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This paper generalizes the p* model for dichotomous social network data (Wasserman & Pattison, 
1996) to the polytomous case. The generalization is achieved by transforming valued social networks into 
three-way binary arrays. This data transformation requires a modification of the Hammersley-Clifford 
theorem that underpins the p* class of models. We demonstrate that, provided that certain (non-observed) 
data patterns are excluded from consideration, a suitable version of the theorem can be developed. We 
also show that the approach amounts to a model for multiple logits derived from a pseudo-likelihood 
function. Estimation within this model is analogous to the separate fitting of multinomial baseline logits, 
except that the Hammersley-Clifford theorem requires the equating of certain parameters across logits. 
The paper describes how to convert a valued network into a data array suitable for fitting the model and 
provides some illustrative empirical examples. 
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1. Introduction and Background 

The goal of  this paper is to extend the family of  models termed p*, presented in Frank and 
Strauss (1986), Strauss and Ikeda (1990) and Wasserman and Pattison (1996), from dichotomous 
to valued social relations. This paper is a companion paper to Wassennan and Pattison (1996), 
which presented p* models for the case of  a single dichotomous social network, and to Pattison 
and Wasserman (in press), which generalized p* models to multiple binary networks. 

The p* family is a class of  models for a single dichotomous social network relation, with 
parameters reflecting a wide variety of  possible structural features. Yet measurements of  social 
network relationships are often in valued form, being designed to reflect distinct levels of  inten- 
sity of  social ties. Here we present an extension of  the p* family to valued (polytomous) social 
network data, and so describe a general class of  models that can be used to evaluate a wide range 
of  hypotheses about structure in valued relations. 

The statistical analysis of  valued relations has a small literature. Wasserman and Iacobucci 
(1986) presented an extension of  the dyad independence model  Pl  to nondichotomous relations 
(see also chapter 15 of  Wasserman & Faust, 1994); recently, their "valued P l "  models were 
generalized by Anderson and Wasserman (1995), and Wong and Wang (1995). Anderson and 
Wasserman added substantively interesting higher-order interactions to the models (multiplica- 
tive, rather than additive, effects) while Wong and Wang introduced a more elaborate parameter 
structure to a model in logit form. All  these extensions, however, assume dyadic independence. 
Frank and Strauss (1986) briefly discussed Markov graph models for valued relations. 
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Other approaches to statistical modeling of valued relations include correspondence analysis 
and RC(M) association and correlation models (see Agresti, 1990), which were developed for 
social networks in papers by Wasserman, Faust, and Galaskiewicz (1990), Wasserman and Faust 
(1989), and Faust and Wasserman (1993). These general purpose models can be useful but do 
not allow the parameterization of particular network features that may be of interest. 

It would clearly be useful, then, to construct models for valued networks that possess a sta- 
tistical basis and that allow for the parameterization of network features beyond the dyadic level. 
The purpose of this paper is to develop such models as an extension of the dichotomous case. 
The binary models first arose as models for lattice structures (Ising, 1925), and have found much 
use in spatial applications (Besag, 1972, 1974, 1977a; Strauss, 1992; Wasserman, 1987). Wasser- 
man and Pattison (1996) elaborated Frank and Strauss's (1986) application of these models to 
social networks, and utilized the standard pseudo-likelihood estimation approach to fitting these 
models, first described by Besag (1975, 1977b) and applied to social networks by Strauss and 
Ikeda (1990). 

After a presentation of notation in section 2, we briefly describe p* models for dichotomous 
network data in section 3, and cover some important preliminaries including dependence graphs 
and the Hammersley-Clifford theorem. This theorem was first introduced in the context of spatial 
auto-logistic models by Besag (1974), was utilized by Frank and Strauss (1986) and Strauss 
and Ikeda (1990) in generalizing spatial statistical models to the case of social networks, and 
was also used by Wasserman and Pattison (1996) and Pattison and Wasserman (in press) to 
underpin the p* class of models (see also Wasserman & Pattison, 1999). In section 4, we extend 
p* models to polytomous data by converting valued data matrices to binary three-way arrays. We 
demonstrate that a simple transformation of valued data to a three-way binary array leads to a 
suitable binary version of the Hammersley-Clifford theorem, provided that certain (nonobserved) 
data patterns are excluded. This transformation amounts to a model for multiple logits derived 
from a pseudo-likelihood function. We show that estimation within this model is analogous to 
the separate fitting of multinomial baseline logits, except that the Hammersley-Clifford theorem 
requires the equating of certain parameters across logits. We explain how to convert a valued 
network into a data array suitable for fitting the model. In section 6, we present some empirical 
examples as illustrations. 

2. Some Notation 

2.1. Notation for  Dichotomous and Polytomous Networks 

We generalize the notation presented in Wasserman and Pattison (1996) and in Pattison 
and Wasserman (in press). A valued social network comprises a set .Af = {1, 2 . . . . .  g} of g 
social actors and a valued social relation. If the relation is dichotomous, it can be regarded as 
comprising a set of ordered pairs recording pairs of actors for whom a relational tie is present. If  
the ordered pair (i, j )  is in this set, then the first actor (i) has a relational tie to the second actor 
( j )  in the pair. It will be convenient below to write i j  as short-hand for the ordered pair (i, j ) .  

Denote the set of all possible relational ties as 7- ___ A/" ×.Af, where × indicates the Cartesian 
product of two sets. Normally, actors are not assumed to have relations with themselves, so 
ii ¢ 7-. Below, for S c 7-, we shall use the short-hand S -- i j  to indicate the set S excluding the 
ordered pair i j ,  that is S M {i j}; and S + i j  to indicate S U {i j} .  

A valued social relation arises when the ties are measured on an ordinal scale, taking integer 
values from the set V = {0, 1 . . . . .  C - 1}; a dichotomous social relation may then be regarded 
as the special case when C = 2. 

When a relational tie takes the integer value k, we say it has strength k. Any valued social 
relation can be represented by a g x g matrix, X, where Xij = k, if the tie i j  has strength k. 
When i j  ~ 7- the cell Xij in the matrix can be coded to distinguish it from the strength values in 
V (for instance, Xij could be set to -1 ) .  From the point of view of data analysis, such cells can 
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be considered as missing values. (In our empirical example in Table 3, we have simply indicated 
such "missing" cells with a dash. In this example, the only "missing" cells relate to self-relations. 
In our second example, there are more "missing" cells because we exclude relations between 
members of  separate groups.) Since the matrix X will be assumed to be a random quantity, we 
d e n o t e  Xij as a realization of  X i j ,  and the matrix x as a realization of  X. 

It is useful to define a relation derived by focusing only on ties at a particular strength. We 
define, for k # 0, the k-strength relation 

Y(ij,k) = 1 if Xi j  -~. k 

= O i f X i j  ~ k ,  i j  ~ T  (1) 

and where Y(ij,k) is regarded as missing if i j  q~ T .  The point of  adopting this additional notation 
is that it translates the valued social relation into a binary form. As will be seen below, our 
approach to dealing with valued relations is to work with this derived binary form in a similar 
manner to that discussed by Wasserman and Pattison (1996). 

As before, we will denote a realization of  Y(ij,k) as  Y(ij,k). We can represent the full set of  
Y(ij,k) a s  a three-way g x g x (C - 1) array, Y, and we will denote the three-way array y as 
a realization of  Y such that the Y(ij,k) constitute the cells of  y. Alternatively, we can think of  
entries in Y as being indexed by elements in T x  V and below we shall use the notation (i j ,  v) to 
represent an element of  this set, where i j  ~ T and v ~ V. 

2.2. Notation for  Conditional Logits 

As in Wasserman and Pattison (1996), we let ~r represent conditional logits-- log odds 
ratios, comparing the conditional probability of  one outcome of  a random variable to the con- 
ditional probability of  another outcome, in a logarithm scale. In particular we let uiYij,k be a 
"baseline" conditional logit representing the log odds of  Xij taking the value k, compared to 
taking the value 0, conditional on all other cells in the matrix; that is 

[ P ( X i j  = k , X s t  = X s t , S t # i j ,  st  ET~)] 
uo'ij,k = log P ( X i j  = 0 [ Xst Xst, st  7~ i j ,  st  ~ " (2) 

We denote an analogous logit for the binary form of  the k-strength relation (that is, expressed in 
[k]. terms of  Y(ij,k)) by ~i j  • 

[ P(Y( i j , k )=1  IY(st ,u)= Y(st,u), (st, u) ~ (ij, k ) , s t  e T , u  a V ]  
log = . . . . .  - -  - (3) 

~'iJ] ~ P(Y(ij,k) = 0 i r(st,u) Y(st,u), (St, u) 7~ tlJ, K), st e T,  u e V 

The second logit is not necessarily defined for all cells in the three-way array Y, since 
P(Y(iLk) = 1 i Y(ij,u) = 1, u ~ k) = 0. This fact foreshadows that certain realizations of  Y are 
impossible, as discussed below. 

2.3. Additional Notation 

In many of  the derivations and algebraic expressions below, there is a need to set certain 
values in X and Y to zero, as well as a need at times to consider only a subset of  non-missing cells 
in X and Y. For instance, in the conditional logit expression (2), the conditionality is specified 
by Xst = Xst, st ~ i j ,  st  ~ T ,  that is, the conditionality is based on the observed values of  non- 
missing cells in X excluding the cell ij .  It is convenient to have a short-hand for these purposes. 

