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Multinomial processing tree models assume that an observed behavior category can arise 
from one or more processing sequences represented as branches in a tree. These models form 
a subclass of parametric, multinomial models, and they provide a substantively motivated 
alternative to loglinear models. We consider the usual case where branch probabilities are 
products of nonnegative integer powers in the parameters, 0 -< Os -< 1, and their complements, 
1 - Os. A version of the EM algorithm is constructed that has very strong properties. First, the 
E-step and the M-step are both analytic and computationally easy; therefore, a fast PC program 
can be constructed for obtaining MLEs for large numbers of parameters. Second, a closed form 
expression for the observed Fisher information matrix is obtained for the entire class. Third, it 
is proved that the algorithm necessarily converges to a local maximum, and this is a stronger 
result than for the exponential family as a whole. Fourth, we show how the algorithm can 
handle quite general hypothesis tests concerning restrictions on the model parameters. Fifth, 
we extend the algorithm to handle the Read and Cressie power divergence family of goodness- 
of-fit statistics. The paper includes an example to illustrate some of these results. 
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I n t r o d u c t i o n  

B a t c h e l d e r  and  R ie f e r  (1986, 1990; B a t c h e l d e r ,  Hu ,  & Riefer ,  in p r e s s ;  R ie fe r  & 
B a t c h e l d e r ,  1988, 1991; R ie fe r  & R o u d e r ,  1992) def ine  and  p r o v i d e  m a n y  e x a m p l e s  o f  
a c l a s s  o f  s u b s t a n t i v e  mu l t i nomia l  m o d e l s  for  cogn i t ive  p s y c h o l o g y .  M e m b e r s  o f  th is  
c l a s s  a re  ca l l ed  m u l t i n o m i a l  p r o c e s s i n g  t ree  mode l s ,  and  o t h e r  r e s e a r c h e r s  have  s t ud i e d  
m o d e l s  tha t  fit into th is  c lass  (e .g . ,  B~iuml, 1991; Chech i l e  & M e y e r ,  1976; H u m p h r e y s  
& Bain ,  1983; Ross  & B o w e r ,  1981). A large  subc l a s s  cons i s t s  o f  d i s c r e t e - s t a t e  M a r k o v  
l ea rn ing  mode l s ,  fo r  finite s e g m e n t s  o f  e r r o r  and  suc c e s s  t r ia ls  (e .g . ,  W i c k e n s ,  1982). 
R i e f e r  and  B a t c h e l d e r  (1988) a rgue  tha t  m o d e l s  in this  c l a s s  a re  use fu l  as  m e a s u r e m e n t  
too l s  in cogn i t i ve  p s y c h o l o g y .  T h e y  o c c u p y  a p o s i t i o n  on  an  o rde r ing  o f  t h e o r e t i c a l  
spec i f i c i ty  b e t w e e n  gene ra l  p u r p o s e ,  o f f - the-she l f  a p p r o a c h e s ,  l ike  A N O V A  and  logl in-  
e a r  m o d e l s ,  and  s t r o n g e r  t heo re t i c a l  m o d e l s  tha t  a re  d e s i g n e d  to  exp la in  d a t a  f r o m  
m a n y  d i f fe ren t  p a r a d i g m s ,  for  e x a m p l e ,  ar t i f ic ial  in te l l igence  m o d e l s  such  as  S O A R  
( R o s e n b l o o m ,  L a i r d ,  N e w e l l ,  & M c C a r l ,  1991) o r  neu ra l  n e t w o r k  m o d e l s  ( R u m e l h a r t  & 
M c C l e l l a n d ,  1986). 

