Masters' partial credit model, using Otx, = 1, 2, 3, 4, 5, 6 and/3x, = 1.0, 2.0, 3.0, 3.5, 
1.8, 1.0 in (34) with kg replaced by xg for xg = 0, 1, 2, 3, 4, 5, respectively. 

In fact, the parameters in the acceleration model used in Figure 1 were obtained by 
(18), (19) and (20) from the Mxg(O)'s in Masters" model with the above set of  parame- 
ters, setting Pl  = 0.1, P2 = 0.5 and P3 = 0.9 in (18). Compare Figure 8 with Figure 
1. These two sets of curves are practically indistinguishable! (For this reason, in Figure 
8 ait. is used instead of grade to stand for an alternative in the multiple-choice test item 
following Bock's application, to make these figures distinguishable.) The same proce- 
dure was repeated by setting the values of  p l ,  P2 and P3 t o  (0.2,  0 .5 ,  0.8) ,  (0.25,  0 .50,  
0.75), (0.3, 0.5, 0.7) and (0.3, 0.6, 0.7), respectively, and the results turned out to be 
very similar. The item information function in the acceleration model (solid line) with 
the parameter values used for Figure 1, and that in Masters' partial credit model 
(dashed line) obtained by substituting the above parameter values into (36), are shown 
in Figure 9. These two curves are reasonably close to each other• 

Discussion 

General graded response model was discussed, and the acceleration model was 
introduced as a mathematical model in the heterogeneous case which is sound and 
useful in cognitive assessment as well as in analyzing more traditional psychometric 
data. The robustness of the model was also discussed. 
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Comparison of the item information functions in Masters' model (dashed line) and in the acceleration model 
(solid line). 

If the majority of the processing functions are flat for a certain interval of 0, then 
a strictly increasing scale transformation may solve the problem. If a very flat Mx,(O) 
is obtained for one or more xa 's, it should be taken as an indicator of possible violation 
of the unidimensionality. It is possible that some of the subprocesses require ability 
other than 0, and, if this is the case, then the assumption of local independence in the 
unidimensional latent space will be violated; it is necessary to turn to the model ex- 
panded to a multidimensional latent space. Expansion of the acceleration model can be 
done in a similar manner to the way in which the normal ogive model was expanded 
(Samejima, 1974). It will be wise to wait, however, until the unidimensional model has 
been used with empirical data, and then we come across situations in which the ex- 
pansion is necessary, before the decision is made as to in what way the model should 
be expanded to the multidimensional latent space. 

Use of some other function, such as the normal ogive function, for ~x,(O) may 
provide substantially different results. This must be examined in the future. 

DiBello, Stout and Roussos (1993) have proposed a unified cognitive/psychometric 
diagnosis, in an effort to bridge psychometric methodologies with cognitive assessment. 
Samejima (1995) has proposed the competency space approach, using latent trait mod- 
els in cognitive assessment. In this latter approach, the acceleration model is expected 
to find its usefulness. 
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