First, we develop a simple means to express the setting to zero of  a number of  variables. 
Let w be an arbitrary vector (wl,  wz, . . . ,  wn) f of length n with J the index set {1, 2 . . . . .  n}. 
Denote by WA, for A __c J ,  the vector w with entries indexed by J - A set to zero. For instance, 
W{i} = (0  . . . . .  O, Wi, 0 . . . . .  O) t and WJ-{ i}  = (Wl ,  1/32, . . . ,  W i _ l ,  O, Wi+ l  . . . .  Wn) t. 
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Secondly, we present a notation to represent a subset of variables. Let IAI = m. Denote by 
Wa # the ordered m-tuple derived from w by excluding the entries indexed by J - A, but retaining 

the natural ordering induced by J ,  so that WA # = (Wal, Wa2 . . . .  Wa,,)' where {al, a2, . . .  am} = A 

# = (Wi), and # = ( W l ,  w 2 ,  , wi-1 ,  Wi+l, • ton) t. and aj  < aj+l .  For instance, w{i} W j _ { i }  . . . . .  

More generally, the notation can be applied to higher-way arrays, whose entries can be 
regarded as forming a sequence. All that is required is some standard ordering on the set of non- 
missing cells of the array. In our case, for instance, XA for some A c T specifies the sequence of 
matrix cells Xij  such that Xij  = Xij for i j  ~ A and Xij  = 0 for i j  ~ T - A; while XA # specifies 
the sequence of Xij  such that i j  ~ A. By these means, we express, respectively, that certain cells 
in X have been set to zero, or that we are considering only a subset of cells in X. 

3. Thep* Model 

The original specification of the class of models p* was for a single, dichotomous relation, 
as described by Wasserman and Pattison (1996) (see also Rennolls, 1995). Most of the early work 
(Frank & Strauss, 1986) focused on nondirected relations. Generalizations to valued relations 
were mentioned in passing (in concluding remarks) by Frank and Strauss (1986; sec. 6) and by 
Strauss and Ikeda (1990; sec. 5), 

3.1. The Model f o r  a Single Dichotomous Relation 

Wasserman and Pattison (1996) introduced the p* model in loglinear form: 

exp{0'z(x)} 
e (X = x) = , (4) 

K(O) 

where X represents the matrix of a dichotomous relation, 0 is a vector of model parameters, z(x) 
is a vector of network statistics and the function K normalizes the expression for a given 0. This 
model allows the probability of the network X to be expressed in terms of various structural fea- 
tures that can be represented in terms of network statistics, such as reciprocity and transitivity. 
The difficulty with the model in this form, however, is that in any but the simplest cases calcu- 
lation of tc is intractable. Following Strauss and Ikeda (1990), Wasserman and Pattison (1996) 
converted the model of (4) to a logit form: 

e ( s i j  = 1 t X ~ _ i j  = x~F_ij) ! = 0 t 
(5) 

where x + is the matrix x but with xij  forced to take the value 1, and x~j is the matrix x but with 
xij  forced to take the value 0. This logit version of the model does not include x. Maximum 
likelihood estimation of parameters is problematic but, as Strauss and Ikeda (1990) showed, 
approximate estimation under maximum pseudo-likelihood estimation is possible using standard 
logistic regression programs. 

The accuracy of pseudo-likelihood estimation is difficult to assess. Strauss and Ikeda 
(1990) compared maximum likelihood and maximum pseudo-likelihood estimation in a sim- 
ulation study and in a simple network case, and found that the two procedures performed 
similarly. Geyer and Thompson (1992), on the other hand, analyzed (nonnetwork) data for 
which pseudo-likelihood estimation performed poorly compared with Monte Carlo maximum 
likelihood techniques. One of the problems with pseudo-likelihood estimation is that standard 
errors of parameter estimates are uncertain, so the usual tests in logistic regression are at best 
approximate. 

For the purposes of this paper, pseudo-likelihood estimation is used, bearing in mind that 
it is an approximate procedure that, at least in some cases, may be problematic. Our pseudo- 
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likelihood function assumes that conditional logits are independent. In the longer run, pseudo- 
likelihood procedures may be an interim phase. The development of Monte Carlo techniques, 
such as those suggested by Besag and Clifford (1989) and Geyer and Thompson (1992) may 
provide either an alternative method for the estimation of models discussed in this paper, or allow 
the conditions to be elaborated under which maximum pseudo-likelihood estimates can be used 
with confidence. (The Preisler, 1993, approach of bootstrapping standard errors also suggests 
another useful direction.) The development of Monte Carlo-based estimation specifically for p* 
models is a matter for ongoing work (see Crouch & Wasserman, 1998). 

3.2. Dependence Graphs 

Frank and Strauss (1986) introduced the construct of a dependence graph for a social net- 
work as a means of representing the dependencies among possible network ties. The dependence 
graph indicates which relational ties (or subsets of relational ties) are assumed to be condition- 
ally dependent. That is, the dependence graph has as nodes the set of all possible relational ties 
in T;  an edge between two nodes in the dependence graph signifies that the two correspond- 
ing ties are assumed to be dependent, conditional on all other ties in the network. Dependence 
graphs are analogous to the independence graphs used in the graphical modeling literature (see, 
for instance, Lauritzen, 1996). 

Wasserman and Pattison (1996) largely followed the dependence structures discussed by 
Frank and Strauss (1986) (for instance, Markov directed graphs, which assume dependencies 
for any pair of relational ties that have an actor in common), although they briefly introduced 
some more complex dependence structures. More recently, Pattison and Wasserman (in press) 
provided a fuller presentation of dependence structures for multivariate social networks in terms 
of theoretical themes discussed in the literature on social structural models. 

3.3. The Hammersley-Clifford Theorem 

The link between dependence graphs and the models of (4) and (5) is the Hammersley- 
Clifford theorem (Besag, 1974). Besag, who was interested in stochastic models for spatial pro- 
cesses, used the theorem to formulate a conditional probability model for a finite system of 
spatially interacting random variables. Besag construed a lattice arrangement of sites to repre- 
sent the spatial distribution associated with the random variables and introduced the concept of 
neighboring sites to specify dependencies among the variables. A clique was a set of sites which 
were all neighbors of each other. In these terms, the theorem can be stated as follows: 

Hammersley-Clifford theorem. For a system of n interacting variables V¢ = (Wi), where 
each variable can take only a finite number of values: 

.__  # # - 
• [ P(Wi -- wi I W J - { i  } • Wj_{i}) # 
log ~ - -  ,,,-TT-----..-TT--T L P(Wi _ o i wj_ i  = wj_l i  = wi rsu i (wsu   ) 1-I w, 

SC_J-{i} s~S 
(6) 

where rsu{i} is a function of the observed values of those variables indexed by the subset S U {i} 
of J = { 1, 2 , . .  n}, and where, if S = 0, the term I ]  Ws is taken to have the value 1. Moreover, 

sES 
FSU{i} = 0 unless S U {i} are all neighboring sites of each other (that is, a clique). 

When the system is dichotomous, for each S c_ J -  {i} the expression, FSU{i } (W~o{i}) 17 ms 
sES 

becomes zero unless Ws = 1 for all s ~ S. In this instance, the term is nonzero only when the 
arguments of rsu[i} are all 1, in which case the F-functions can be taken as constants. In the 
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dichotomous case, then, equation (6) becomes 

# I;l)] 
[ e ( w i  = 1 I Wj_{i}# - = E YSU{i} 1-1 tOs' log/e(wi °lWj-{il w _Iij)j s _J-lil ,Es 

(7) 

where the F-terms are constants. In other words, the theorem establishes that, in the dichotomous 
case, the y-terms will be zero unless the variables indexed by the set S U {i} form a clique of the 
dependence graph. (Apart from this constraint, Besag, 1974, noted that in the non-dichotomous 
case any set of F-functions gives rise to a valid probability distribution.) 

In the case of social networks (i.e., where the binary vector W is replaced by a dichotomous 
matrix X) the theorem establishes that a probability model for the collection of random variables 
{Xij } depends only on the complete subgraphs, or cliques, of the dependence graph. (A subgraph 
is complete if evei 3, pair of nodes in the subgraph is connected by an edge. A subgraph comprising 
a single node is also regarded as complete.) The model in (7) may be expressed in the form of 
(5) and hence also in the form of (4). Accordingly, the specification of dependencies through a 
dependence graph determines the nonzero terms in the Hammersley-Clifford expansion, which 
is in fact the logit p* model (5) implied by that set of dependencies. 

3.4. Polytomous Models 

For polytomous data, (6) enables the specification of a p* model. Unlike the dichotomous 
• # case, however, the terms Fsu{~}(Wsu{i}) l-I Ws are not necessarily zero for a particular value of 

sES 
Ws, and so instead of a set of constants as in (7), we retain a set of unspecified functions. As a 
result, (6) leads to versions of (5) and (4) but with the parameters 0 replaced by a set of functions. 

For estimation purposes, however, there are simpler approaches than dealing with a set of 
functions. With polytomous data, there are only a finite number of arguments for any function 
Fsu{i}, so that FSU{i } will only take a finite range of values. Once we know these values, we have 
specified the RHS of all possible versions of equation (6), so that these values can be taken as 
the parameters of our conditional logit model. 

More particularly, if the variables take values from the set V = {0, 1 . . . . .  C - 1}, the 
function FSU{i } will take the values Fsu{i}(v) for all vectors v of length IS[ + 1 with entries 
1) t E V, that is, a total of C ISl+l possible values. Yet in (6) if any of the arguments of Fsu{i} 
are zero, then the term wi FI Ws is zero. Accordingly, we only need consider nonzero values as 

sES 
arguments of Fsu{i}. There will be (C - 1) Isl+l of these, each of which will be a parameter. 