P r o c e s s i n g  t r ee  m o d e l s  a s s u m e  tha t  o b s e r v e d  c a t e g o r y  coun t s  a r i se  f rom p r o c e s s -  
ing b r a n c h e s  cons i s t i ng  o f  s e p a r a t e  cond i t i ona l  l inks  o r  s tages .  E a c h  b r a n c h  p r o b a b i l i t y  
is the  p r o d u c t  o f  i ts c o n d i t i o n a l  l ink p robab i l i t i e s ,  and  m o r e  t han  one  b r a n c h  can  
t e r m i n a t e  in the  s a m e  o b s e r v e d  c a t e g o r y .  B e c a u s e  o f  the i r  s t ruc tu re ,  p r o c e s s i n g  t r ee  
m o d e l s  a re  s imi la r  to  the  c l a s s  o f  t r ee  m o d e l s  in s ta t i s t i ca l  gene t i c s  u sed  to  infer  gene  
f r e q u e n c i e s  f rom p h e n o t y p i c  c a t e g o r y  f r equen c i e s ,  such  as  the  w e l l - k n o w n  m u l t i n o m i a l  
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FIGURE 1. 

Tree representation of the ABO blood group. 

model for the ABO blood group (Bernstein, 1925; Landsteiner, 1901) described in 
Figure 1. In the ABO blood group model of Figure I, there are four phenotypic cate- 
gories, CA, CB, CAB, CO, corresponding to the four blood types that can be detected 
by medical procedures. The tree has nine two-link branches corresponding to the nine 
combinations of mother's gene (A, B or O) with father's gene. In the model, O is a 
recessive gene and A, B are dominant. The parameters p, q, and r refer to the equi- 
librium proportions of A, B, and O genes, respectively, in the population, where p + 
q + r = I. For more detail and other examples of multinomial tree models in statistical 
genetics, see Elandt-Johnson (1971) and Weir (1990). 

The purpose of this article is to advance the statistical analysis of processing tree 
models by showing how parameter estimation and hypothesis testing based on the 
likelihood function can be accomplished simply by adapting the so-called EM (expec- 
tation-maximization) algorithm (Dempster, Laird, & Rubin, 1977; Little & Rubin, 1987; 
Rubin, 199 I). The adaptation utilize s special properties of the class of models that make 
it easy to program a small PC to accomplish rapidly all stages of statistical inference. 
Also strong convergence results are obtained, and we show how the algorithm can be 
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extended to cover estimation based on the Read and Cressie (1988) power divergence 
family of goodness-of-fit measures. 

The EM algorithm provides an iterative method of obtaining maximum likelihood 
estimates (MLEs) for a model where some data may be regarded as "missing". The 
algorithm is particularly useful when three circumstances hold: (a) the process of ob- 
taining MLEs for the model with the observed data is computationally intensive; (b) 
analytic expressions exist for obtaining the conditional expectation of the missing data 
given the observed data as a function of the model parameters (the E-step); and (c) 
given values of both the observed and missing data, analytic expressions exist for the 
MLEs of the model parameters (the M-step). The algorithm starts with initial parameter 
estimates and then alternates the E-step and M-step until, hopefully, the sequence of 
resulting parameter estimates converges to an MLE. 

The general idea of applying the EM algorithm to categorical data where some 
observations can be only partially categorized goes back at least to Hartley (1958). 
Before Hartley and others developed the general approach to categorical data, statis- 
tical geneticists (e.g., Ceppellini, Siniscalco, & Smith, 1955; Smith, 1957) described a 
related method called "gene counting" for estimating gene frequency parameters for 
certain multinomial tree models (see Weir, 1990). 

In the first section of the paper, we define a general class of parametric multinomial 
models motivated by processing tree representations. The models involve observed 
categories that may be subdivided into unobserved categories. Next, we set up the 
likelihood function in terms that treat the unobserved category counts as missing data 
subject to constraints in terms of the observed category counts. This representation 
permits us to develop a special version of the EM algorithm. The analytic specificity of 
our class of models permits us to prove stronger convergence results and obtain better 
computational efficiency than the established results with the EM algorithm that hold 
for arbitrary members of the exponential family. Computationally easy methods of 
obtaining an estimate of the variance-covariance matrix and of testing a wide class of 
hypotheses are provided. Finally, our methods are extended to handle general members 
of the Read and Cressie (1988) power divergence family of goodness-of-fit measures. 