We can include all of these parameters in (6) by expanding the term Fsu{i}(w#u{i}) I-I Ws 
sES 

into a summation across the possible values of Fsu{i}, provided that we incorporate indicator 
variables to indicate the actual observed values. For instance, suppose S = 0 (so that l-I Ws = 1, 

sES 
as noted above). Then F{i} c a n  take C values, although, as noted above we can ignore the value 

C-1  
0. So the term F{i} (w~/}) = F{i}(wi) can be expanded into the summation ~ F{i} ( O f f  ], where 

t= l  
the indicator variable y~t] = 1 if wi = t and y[t] = 0 if wi ¢= t. In this way, we develop a model 
that includes all parameters. 

What this amounts to, of course, is a transformation to a higher-order binary array. In the 
network case, the corresponding transformation is achieved by using the k-strength relations in 
Definition (1). 

In developing p* models for the polytomous case, we choose to work with the three-way 
array Y rather than the original valued array X. In part, this choice is made because it leads to 
a natural model parameterization, as the foregoing argument suggests. But as well, it permits us 
to determine precisely what data to include in the estimation of the C - 1 conditional logits that 
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specify the model (that is, one conditional logit for each possible nonzero value of Xij ). It also 
allows straightforward resolution of a problem that emerges in these auto-logistic models, that of 
the need to equate certain parameters across logits. 

Models such as p* that are derived from the expansion (6) also have an autologistic char- 
acter, analogous to classical logistic models except that the explanatory variables are themselves 
observations on the process (Besag, 1974). In the logit for IVi, the i-th variable acts as a response, 
but in the logit for Wj it may be a predictor. There is an important implication of this property 
for equating parameters. In (7), there is one parameter for each clique of the dependence graph 
(i.e., one y-term). So if a )/-term involves both the i-th and j- th variable, it will appear in both 
the logits for Wi and Wj. In the case of models for polytomous networks, we discuss below the 
need to equate parameters across different logits that estimate effects for different strengths of 
tie. 

4. Models for the Three-Way Binary Array 

Our approach is to construct a version of the Hammersley-Clifford equation (7) for the di- 
chotomous three-way array Y, constructed from the valued matrix X. The purpose of this section 
is to show how the network version of the polytomous expansion for X in (6) can be converted to 
a dichotomous version for Y. In making the transformation explicit, we establish consequences 
for the way in which the data should be structured for estimation. In particular, we show that 
certain patterns within the three-way array need to be excluded, as mentioned earlier. Estimation 
is addressed in section 5. 

Before constructing an appropriate form of the Hammersley-Clifford equation for the three- 
way array Y, it is important to note that Besag (1974) used a positivity condition in establishing 
the theorem. In Appendix A we show that Besag's condition can be replaced by a less stringent 
version that permits us to construct the analogue of (7) for the binary array Y. 

4.1. Transforming Polytomous to Binary Variables 

We now formulate a version of the dichotomous Hammersley-Clifford expansion (7) for the 
three-way binary array Y. 

When in the case of a polytomous network, we want to compare the conditional log-odds 
of a tie taking the value k against there being no tie at all, the appropriate version of (6) is 

e ( x i j  = k [ X~-_i j = x~_ij  ) l s+ij(Xs+ij ) 1-I Xs,, log E # 
Sc_'T-ij stES 

that is 

02rij,k k Z # = FS+ij (Xs+ij) I 7  Xst. (8) 
SC_T-ij stES 

We now transfer to the three-way binary array Y by transforming X through (1). The basic 
result is given in the following theorem 

Theorem 1. The expansion of equation (8) is equivalent to 

[kl 
OYiJ -~" Z ~'M+(ij,k) 1-I Ym, (9) 

MC_Tx V-(ij,k) meM 

where m = (st, v) 6 S x V and where we force Ym = 0 when m = (i j, v) for 0 < v # k. 

The proof of this theorem is given in Appendix B. 
Equation (9) has exactly the same form as the Hammersley-Clifford equation (7). 
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The forced zeroes imply that certain patterns of  data in Y are not permissible. Clearly, 
Y(ij,v) = 1 and Y(ij,k) = 1 are individually possible, but not jointly if v ~ k, as the network tie 

cannot have two values simultaneously. I f  Y(ij,v) = 1, in estimating the logit ~r] k] for v ¢ k, w e  

[k] 
r e q u i r e  Y(ij, v) = 0. TO avoid this contradiction, we state that when Y(ij ,v) = 1 the logit wij is 
undefined and is to be excluded from the set of  equations represented by (9). This is equivalent 
to stating that if Y(ij,v) = 1, then Y(ij,k) is undefined for all k # v. 

In so doing we have followed Besag's  (1974) advice to restrict the sample space to those 
patterns of  data in Y that are permissible. As discussed in Appendix A, our revised positivity 
condition allows the Hammersley-Clifford theorem to be proved in this case. 

Note that the data patterns that need to be excluded imply that, when we estimate the poly- 
tomous logit for relations of  strength k, observed relations with nonzero strengths other than k 
are to be excluded as "response" variables. 

5. Estimation 

We now show that estimation of  the dichotomous model in (9) is analogous to the separate 
fitting of  baseline logits for the polytomous relationship variable X. For the sake of  a simple 
exposition we assume trichotomous valued data here but the argument can be generalized readily 
to relations with more than three values. 

For trichotomous data, the transformation (1), together with the exclusion of impermissible 
data patterns described in the previous section, can be written as follows: 

i f  Xij = O, Y(ij,1) ~-- Y(ij.2) • 0; 

if Xi j  = 1, Y(ij,1) = 1 and Y(ij,2) is undefined; 

if Xij = 2, Y(ij,2) = 1 and Y(ij,l) is undefined. (10) 

Denote as P the subset of  T x V wherein Y(ij,k) is defined. Then for each (i j,  k) e P, we can 
write (9) as follows 

~.[k] = Y ~  YM+(ij,k) 1--I yrn tj 
MC_P-(ij,k) mrM 

M+(ij, 1) 
= yM+(ij,1)Z(ij,k) --}- 

MCP-( i j ,  1) 

where we define 

M~P-(i j ,2)  

M+(ij,2) (1 t) YM+(ij,2) Z(ij,k) , 

Q 
Z(ij,k) : R yq when (i j ,  k) fi Q c_ p 

qeQ-(ij ,k)  

= 0 when (i j ,  k) ~ Q or when Q is not a subset of  P. 

N o t e t h a t i f b o t h ( i j ,  1),( i j ,  2) ~ Q c_ P, thenY(ij,1) : Y(ij,2) ---- 0, so that Z(ij,k) Q : 0. So 
zM+(ij,s) (ij,k) can only be nonzero if s = k. In what follows, then, we need only consider those in- 

.M+(ij,s) where s = k and where (i j ,  v) q~ M for both v = 1 and v = 2. Furthermore, stances of  "*(ij,k) 
we know from the Hammersley-Clifford theorem that YM+(ij,k) = 0 unless the set M + (i j ,  k) 
makes up a clique of  the dependence graph for Y. This will place further constraints on the 
instances of  the set M that we need to consider. (Homogeneity constraints, which we discuss 
below, introduce yet more constraints on what we need to consider in M.) 

M+(ij,s) In practice, the statistics Z(ij,k) a r e  readily computed. Consider, for instance, a clique in 
the dependence graph comprising a tie of  strength 1 from i to j and a tie of  strength 1 from j 
to i (that is, a clique corresponding to a strength 1 reciprocity effect). Then in the logits wi  [k], 
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• • M+(ij,s) {(ji,1)(ij,1)) M = {(ji,  1)}, and the nonzero statlsUcs a r e  z(i j k) ~-- z(i j  k) ~- Y(ji, 1) as long as k = 1. 
Of course, Y(ji, 1) simply indicates whether there' is a tie of  strength 1 from j to i. So in the logit 
for relations at strength 1, there will be a reciprocity term y{ (i j, 1 ), (ji, 1) } Y(ji, 1 ) where y{ (i j, 1), (ji, 1) } 
is the parameter for a strength 1 reciprocity effect• Given the way we have set up the z-statistics, 
there will be no such term in the logit for relations at strength 2, which is exactly what we require• 

Equation (11) has the form 

~Jr}; ] -~- ")/•Z(ij,k ) (12) 

where 3' is a vector of  parameters with yQ as vector cells for all Q G P,  and z(ij,k) is a vector 

of  statistics with a Z(ij,k) a s  vector cells. The (i j ,  k) suffix signifies that the statistics Z(ij,k) are 
calculated for the case (i j ,  k). 

Equation (12), of  course, remains an autologistic model, but for the purposes of  pseudo- 
likelihood estimation, as Strauss and Ikeda (1990) and Wasserman and Pattison (1996) have 
shown, we can treat it as an ordinary logistic regression equation, considering z as a vector of  
explanatory variables and 3" a vector of  parameters. 