The EM Algorithm for General Processing Tree Models 

N o t a t i o n  

Any processing tree model consists of a set of branches that are partitioned into 
observable categories. Let C 1 . . . .  , C.t denote the observable categories and 
B l j  . . . . .  B i j ,  • .  • ,  B U denote the collection of branches that terminate in category 
Cj. Let Nj and M i j  be random variables denoting the counts in category C j  and branch 
B i j ,  respectively, and let n j ,  m i j  be their corresponding realizations, where 

J /j 
Y nj=n, 

j = l  i = l  

m U = nj. (1) 

Denote the model parameters by O = (01, • • • , Os) E f~, where f~ is the parameter 
space and the 0 s are functionally independent with 0 -< 0 s <- 1, s = I . . . .  , S .  The 
class of models under investigation requires that each branch in the tree consists of a 
sequence of links, where the branch probability is a product of the corresponding link 
probabilities. To achieve a wide application of our methods, we require that link prob- 
abilities be written as a product of a positive constant and nonnegative integer powers 
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in the model 's  parameters  and their complements (the Os and I - Os, respectively).  In 
this case the branch probabilities take the form 

S 

pij(O) = Pr  (Bij; ®) = cij I-I oau'( 1 - Os) bU`, (2) 
$ = 1  

where cij is the product  of  positive constants on the links and the aijs and bus are the 
sum over  links of  nonnegative integer exponents  on 0s and (I - Os), respectively.  The 
possibility of  cij # 1 can arise from the model itself, as in the Batchelder  and Riefer 
(1986) model for storage and retrieval, or  it can arise from hypothesis  restrictions on 
some parameters  or from combining trees (discussed later). 

The  category probabilities can be obtained from (2) as 

1j 6 s 

pj(®) = Pr  (C1; ®) = ~'~ pij(®) = ~ cij H osa°'( 1 - 0~1 b ' ,  (3) 
i = 1  i = 1  s = l  

where 

J 

~'~ p j ( O ) =  1, 
j = l  

for a l l O  E f~ = [0, 1]s 
The  requirements in (2) that link probabilities be in the form of  

(4) 

S 

c 1-[ oa( 1 -  0~) b, 
s = l  

(5) 

and that parameters  have the full range [0, I] may seem overly restrictive. For  example,  
the ABO model in Figure 1 violates both of  these conditions, since the functionally 
independent  parameters  are p and q, with 0 -< p + q -< 1, and further,  r = 1 - p - 
q is not in the form of  (5). However ,  it is easy to reparameterize this model with 0 A = 
p,  0 s = q/(1 - p),  to satisfy these constraints. Then 0 ----- OA, 0 B <-~ 1 and r = 1 - 
p - q = (1 - 0A)(1 -- 0B), and it is a simple exercise to show that the model fits the 
form of  (2), (3), and (4). It is easy to generalize this type of  reparameterizat ion in the 
ABO model  to cases where,  at each choice point, all but  one link probabilities are single 
parameters;  however ,  we do not develop the issue of  permissible reparameterizat ions 
to its fullest extent  in this paper. 

It should be noted that due to the sum in (3), models in this class are not, in general, 
loglinear models. While some of  the models represented by (3) can be reparameter ized 
to be equivalent to loglinear models without increasing the number  of  parameters ,  
others  can not be so reparameterized.  One consequence o f  this is that current  software 
packages for categorical data like GLIM and SAS can not be used conveniently to 
analyze this class. This is one of  the main motivations for presenting the methods in this 
paper. 

The motivation for the representat ion leading to (2) and (3) comes from the pro- 
cessing tree representat ion;  however ,  the methods we develop based on the EM algo- 
rithm apply to any multinomial model that can be written in that form. We call these 
models general processing tree (GFr )  models, and the next  definition formalizes this 
class. 
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Definition 1. Let 

,/14,(0; (Cij); (aijs); (bijs)) (6)  

be a parametric multinomial model defined over J observable categories with S func- 
tionally independent parameters, ® = (01 . . . . .  Os). Then ~t is a general processing 
tree model in case there are positive integers Ij; nonnegative integers aijs and bus ; and 
positive reals cij so that the category probabilities pj(O) can be written in the form of 
(3) and (4), where i = 1, . . .  , I j ,  j = 1, . . .  , J ,  and s = 1, . . .  , S. 