5.1. Baseline Logits 

It is a straightforward matter to show that (12) is equivalent to baseline logits for the original 
relational variables, X. For all (i j ,  1) ~ P,  we have 

# 
P(Y(ij,1) = 1 ] Y e - ( i j , 1 ) )  = P(Xi j  = 1 [ Xij ~ 2, X~_ i j  ) 

P(Xi j  = 1, Xij ~ 2 I X~-_ij) 

e ( x i j  ¢= 2 I X ~ _ i j )  

P(Xi j  ---- 1 I X~-_/j) 

P(Xi j  = 0 1 X~_i j )  + P ( X q  = 1 I X~-_ij)" 

Similarly, 

XT"_i j )  P(Y(i j ,1)  = 0 [ # P ( X i j  : 0 I # 
Y P - ( i j , 1 ) )  = P ( X i j  : 0 I X ~ - _ i j )  q- P ( X i j  : 1 [ X ~ ' _ i j )  

so that we have: 

-P(Xi j  = 1 
w])  ] = log P(Xi........ O[ X __ij ) j = 3"tl•z 1 (13) 

• • M+(ij  1) • • where 3"1 is a vector of  parameters YM+(ij, 1) and zt a vector of  s t a t i s t i c s  z(i j t )  ' • These statistics 
were defined above in terms of  the ¥ array, but of  course can be equivalently expressed in terms 
of  the X array. We have a similar logit for the second value 

-P (X i j  = 2 t X~-_ij) 1 , 
= l o g  = 

cuiJ P ( X i j  0 I 
(14) 

So (12) is equivalent to two baseline logits in the trichotomous case. More generally, with poly- 
tomous values {0, 1 . . . . .  C - 1 }, there are C - 1 baseline logits. 
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5. 2. Pseudo-Likelihood Functions 

is 
From (12), the pseudo-likelihood function, which assumes independence of baseline logits, 

l ( 7 ) =  1-I 
(rs,v)EP 

1 exp'y'.Z(rs,v) ]Y(rs,v) [1 
+ exp ~".Z(rs,o) J 

11- Y(rs,v) ! 
I 

+ exp ~/t.Z(rs,v) ] 

I1 (exp'y"Z(rs'v))r(~"") 
1 + exp'yCZ(rs,v) (rs,v)EP 

Accordingly the log-pseudo-likelihood is 

Z(~)  = E [Y(rs'v)')/'Z(rs'v)- log (1 +exp~/.Z(rs,v))] 
(rs,v)6P 

so the pseudo-likelihood is maximized by solution of the equations, for all Q _ P 

I Q x tZ 3L('y) Z Y Q Z(rs'-:- v)- exp7 "Z(rs'v) 1 
~" (rs'v)Z(rs'v) -- (1 + exp'yCZ(rs,v)) ] = O. 

O~Q (rs,v)EQ 
(15) 

If (rs, 1) c Q, as noted above Z(rs,v) Q = 0 if it is also the case that (rs, 2) ~ Q. So we 
need only consider those cliques Q of the dependence graph which have as elements one but not 
both of (rs, 1) and (rs, 2) as elements. Moreover if ZQsA) ~= 0 then Z(rs,2) Q = 0, so that (15) 
decomposes into two sets of equations: 

(rs, l)~Q 

Q zQs,1) exp"/t'Z(rs,1)] 
Y(rs'l)Z(rs'l) -- ~ 7 exp'7'.Z(rs,1)~] ---- 0 

y Q Z(Qrs,2) exp "/'Z(r s,2' 1 
(rs'2)Z(rs'2) -- (1 "l- exp'7'.Z(rs,2)) J = 0. 

(16) 

(rs,2)cQ 

Note that the equations in (16) are not equivalent to joint maximum pseudo-likelihood esti- 
mation of (13) and (14). For joint estimation it is simple enough to show (Hosmer & Lemeshow, 
1989) that the estimates are the solutions of the equations 

OL(~yI,~/2) E [  Q z(Qrs,v) exp~/v'Z(rs,v) ] 
= r(r~'~)Z(rs") -- (1 + exp'7'l.Z(rs,1) + exp')/2.Z(rs,1)) "---- O, 0 yQ (rs,v)a Q 

which are not necessarily identical to (16). 
The analogue of (16) in standard logistic regression is referred to as separate, rather than 

simultaneous, fitting of baseline logits. Begg and Gray (1984) proposed that separate fitting was a 
satisfactory alternative to simultaneous fitting. They commended the separate fitting procedure as 
enhancing analytic simplicity and flexibility, especially regarding variable selection, and noted 
that separate fitting of the logits overcame some practical difficulties that were, and still are, 
apparent in major computer statistical packages. Begg and Gray showed that the two models are 
parametrically equivalent and that the resulting estimates are consistent and efficient. 

Hosmer and Lemeshow (1989) noted that in their experience coefficient estimates from sep- 
arate fitting were close to those from polytomous fitting, although they urged caution in drawing 
definitive inferences from these estimates and their associated standard errors. (As we are work- 
ing in a pseudo-likelihood framework, such caution has to be exercised in any case.) Begg and 
Gray (1984) noted that substantial losses of efficiency in separate fitting were generally restricted 
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to configurations in which the probability of the baseline category was low. Agresti (1990) rec- 
ommended that, unless there was a natural baseline category, the response category having the 
highest prevalence should be used as a baseline. This is not normally a problem in network data, 
as zeroes are usually a common, and often the most frequent, value in the network matrix. 

5.3. Setting up Data and Equating Parameters 

The previous section gives an indication of how to adapt a valued data matrix X to allow 
maximum pseudo-likelihood estimation (MPLE) of the model with standard statistical packages. 
The procedure is not dissimilar to the procedure for MPLE for multivariate network data (Pattison 
& Wasserman, in press), except that we have to allow for impermissible data patterns. 

For trichotomous data, we establish two binary matrices in accordance with the transforma- 
tion (1), one for the first logit pertaining t o  Sij = 1,  that is, (13), and the other for the second 
logit pertaining to Xij  = 2, that is, (14). Each cell in these matrices (excluding diagonals) be- 
comes a separate case in the pseudo-logistic regression, with a "response" variable specified as 
the binary value of the cell except in those cases where it is deemed to be undefined (that is, miss- 
ing) in accord with (10). For cell (i, j )  in the k-th logit, as "explanatory variables" we calculate 

z ~  ij'k) for each M + (i j ,  k) hypothesized as a clique in the dependence graph. the statistics 
However, the parameters for certain of these statistics have to be equated, because there is 

only one parameter )/M+(ij,k) for each clique M + (i j ,  k) in the set of equations in (9). Suppose 
that the clique T = M + (i j ,  k) = S + (st, v), where st  ~ i j  and v ~ k, with (st, v) ~ M 
and (i j ,  k) ~ S. Then in the logit for k-strength relations, the parameter YM+(ij,k~ appears, with 

M+(ij,k) 
statistic L(ij,k) , whereas in the logit for v-strength relations, the parameter Ys+(st,v) appears, 

S+(st,v) Yet these parameters refer to the same clique T so they are in fact one and with statistic Z(st,v) . 
the same, the parameter Yr, Accordingly, we have a single statistic, which in the data array we 

M+(ij,k) S+(st,v) 
set t o  z(ij,k) for the k-th logit, and to ~(st,v) for the v-th logit. 

Before we show an example of how this works in practice, we introduce certain statistics 
that reflect important network configurations. To make the models identifiable, homogeneity 
constraints of some sort are required. Pattison and Wasserman (in press) introduced a general 
strategy of assuming that parameters corresponding to certain isomorphic configurations of array 
entries of X are equal. 

Frank and Strauss (1986) used such an assumption for their univariate Markov directed 
graphs. In the first place, they assumed that possible ties were conditionally dependent if they 
had an actor in common; that is, ties ij  and st are conditionally dependent if {i, j} f3 {s, t} # 0. 
By imposing a homogeneity requirement that isomorphic directed graphs have the same proba- 
bility, Frank and Strauss (1986) showed that the sufficient statistics for the model were counts 
of certain network configurations: reciprocal ties, in-stars, out-stars, mixed-stars, and certain tri- 
adic configurations. For our illustrative purposes, we also assume homogeneity and we restrict 
our attention to the following set of configurations illustrated in Figure 1 (we refer to the order 
of a configuration as the number of ties in it): 

Configurations of order 2. 

Reciprocal or exchange ties: configurations in which ties i j  and j i  are both present. If  one tie 
is present at strength v > 1 and the other at strength w >_ 1, the corresponding reciprocal or 
exchange parameter may-be denoted by p[V,w], and we no~e that ply,w] = p[W,vl. 

2-in-stars: configurations in which two separate ties are directed towards the same actor; for 
instance, i j  and kj .  The number of 2-in-stars for j is of course related to the number of 
choices of j made by other actors in the network (the indegree of j) ,  and as such is related 
to the popularity of j .  We shall use cr to denote star effects and o" 1 to denote 2-in-stars in 
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Configurations of  Order 2 

, , \ d  
Reciprocal tie 2-in-star 2-mixed-star 2-out-star 

Configurations of  Order 3 

2-in-star with 2-out-star with Transitive triad Cyclic triad 
reciprocity reciprocity 

FIGURE 1. 
Various network configurations. 

particular. When one tie in a 2-in-star is at strength v > 1 and the other at strength w > 1, th___e 
[v w] - -  _[v,w] = a}w,v]. corresponding parameter may be denoted by a t ' , and we note that o /  

• 2-out-stars: configurations in which two separate ties are directed away from the same actor; 
for instance, i j  and ik. The number of  2-out-stars for i is of  course related to the number 
of  choices i makes of  other actors in the network (the outdegree of  i), and is related to the 
expansiveness of i. When one tie in a 2-out-star is at strength v > 1 and the other at strength 
w > 1, the corresponding parameter may be denoted by _[v,w] and we note that a[o v'wl _ _  o O , ~ -  

a"Uw , v l 
0 " 

• 2-mixed-stars: configurations in which a tie is directed away from an actor toward whom 
another tie is directed; for instance, i j  and j k .  When the first tie in a 2-mixed-star is at strength 
v > 1 and the other at strength w > 1, the corresponding parameter may be denoted by a ~  'w]. 

t ~ 

For 2-mixed-stars o M ~ a~,.~[W'VJ unless v = w. 

Configurations o f  order 3. 

• 2-in-stars with reciprocity: configurations which contain a 2-in-star, but with a tie reciprocat- 
ing one of  the ties of  the 2-in-star; in other words, configurations with ties of the form i j ,  j k  
and k j .  When the tie i j  is at strength s > 1, the tie j k  is at strength t > 1, and the tie k j  is at 

_[s,t,v] strength v >_ 1,we denote the corresponding parameter as OlR . 