Trivially, any GPT model can be written as a tree with ~ f= l  Ij  one-link branches, 
partitioned appropriately into J equivalence classes corresponding to the observable 
categories. This particular tree representation is uninteresting, but it may admit to 
equivalent, structurally interpretable GPT models such as those cited earlier from the 
literature. The issue of equivalent GPT models is interesting, but we do not investigate 
it here because our results depend only on the representation in (3). The GPT repre- 
sentation includes a number of  models not normally thought of  as tree structures. For  
example, finite latent class models for dichotomous questions (see l_,azarsfeld & Henry,  
1968) can be parameterized to fit Definition 1. 

For the remainder of  the paper, we avoid triviality by adapting two conventions 
regarding Definition 1. First, we will require that each parameter Os has at least one 
branch, (i, j ) ,  where aij s + bus > 0; thus, the collection ofpi j (®)  will not be constant 
in any parameter. Second, we include fixed probability distributions over J categories 
as GPT models with no parameters. 

The class of GPT models has several nice properties that we can utilize in con- 
structing an EM algorithm. Observation 1 shows that the class is closed under setting 
arbitrary subsets of  the parameters to constants in [0, 1]. 

Observation 1. Let 

~t(®; (cu); (aijs); (bus)) 

be a GPT model with parameters ® = (01 , . . .  , Os). Suppose a subset of  the param- 
eters are set to particular constants in [0, 1]. Then the resulting submodel is itself a GPT 
model. 

(All proofs will be in Appendix A.) 
The class of GPT models has some strong identifiability properties that we need in 

constructing our EM algorithm. 

Definition 2. A GPT model ~t is identifiable if p j(®) = p j (® ' ) ,  for a l l j  = I ,  . . .  , 
J ,  implies ® = O',  for all 0 ,  0 '  E (0, I) s ,  that is, the interior of  fL 

The next observation shows that if the GPT model has observable branches (Ij = 
I for all categories), then it necessarily has fewer than J parameters, which is a nec- 
essary condition for identifiability. 

Observation 2. Suppose ~t is a GPT model on J categories with S functionally 
independent parameters, ® = ( ® 1 , - - - ,  ®s)  E [0, 1] s .  Then if the model has 
observable branches, that is Ij -- 1, for all j ,  it follows that S < J .  

Observation 2 has deep implications because it shows that the structure of  (2) and 
(4) impose considerable limitations on the constructability of GPT models. In fact, 
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when coupled with Observation 3 to follow, it shows that a GPT model with observable 
branches is necessarily identifiable. Of course, this result is not true for more general 
classes of  parametric models. For  example, consider a model for a single flip of  a coin 
where the probability of  a head is given by p = ab2(1 - b), for all 0 ~ a ,  b -< 1. In 
this case, the branches are observable and a and b are functionally independent, with 
l~ = [0, 1] 2; however, the model is nonidentifiable, and of  course, it is not a GPT model 
since q = 1 - p = 1 - ab2(1 - b) does not fit the structural form of (2), and it cannot 
be reparameterized as such. 

A direct corollary of  Observation 2 is that the number of  parameters in any GPT 
model is less than X f= 1 lj .  Thus, even when branches are combined, there are limita- 
tions on the number of  parameters for a GPT model. 

Likelihood Functions 
Suppose one observes the category counts nj. Then the likelihood function is given 

by 

J [pj(O)]nJ 
L(O; (nj)f= 1) = N! I-I , (7) j=l nj! 

where the pj(O) are given by (3). Because of  the sum in (3), it often happens that 
analytic methods cannot be used to obtain MLEs,  so that some sort of iterative algo- 
rithm must be employed. 

Suppose one has the "miss ing"  branch frequencies, 

Ilm"\l '  1)f= 1, D = ~ qli = 

then the complete likelihood function becomes 

J lj [Pij(o)]mo 
L(®; D ) = N !  1-I I-I 

j = l  i=1  mij[ 

where the p/j(O) are given by (2). 