• 2-out-stars with reciprocity: configurations which contain a 2-out-star, but with a tie recipro- 
cating one of  the ties of  the 2-out-star; in other words, configurations with ties o f  the form i j ,  
ik  and ki .  When the tie i j  is at strength s > 1, the tie ik  is at strength t >_ 1, and the tie ki is 

- -  .[s,t,v] - -  at strength v > 1,we denote the corresponding parameter as OoR 

• Transitive triads: configurations in which three ties comprise a transitive triad of  the form ik,  
k j  and i j .  When the configuration is such that the tie ik  is at strength s _> l, the tie j k  is 
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at strength t > 1, and the tie ij is at strength v > 1, the corresponding parameter may be 
denoted by ~-'~s,t,v] 
3-cycles or cyclic triads: configurations in which three ties comprise an intransitive cycle; for 
instance, i j ,  j k  and ki. When the configuration is such that the tie ij is at strength s >_ 1, the 
tie jk  is at strength t >_ 1, and the tie ki is at strength v >_ 1, the corresponding parameter 
may be denoted ([s,t,v-]. We note that ([s,t,v] = ([t,v,s] "~ ([v,s,t]. 

In addition to these various effects, there is also a general choice or density effect for each 
logit, reflecting the propensity of actors to make choices at each strength level. (This can be 
considered a configuration of order 1.) This term becomes the intercept term in the conditional 
logistic regression equation for each logit. When the conditional logit is at strength v >_ l, the 
corresponding parameter may be denoted by O[V]. 

In Tables 1 and 2, we have presented parameters and statistics pertaining to the configura- 
tions specified above, of orders 1 and 2, and of orders 3, respectively. Below, we sometimes refer 
to configurations in terms of their associated parameters. 

With a data set derived along these lines from the original valued matrix X, MPLEs for 
model parameters can be obtained by utilizing any standard logistic regression package. We have 
written a set of commands in the SPSS MATRIX language (Norusis, 1990) that will convert 
a trichotomously valued matrix into an appropriate data set for the SPSS logistic regression 
procedure. This command set is available from the authors on request. 

6. Empirical Examples 

6.1. Student Friendship Network 

We illustrate these methods with two examples. The first uses a data set from Vickers (1981) 
and Vickers and Chan (1981), which was also studied by Wasserman and Pattison (1996) and by 

TABLE 1. 
Parameters and associated statistics for configurations of orders 1 and 2 

Parameter Statistic (strength- 1 logit) Statistic (strength-2 logit) 

0 [1] 1 0 
0 [2] 0 1 

p[1,1] Yji,1 0 
p[1,2] Yji,2 Yji, 1 
p[2,2] 0 Yji,2 

o.~1,1] Y~ Yki, 1 0 

tr~l,2] Y~ Yki,2 Y~, Yki, 1 

cr~ 2'2] 0 Y~. Yki,2 

cr [01,1] Z Yik, 1 - - 0  

Cr[O '2] Y~ Yik,2 Y~. Yik, 1 

cr(D2'2l 0 EYik,2 

t7[M 1'1] ~ (Yki, l "-b Y jk,l ) 0 

0.[~, 2] E___Yjk,2 E Yki, t 

O.[M 2, l] E Yki,2 E Y jk, 1 

Cr[M2'2] 0 E(Yki,2 q- Yjk,2) 

Note. (Summations are over all k # i, j.) 
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TABLE 2. 
Parameters and associated statistics for configurations of order 3 

Parameter Statistic (strength-1 logit) Statistic (strength-2 logit) 

a[1,1,1] ~,(Ykj,lYjk,1 4- Ykj,lYji,l + Yki,lYji,1) 0 IR 
a[1,1,2] ~ (Ykj,2Y ik, 1 + Yki, 1Yji,2) ~ Ykj, l Yji, 1 IR 
-[1,2,1] Y~(Ykj, 1Yjk,2 4- Ykj, 1Yji,2) Y~ Yki, 1Yji, 1 

I R  

a[2,1,1] 
IR Yji,1 ~(Ykj ,2 + Yki,2) Y~. Ykj, lYjk,1 

a[2,2,1] ZYkj ,2Yj i ,2  ~ (Yk j  lYjk 2 4- Yki,2Yji,1) IR , , 

o.[2,1,2] ~ Yki,ZYji,2 ~(Ykj,2Yjk,  l 4- Ykj,2Yji,1) 
I R  

[1,2,2] ~ Ykj,2Yjk,2 Yji,2 ~(Ykj ,  a 4- Yki,1) 0-1R 

a[2,2,2] 0 Y~(Ykj,2Yjk,2 4- Ykj,2Yji,2 4. Yki,2Yji,2) 
I R  

a[Ok 1'1] ~(Yki,  lYik,1 4- Yik, lYji, 1 4- Yjk, lYji, 1) 0 

a~j~ 1 ' 2 ]  E(Yki,2Yik,1 4- Yik, lYji,2) ~____Yjk, lYji,1 

a [olj 2,1] ~(Yki ,  1Yik,2 4- Yjk, 1Yji,2) ~ Yik, 1Yji, 1 

cr [O2~1,1] Yji, 1 ~ (Yik,2 4- Yjk,2) ~ Yki, 1Yik, 1 

a[O2j~ 2'2] 0 Y~(Yki,2Yik,2 4- Yik,2Yji,2 4- Yjk,2Yji,2) 

o. [02~2,1] ~___.Yjk,2Yji,2 ~,(Yki, l Yik,2 4- Yik,2Yji, 1 ) 

0- [~kl,2] ~ Yik,2Yji,2 ~(Yki,2Yik, 1 4- Yjk,2Yji, 1 ) 

a[olj~ 2'2] ~ Yki,2Yik,2 Yji,2 ~_.(Yik,1 4r Yjk,1) 

z[l ' l ' l ]  ~(Yki,  lYkj, l 4- Yik, lYjk, 1 4- Yik, lYkj,1) 0 
r [1,1,2] Y~(Yki, 1Ykj,2 + Yik,2Yjk, 1 ) Y~ Yik, I Ykj, 1 
r [1,2,1] ~_.(Yik, I Yjk,2 4- Yik, 1Ykj,2) ~.__Yki, 1Ykj, 1 

r[2,1,1] Y~(Yki,2Ykj, 1 4- Yik,2Ykj, 1) ~____Yik, 1Yjk, 1 
r [1,2,2] ~____Yik,2Yjk,2 ff~,(Yki, 1Ykj,2 4- Yik, 1Ykj,2) 

r [2,1,2] ~___.Yki,2Ykj,2 ~(Yik,2Yjk, 1 4- Yik,2Ykj, 1 ) 

r[2,2, l] ~___Yik,2Ykj,2 ~(Yki,2Ykj, 1 + Yik, 1Yjk,2) 
r [2'2'2l 0 Y~(Yki,2Ykj,2 4- Yik,2Yjk,2 4- Yik,2Ykj,2) 
~[1,1,11 ~Yk i ,  lYjk,1 0 

(It, 1,2] Y~(Yki,2Yjk, 1 4- Yki, 1Yjk,2) ~ Yki, 1Yjk, 1 
([1,2,2] Y~ Yki,2Yjk,2 Y~(Yki,2Yjk, 1 4- Yki, lYjk,2) 
( [2,2,2] 0 Y~......_Yki,2Yjk,2 

Note. (Summations are over all k # i, j.) 

Pattison and Wasserman (in press). Network data were obtained from 29 students in year 7 in a 
school in Victoria, Australia. Students were asked to nominate their classmates on a number of  
relations including the following: 

• Who do you get on with in the class? 

• Who are your best friends in the class? 

Since these relations are ordered, with the "best friend" relation contained within the "get 
on with" relation, it makes sense to regard them as a single, valued Friendship relation, with 3 
values; 
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be replaced by more or less stringent altematives. The difficulty, of  course, is that the pseudo- 
likelihood deviance cannot be assumed to have an asymptotic X 2 distribution, and so the usual 
inferential techniques of  standard logistic regression are not available here. 

Our rationale for choosing these particular criteria is straightforward. The improvement in 
pseudo-likelihood deviance produced by an initial fit of  all 43 parameters was 1031.7, and we 
decided that variables should contribute at least 1% of  this figure to be regarded as important 
contributors to the model. (With maximum likelihood estimation, this would amount to testing 
using a X 2 distribution with one degree of  freedom at the 0.001 level, not an unreasonable level 
given the large number of  "cases"--1263) .  Absolute residuals were used by Wasserman and 
Pattison (1996) as a guide to model fit, and in our experience with fitting p* models, a parameter 
that is not important to the model is likely to change the mean of absolute residuals only in the 
third decimal place. 

Parameter estimates for the final model, with parameters excluded according to these crite- 
ria, are presented in Table 4. The model includes 18 parameters with an improvement in pseudo- 
likelihood deviance of 975.1 (compared to the improvement of  1031.7 for 43 parameters). The 
mean of absolute residuals for the final model was 0.193, compared with 0.176 for the model with 
all 43 parameters. Table 4 includes, as an indicative guide only, approximate standard errors for 
each parameter estimate as calculated by normal logistic regression procedures. These standard 
error estimates need to be taken as a guide only, for they are not reliable for MPLE (although see 
Preisler, 1993). There are five parameters retained in the model simply because they are lower 
order to important higher order effects, rather than because they themselves make a substantial 
contribution to the pseudo-likelihood deviance. These parameters are oral,21, VM~[2't]' °'2V/[2'2]' O.[o1,11 

and a[o 2'2]. Our interpretation of  the model concentrates on the other thirteen parameters that 
make a substantial contribution to the pseudo-likelihood deviance. 

TABLE 4. 
Parameter estimates for final friendship model 

Parameters Pseudo-likelihood estimate Standard error (approx) 

0 [1] --1.53 0.44 
0 [2] --4.11 0.84 

p[1,1] 1.71 0.25 
p[1,2] 1.39 0.30 
p[2,2] 7.75 1.21 
o.~1,2] 0.06 0.04 

0-~2,2] -0.65 O. 10 

0-[o 1 , 1 ] -0 .10 0.05 

0-[01,2] 0.27 0.05 

0-~,21 0.07 0.05 

-[1,2] --0.23 0.03 M 
o.[2,1] --0.06 0.05 M 
-'[M '21 --0.01 0.05 

~r[1,2,2] --0.28 0.08 
O R  

r [2,2,2] 0.77 0.09 
r[1,2,1] 0.33 0.05 
r [1,2,2] 0.43 0.08 

[2,2,2] --0.93 0.20 
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6.1.1. Interpretation of the Model 

To simplify our account of the model, we refer to strength 1 ties as weak friendships and to 
strength 2 ties as strong friendships. 

The negative estimates for the density parameters (~'[11 and 0 ~21) simply indicate that, if 
students i and j are not jointly involved in any other higher order configurations of ties (i.e., 
reciprocity, stars or triads) both strong and weak friendships are quite unlikely. This suggests 
that ties are uncommon in isolation and tend to be involved in higher order configurations. 

The strongest effects in the model relate to reciprocity. The large ~[2,2] estimate indicates 
a big reciprocity effect for strong friendships. If there are no other higher order configurations 
involved with the tie i j ,  the model predicts that the logit - -  t21 (i.e., predicting the log odds of 
a strong friendship for i j ,  conditional on the tie not being a weak friendship) wilt have a value 
of 7.75-4.11=3.64, implying an estimated conditional probability of 0.97. On the other hand, 
the positive ~-[1,2] exchange effect suggests a smaller but still substantial tendency for a strong 
friendship to be reciprocated by weak friendship. Conditional on the tie ij not being strong, the 
estimated probability of a weak friendship ij reciprocating a strong friendship j i  in the absence 
of higher order configurations is 0.47. 

The estimate for the reciprocity effect for weak friendships (~[1,1]) is also large. Assuming 
again that no higher order configurations are involved, and conditional on the tie ij not being 
strong, the estimated probability of a weak ij reciprocating a weak j i  is 0.54. On the other hand, 
if the tie ij is not a weak friendship, the estimated probability of a weak friendship j i  being 
reciprocated by a strong ij is only 0.06. 

These instances of the reciprocity/exchange effects illustrate our approach to interpretation, 
based on assessment of estimated conditional probabilities. What we have done is to use the esti- 
mates of the model parameters to compute the probability that the tie ij is present at a particular 
strength, given that a certain configuration is in place and that the tie is not present at a different 
strength. In other words, we estimate the probability of ij completing a higher order configura- 
tion conditional on the appropriate lower order configuration being observed. For instance, the 
p [1,1] effect relates to ij completing the configuration of reciprocated tie of strength 1, given that 
the configuration (of order 1) of a j i  tie at strength 1 is observed. 

Of course, when we move to configurations of order 3, it is possible that ij may complete 
more than one configuration, of orders 3 and 2. In this case, the relevant effects have to be added 
appropriately. Accordingly, it is often helpful to interpret lower and higher order parameters 
concurrently. 

Interpretation of the negative estimate for the 2-out-star with reciprocity parameter 
(~o[~ 2'21 = -0.28) illustrates our approach well. Suppose that a strong reciprocated friend- 

[1,2,2t configuration, as well as ship exists between i and k. Then a weak ij would complete a cron 

a cro[1'2] configuration. As the estimates for these two parameters are approximately equal but of 

different signs, they cancel each other out, so the ~o[~ 2'2] effect has little implication for weak 

friendships. (A weak ij tie also completes a CrM[2'l] configuration, but since the estimate ~-g,l] 
is small, -0.06,  there is little effect on the conditional probability of a weak/ j  tie.) The same 
situation occurs if i has a weak tie to k and j a strong tie to i, where we are interested in whether 
i reciprocates the strong tie from j .  Again the ~o[1~ 2'2] and ~o [1'2] effects cancel each other out. 

Accordingly, the ~'o[1~ 2'2] effect in this model bears on the likelihood of a reciprocated strong 
friendship, given the presence of a 2-out-star involving both strong and weak ties, for then the 
~'o [1'2] effect does not come into play. In this case, an ij tie that completes _ [1,2,21 configura- a oOR 

tion also completes a triM 2'1] configuration - although we noted above that parameter made little 
contribution to the model and is comparatively small - as well as, of course, completing a recip- 
rocated strong tie (~-[2,21). Because the ~'0[~ 2'2] effect is negative, the implication is that if j has 
many weak friendships then the tendency for i to reciprocate j ' s  strong friendship choice will be 
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lessened. The implication is that the very large effect for strong tie reciprocation is attenuated if 
one of the partners has many weak friendships. 

Having illustrated our general approach to interpretation, we provide some broad conclu- 
sions for the remaining parameters. The negative effect for in-stars involving strong friends 
(~]2,2t = -0.65)  indicates that in the absence of triads, the more a student is popular as a strong 
friend, the less likely he or she is to be a strong friend for yet others. This implies that there is 
something of a ceiling on the popularity of students as strong friends in the absence of triadic ef- 
fects. This effect, however, is reduced in the presence of triads of strong friends (~-[2,2,2] = 0.77), 
indicating that the most popular strong friends are likely to be the choice of those who are strong 
friends with each other. This suggests that there are clusters of strong friends. The presence of 
an estimated negative cyclic effect (~'[2,2,21) implies that there is a degree of hierarchy in these 
clusters. Suppose, for instance, s and t are mutually strong friends, and that v considers both s 
and t strong friends. Then, the ~[2,2,2] (-0.93) effect makes it relatively less probable that either 
s or t will reciprocate v's expression of strong friendship. 

,,.-. [1 2] 
The negative effect for mixed-stars involving weak and strong friends ta M' = -0.23)  

indicates that, in the absence of triads, paths of length 2 with weak friendship as the first, and 
strong friendship as the second, tie are relatively less likely, but there are triadic effects (~-[1,2,1] 
and -~[1,2,2]) that can reduce the mixed star effect. For instance, if j considers k as a strong friend, 
and if i also considers k a friend (either strong or weak), i is relatively more likely to consider j 
a weak friend, even though the tie completes the relevant mixed-star. (The ~'0 [1'2] parameter also 
comes into play in some of these triads.) In this case there seems to be a balance effect operating, 
whereby two individuals who agree on their strong friendship choices are somewhat more likely 
to be friends (in this case, weak friends). 

In general, it is notable that most structural effects include strong friendships, with no star 
or triadic effects involving solely weak friendships. This is hardly surprising, but it is reassuring 
that our intuitions that friendship structure is likely to comprise primarily the effects of strong, 
rather than weak, friendships--are bome out by the model. 

6.2. Interaction Patterns in a Bank Branch 

Our second example is taken from a study of interaction patterns in a number of bank 
branches (Robins, Pattison & Langan-Fox, 1995). Among a number of sociometric questions, 
workers in fifteen bank branches in Victoria, Australia, were asked to indicate other individuals 
in their branch whom they regarded as friends and with whom they had a satisfying relationship 
at work. Through correspondence analysis, Robins et al showed that the friendship and satisfying 
working relationship had a similar pattern of responses. These two sociometric questions were 
combined into a single valued matrix, interpreted as an "affect" network. The "affect" relation 
between a respondent and each other fellow branch member was coded "0" if the respondent 
did not include the branch member in responses to either of the sociometric questions, "1" if 
the respondent included the branch member in response to one of the questions, and "2" if the 
respondent included the branch member in responses to both questions. For the valued affect 
matrix, "2" was interpreted as representing ties of strong affect and "1" ties of weak affect. (The 
full data set can be obtained from the authors on request.) 

A trichotomous model was fitted to all bank branches simultaneously, with the set of all 
possible relational ties defined to include ties only between distinct members of the same branch 
(see Anderson, Wasserman and Crouch, in press). The number of parameters was reduced in 
accordance with the method and criteria of the previous example. The final model is presented 
in Table 5. The model includes 16 parameters and has a change of 1018 in the pseudo-likelihood 
deviance, with a mean absolute residual of 0.233. This compares with a change in pseudo- 
likelihood deviance of 1061 and a mean absolute residual of 0.222 for the model including all 43 
parameters. 
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TABLE 5. 
Parameter estimates for final affect model 
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Parameters Pseudo-likelihood estimate Standard error (approx) 

0 [11 -1.88 0.24 
0 [2] -2.45 0.35 

p[1,1] 1.60 0.24 
pll,2l 1.98 0.24 
p[2.21 2.33 0.37 
o~ 1'2] 0.29 0.06 

cr~2, 2] 0.58 0.10 

cry' 1] 0.74 0.05 

cr~ '2] 0.51 0.05 

o[02,2] 0.91 0.07 

O[M 1'1] --0.19 0.03 

O[M 1'2] --0.43 0.05 

O.[M 2,1] --0.45 0.05 

O[m 2'2] --0.99 0.12 

~-[1,2,2] 0.72 0.12 
[2,2,2] 1.69 0.29 

6.2.1. Interpretation 

Four features of these parameter estimates deserve particular comment. First, the substan- 
tial reciprocity parameter estimates (~ll, 11, ~-[1,2],~-12,2l) suggest the presence of strong dyadic 
dependencies of a kind commonly found for affect ties: the probability of a tie from one branch 
member to another is enhanced by the existence of a tie from the second to the first, and these 
effects are more substantial for strong ties. 

Second, the positive in- and out-star parameter estimates (~-]1,2] ,~-[2,21 ,~-[1,1], ~[1,21 ,~-O[2,2]) 
suggest that branch members are differentiated both in their tendency to report ties and in 
their tendency to receive them, with these tendencies more marked for configurations involving 
stronger ties. Thus, some individual differences in expansiveness and popularity are evident 
among branch members. It might be useful to look for individual characteristics that could 
underlie these differences. Third, the negative estimates for all of the mixed-star parameters 
(gM [l'1], ~'M [1'2], ~'M [2'1], ~'M [2'2]) suggest that simple two-path or "bridging" structures (in which a 
member k receives an affect tie from i, and expresses one towards j )  are relatively uncommon. 
Rather, to the extent that such structures are found, they tend to occur in combination with other 
configurations, such as in-stars, out-stars and reciprocal ties. Taken together, these estimates 
suggest some subtle distinctions in the conditions under which affect is expressed and point 
to the possibility of some interesting "signalling" effects. In particular, the estimates suggest 
that ties are relatively unlikely to be expressed towards individuals who are expansive in their 
expression of affect, whereas those who are nominated as recipients of affect ties tend to be more 
discriminating in the expression of affect. 

Fourth, although two-path structures are unlikely, their occurrence is relatively more 
likely when they are arranged in three-cycles, as the two positive cyclic parameter estimates 
(~'[1,2,2], ~'[2,2,2l) suggest. Thus, there is a tendency for some clustering of affect, particularly at 
the higher value, as has been identified in a number of studies of affect relations (for instance, 
see the summary in Johnsen, 1986). 
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It is worth noting that, in combination with the other effects, this clustering takes a some- 
what unfamiliar form. In fact, it is particularly noteworthy that positive estimates were obtained 
for cyclic parameters at the same time as values for transitivity parameters that were close to 
zero (and therefore excluded in the final model). This pattern suggests that work-related ties 
have more of a generalized exchange character (Bearrnan, 1997; Lazega & Pattison, 1998) than 
is customarily observed in other groups (e.g. see Johnsen, 1986). Indeed, the occurrence of cy- 
cles of affect ties suggests that affect ties can be seen in part as a "resource," a valued commodity 
that is exchanged among a small number of individuals (and, here, exchange is evident among 
subgroups of two or three people). Bearman (1997) has observed that generalized exchange of 
resources among three or more individuals leads to greater structural stability than direct ex- 
change of resources in pairs; for affect ties in these small work groups, both forms of exchange 
are observed. 

It should be noted, though, that a model with positive cycle parameters and zero transitivity 
may still display transitivity effects. For instance, suppose that there are strong ties from i to j 
and from j to k. Assuming the absence of other effects, the logit of the estimated conditional 
probability for a strong tie from i to k (completing the transitive triad) is -2 .45 + 0.58 + 0.91 = 
-0.96,  whereas the same computation for the tie from k to i (completing the cyclic triad) yields 
-2 .45 - 0.99 - 0.99 + 1.69 = -2.74.  Thus, as the literature on affect ties would predict, the 
tie from i to k is relatively more likely in these circumstances than the tie from k to i, and 
this is predicted by the model despite the zero transitivity parameter and the positive cyclic 
parameter. This discussion highlights the importance of a joint interpretation of parameters in 
these models. 

7. Conclusions 

This paper, together with Wasserman and Pattison (1996) and Pattison and Wasserman (in 
press), have described the class of p* models for social networks for the cases of single binary 
networks, multiple binary networks, and single polytomous networks. A generalization to multi- 
ple polytomous networks follows directly from these papers. 

These papers primarily concern structural effects arising from relational data, although some 
attribute data have also been introduced through the blockmodeling approaches discussed in the 
earlier two papers. The generalization of blockmodeling for polytomous networks again follows 
directly from the earlier work. 

To add further to the richness of these models, the next step is to introduce attribute variables 
more explicitly into the modeling process. We have commenced some early work in this regard 
in relation to social influence models (Robins, 1997, 1998), where similarity in actor attributes is 
predicted from network ties. This work not only generalizes further the p* class of models, but 
utilizes in a slightly different context the polytomous logit framework introduced here. 

The polytomous logit framework also presents an alternative approach to modeling multi- 
variate relations, which can be represented as colored graphs. If, for instance, we have bivariate 
network data, there are four possible states that ij can take: there can be no tie between i and j ,  
a single tie of either type, or two ties. In the approach of Pattison and Wasserman (in press) to 
bivariate relations, the modeling is essentially based on the conditional log-odds of a tie of one 
type being predicted from configurations of ties of each type. The approach adopted here pro- 
vides an alternative and arguably useful parameterization of these models. In particular, it makes 
a direct distinction between effects involving so-called multiplex ties (that is, configurations in 
which more than one type of tie links i to j )  and those involving just one type of tie. 

The discussion of the positivity condition in Appendix A, and the associated need to ignore 
certain patterns in the three-way array, was directed in a technical way towards the needs of this 
paper. There are, however, a number of potential applications beyond this immediate framework. 
For instance, network data have frequently been collected in fixed choice designs by asking 
respondents to specify a certain number of friends: perhaps, by asking them to list their three or 
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four closest friends. This places a constraint on the resulting network that could be incorporated 
into models for the data by recognizing that patterns of results with more than three or four 
responses are impermissible. It may also be possible to utilize this approach to the modeling of 
missing data, an issue that hitherto has been quite difficult in network analysis. 

Appendix A: Positivity Conditions of the Hammersley-Clifford Theorem 

In his proof of the Hammersley-Clifford theorem, Besag (1974) imposed a positivity condi- 
tion (first formulated by Hammersley & Clifford, 1971) whereby, if P(Wi = wi) > 0 for each 
i 6 J ,  then P(W1 = wl, W2 = w2 . . . . .  Wn = Wn) > 0; that is, if variables individually can 
take certain vaffies, then they can also take those values jointly. (He also needed the unproblem- 
atic assumption, P(W = 0) > 0.) The positivity condition not only ensured that the logarithmic 
terms in the theorem were properly defined but was used specifically in the proof. We note that 
the positivity condition is unnecessarily stringent for Besag's proof of the theorem. The expan- 
sion of (6) is in fact an application of the Inclusion-Exclusion principle and merely requires that 
the logarithmic terms be properly defined. In particular, P (W = w) > 0 is needed, and this is 
indeed implied by the positivity condition. 

However, in proving that only variables forming cliques in the dependence graph result in 
nonzero terms in (6), Besag (1974) takes various subsets of variables and sets all others to zero. 
In other words, the probability system has to allow any particular combination of zeroes. The 
proof works because Besag first considers a system whereby all variables are zero, except for 
two, Wi and Wj, that are conditionally independent; because of the conditional independence, 
the LHS of (6) should not be expressible in a functional form that includes W j,  a state of affairs 
that can only occur if, on the RHS, I " { i , j }  = 0. Similar arguments apply to any subset of variables, 
resulting in the conclusion that the F-terms will be zero unless the variables constitute a clique. 
Obviously this process assumes that any subset of variables can be simultaneously set to zero. 

Besag (1974) assumes that the value 0 is available to any variable. In that case, his positivity 
condition clearly allows him to set any combination of variables to zero, so that the proof can 
proceed along the lines of the previous paragraph. Yet the proof is still valid if a less stringent 
version is applied: 

P(Wi = klW~_{i} = WS-{i}'# W#J-S = O) > 0 for all S _c J such that i 6 S. (A1) 

In fact, this version--which we shall call the revisedpositivity condition is specifically what is 
required for the proof. How does it differ from the Besag (1974) version? It allows that certain 
patterns of nonzero data may be impossible, yet any subset of variables can be set to zero. 

Besag (1974) noted that when some patterns of data were impossible that is, when P (W = 
w) = 0 for some w--then the sample space could be restricted to those patterns that were 
possible, and the proof of the theorem could then proceed. Yet in this case, the positivity condition 
does not necessarily hold. If, on the other hand, we adopt the less restrictive condition of equation 
(A1), we can exclude patterns of data that have zero probability, as long as we can set one or more 
variables to zero while leaving the remainder unchanged, resulting in a data pattern that has a 
nonzero probability. It is the capacity to set variables to zero that allows the proof to proceed. This 
is what the condition in equation (A 1) lets us do, but we need bear in mind in these circumstances 
that the Ws_{i } #  in that equation may not necessarily take all possible values, depending on those 
patterns that are permissible. 

When might this less stringent condition be needed? In converting valued data to a three- 
way binary data structure, we clearly wish to avoid data patterns that imply the untransformed 
polytomous variable has more than one value at the same time. This can be done by exclud- 
ing certain patterns of data from the binary structure. The proof of the theorem requires only 
that various combinations of variables can be set to zero given other variable values. The cases 
that we exclude, on the other hand, are those involving particular combinations of variables 
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with simultaneous values of  one, not zero. Whenever we  have a permissible pattern of  variable 
values, then one or more of  those values can be set to zero, and the resulting pattern remains 
permissible. 

Appendix B: Proof of  Theorem 1 

We begin with (6): 

D3rij,k:k ~ ~S+ij(X#s+ij) I-I Xst" 
sc'T-ij  st~S 

We now transfer to the three-way binary array Y by transforming X through (1). 
As Xst can take only one value, then either Y(st,v) = 0 for all v E V, in the case that 

Xst = 0, or Y(st,v) = 1 for one and only one v ~ V. As Y(st,v) is nonzero for at most one value 
v = Xst, we can write xst = X s t Y ( s t , x s t ) .  We then have 

Uffij,k : ky(ij,k) ~ # I's+ij (Xs+ij) 1-I xstY(st,xst). (B1) 
Sc"l--ij stES 

We define a set of  new functions indexed by subsets of  T x V. In particular w e  define 
YM(Y~t) = FS(Xs #) I-[seS Xs in the case where the set M C T x V has the form {(st, Xst)lst E 
S ___ 7-}. If M does not take this particular form we  define YM(Y~/) to be an arbitrary constant. 

Then we  have from (B 1): 

u3rij,k ~-- ~ # FS+ij(Xs+ij) 1-I kxst 17  Y(st,x,t) 
SC'T-ij stES stES+ij 

y ~  # = FS+ij(Xs+ij) 1--I Xst 1--I Y(st,xs,) 
Sc_'T-ij stES+ij stES+ij 

# 
= YM+(ij,k) (YM+(ij,k)) 1-I Ym • 

MC_{(ef, Xef)} mEM+(ij,k) 
ef E"l"-ij 

When it is not the case that M is of  the form {(st,  Xst)}, there must be an l = (pq, v) E M such 
that v 7~ Xpq,  and hence Y(pq,v) = Yl = 0, so t h a t  I-ImaM Ym -~ O. This statement also applies 
when I = (i j ,  v) where v ~ k. So we  can break down T x V as follows: 

# 
UO'ij,k = ~/M+(ij,k) (YM+(ij,k)) 1-I Ym 

M~{(ef, Xef )} mEM-I-(ij,k) 
ef 6"2--ij 

÷ # 
YM+(ij,k) (YM+(ij,k)) I 7  Ym 

MC_{(ef, v):O#Xef} rnEM+(ij,k) 
ef E'2---ij 

÷ # 
~'M+(ij,k) (YM+(ij,k)) I-I  Ym 

MC_{(ij,v):v~k} m~M+(ij,k) 
# 

YM+(ij,k) (YM+(ij,k)) I - I  Ym 
MCf-x V-(ij,k) m~M+(ij,k) 

[k] ~ # (B2) YM+(ij,k)(YM+(ij,k)) H Ym = Yij 
MC_'TxV-(ij,k) mEM 
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We can reshape the LHS of equation (B2) as follows: 

[ P(Xi j  = k I X~_ i j  = X~r_ij)] 
03rij,k log 

" LP(Xij 01 x~-_ij  = x~-_ij) / 
= log -P(Y(ij,k) = 1, Y# = 01 Y# Y~T-,j)×v) ] ijx(V-{k}) (T- i j )xV = 

P(Y(ij,k) = 0, Y~×(v-/k])  = 0 I Y~7--ij)×v Y(T-ij)×v)# J 

As, from the definition of conditional probability, 

# # 
P(Y(ij,k), Yijx(V-{k}) I Y(7-- i j )xV) 

# # # # 
= P(Y(ij,k) [ Yijx(V-{k}), Y (T - i j ) xv )P(Y i j x (V - {k} )  I Y ( T - i j ) x V )  

we then have: 

ijx(V-{k}) (~T-ij)xV = Y(T-i j )xV ) ] Wij,k = log - P(Y(ij,k) = 1 I Y #  = 0, Y #  # 

P(Y(ij,k) 0 [ Y #  0, Y #  # ] " ij×(V-{k}) (T-ij)×V Y(T-ij)×V ) 

This is just the conditional logit for the k strength relation variables Y(ij,k); that is, ~r/[/k] of  
(3) but with the value of Y(ij,v) required to be zero when v # k. 

So, we can simply write 

03r: k] = Y(ij,k) E # ~/M+(ij,k)(YM+(ij,k)) 1--I Ym, (B3) 
MC_Tx V-(ij,k) m~M 

where we force Ym = 0 when m = (i j, v) for 0 < v # k. 
Given that equation (B3) is in binary form, the y-terms become constants, rather than func- 

tions, and Y(ij,k) = 1, so we have 

~Oi~ k ] =  E YM+(ij,k) H Ym. 
MC_'-l'x V-(ij,k) mEM 

References 

Agresti, A. (1990). Categorical data analysis. New York: John Wiley and Sons. 
Anderson, C.J., & Wasserman, S. (1995). Log multiplicative models for valued social relations. Sociological Methods & 

Research, 24, 96-127. 
Anderson, C.J., Wasserman, S., & Crouch, B. (in press). A p* primer: logit models for social networks. Social Networks. 
Bearman, R (1997). Generalized exchange. American Journal of Sociology, 102, 1383-1415. 
Begg, C.B., & Gray, R. (1984). Calculation of polychotomous logistic regression parameters using individualized regres- 

sions. Biometrika, 71, 11-18. 
Besag, J.E. (1972). Nearest neighbour systems and the auto-logistic model for'binary data. Journal of the Royal Statistical 

Society, Series B, 34, 75-83. 
Besag, J.E. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the 

Royal Statistical Society, Series B, 36, 192-236. 
Besag, J.E. (1975). Statistical analysis of nonlattice data. The Statistician, 24, 179-195. 
Besag, J.E. (1977a). Some methods of statistical analysis for spatial data. Bulletin of the International Statistical Associ- 

ation, 47, 77-92. 
Besag, J.E. (1977b). Efficiency of pseudo-likelihood estimation for simple Gaussian random fields. Biometrika, 64, 616- 

618. 
Besag, J.E., & Clifford, E (1989, May). Generalized Monte Carlo significance tests. Biometrika, 76, 633~42. 
Crouch, B., & Wasserman, S. (1998). Fitting p*: Monte Carlo maximum likelihood estimation. Paper presented at Inter- 

national Conference on Social Networks, Barcelona, Spain. 
Faust, K., & Wasserman, S. (1993). Association and correlational models for studying measurements on ordinal relations. 

In RV. Marsden (Ed.), Sociological methodology 1993 (pp. 177-215). Cambridge, MA: Basil Blackwell. 
Frank, O., & Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association, 81,832-842. 



394 PSYCHOMETRIKA 

Geyer, C. J., & Thompson, E.A. (1992). Constrained Monte Carlo maximum likelihood for dependent data. Journal of 
the Royal Statistical Society, Series B, 54, 657--699. 

Hammersley, J. M., & Clifford, P. (1971 ). Markov fields on finite graphs and lattices. Unpublished manuscript. 
Hosmer, D.W., & Lemeshow, S. (1989). Applied logistic regression. New York: John Wiley & Sons. 
Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. [Contribution to the theory of ferromagnetism]. Zeitschrift 

fur Physik, 31,253-258. 
Johnsen, E.C. (1986). Structure and process: agreement models for friendship formation. Social Networks, 8, 257-306. 
Lauritzen, S.L. (1996). Graphical models. Oxford: Clarendon Press. 
Lazega, E., & Pattison, E (1998). Social capital, multiplex generalized exchange and cooperation in organizations: A 

case study. Submitted to Social Networks. 
Norusis, M.J. (1990). SPSS advanced statistics user's guide. Chicago: SPSS. 
Pattison, E, & Wasserman, S. (in press). Logit models and togistic regressions for social networks: IL Multivariate 

relations. British Journal of Mathematical and Statistical Psychology.. 
Preisler, H. (1993). Modeling spatial patterns of trees attacked by bark-beetles. Applied Statistics, 42, 501-514. 
Rermolls, K. (1995). p½. In M.G. Everett & K. Rennolls (Eds.), Proceedings of the 1995 International Conference on 

Social Networks, VoL 1. (pp. 151-160). London: Greenwich University Press. 
Robins, G.L. (1997, February). p* models of social influence. Paper presented at the International Sunbelt Social Net- 

work Conference, San Diego, CA. 
Robins, G.L. (1998). Personal attributes in inter-personal contexts: Statistical models for individual characteristics and 

social relationships. Unpublished doctoral dissertation, University of Melbourne, Australia. 
Robins, G.L., Pattison, E, & Langan-Fox, J. (1995, July). Group effectiveness: A comparative analysis of interactional 

structure and group performance in organizational workgroups. Paper presented at International Social Networks 
Conference, London. 

Strauss, D. (1992). The many faces of logistic regression. The American Statistician, 46, 321-327. 
Strauss, D., & Ikeda, M. (1990). Pseudolikelihood estimation for social networks. Journal of the American Statistical 

Association, 85, 204-212. 
Vickers, M. (1981). Relational analysis: An applied evaluation. Unpublished Master of Science thesis, Department of 

Psychology, University of Melbourne. 
Vickers, M., &Chan, S. (1981). Representing classroom social structure. Melbourne: Victoria Institute of Secondary 

Education. 
Wasserman, S. (1987). Conformity of two sociometric relations. P~ychometrika, 52, 3-18. 
Wasserman, S., & Faust, K. (1989). Canonical analysis of composition and structure of social networks. In C.C. Clogg 

(Ed.), Sociological methodology 1989 (pp. 1-42). Cambridge, MA: Basil Blackwell. 
Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. New York: Cambridge University 

Press. 
Wasserman, S., Faust, K., & Galaskiewicz, J. (1990). Correspondence and canonical analysis of relational data. Journal 

of Mathematical Sociology, 15, 11~52. 
Wasserman, S., & Iacobucci, D. (1986). Statistical analysis of discrete relational data. British Journal of Mathematical 

and Statistical Psychology, 39, 41-64. 
Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks. I: An introduction to 

Markov graphs and p*. Psychometrika, 60, 401-425. 
Wasserman, S., & Pattison, E (1999). Multivariate random graph distributions. (Springer Lecture Notes Series in Staffs- 

tics). New York: Springer-Verlag. 
Wong, G.Y., & Wang, YJ. (1995). Exponential models for polytomous stochastic networks. Unpublished manuscript. 

Manuscript received 9 NOV 1995 
Final version received 14 DEC 1998 