(8) 

Observation 3. Equation (8) and 

j i~ J t~ 

~'~ ~_~ aijsmij # O, ~ ~ bijsmij # O, (9) 
j = l  i=1  j = l  i=1  

for all s = 1, . . .  , S, has an unique maximum in the interior of [0, 1] s , given by 

J /j 
~, ausm6 

j = l  i=1  
Os = ( io )  

j zj 

Z Z (aijs + bijs)mij 
j = l i = l  

A direct corollary of Observation 3 is that a GPT model with observable branches 
is necessarily identifiable. This is implied by the uniqueness in (10) coupled with the 
consistency property of  MLEs.  
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The EM Algorithm 
In the remaining sections, unless otherwise stated, we assume that ® is in the 

interior of fL To construct an EM algorithm for a GPT model, we consider the (n j) as 
the observed data and D, subject to (1), as the missing data. Then (10) provides the 
M-step for the algorithm. The E-step is also straightforward, because for any value of 
®, the conditional expected value of mij is given by 

njPij(O) 
mij(O) = E(Mijlnj; ®) = , (1 I) 

pj(o) 

where Pij(O) and pj(O) are given by (2) and (3), respectively. Any EM algorithm 
defines a function • = (~b 1 . . . .  , ~b s) = M(®), where O is a parameter vector entering 
a cycle of the algorithm and ~ is the revised estimate after the cycle. The function M(®) 
can be obtained by substituting mij(@) from (11) for the mij in (10), then the result is 

J /j 

~'~ ~ aosmij(®) 
j = l  i = 1  

~, = , ( i 2 )  
j tj 

E E (aijs + bijs)mij(O) 
j = l  i = 1  

for s = 1, . . .  , S. So, the EM algorithm can be easily summarized as 

O(n + 1) = M(O(n)). (13) 

Dempster et al. (1977) show that a cycle of the EM algorithm does not decrease the 
likelihood function, that is, 

L(M(®); (nj)) >- L(®; (nj)), (14) 

for all ®, so that there is reason to hope that repeated applications may maximize (7). 
A later section is devoted to the issue of the convergence of our EM algorithm. For 
now, we assume that we have an identifiable model and that the algorithm obtains the 
unique MLE ~), and we proceed to obtain confidence intervals and confidence regions 
for the parameter estimators. 

Estimating Confidence Intervals 
Confidence intervals for each parameter estimator can be obtained from an esti- 

mator of its variance. In the literature, efforts have been made to get the variance- 
covariance matrix or Fisher information matrix for the EM algorithm in general set- 
tings. However, these earlier approaches require additional numerical computations, 
for example, Louis (1982) and Meng and Rubin (1991). However, for GPT models it is 
possible to derive a closed-form expression for the observed Fisher information matrix 
in the context of the EM algorithm. To simplify the notation, we define the random 
variables, 

" [ p,j(o)] 
A,(O) = 2; Nj E a j, 

j = l  i = l  
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' "[  p,j<o)] 
Bs(O)= E Nj E bus p - ~ ] ,  

j = l  i = 1  

and their realizations as (O) and/3s(O), which are obtained by substituting nj for the 
Nj. 

By definition, the observed Fisher information matrix is 

0 z In L(®; (nj):= ,!) 
OOsO0 r 

S x S  O = 0  

(15) 

(see Efron & Hinkley, 1978). From (3) and (7), it is easy to obtain 

0 In L(O; (nj)J= l) Y lj [aij~pij(O) bij~pij(O) ], 

j = l  i = 1  

and using as(O) and fls(O), 

0 In L(O; (nj)) [a~(O) 13~(0)1 

Since 

O'Or = - -  nj ~= aijs p2(~)) 
j = l  i 1 

(0) 

- ~ aijs 
i=l  

_0r 1 --  0r" PU(O) 
pj(O) 

and 

00r 

k=, L Or 1----'--~r 

, ,  Lo,. 
E bijs : 

i=l  

b r] ] 
1 - Or" pij(O) 
pAO) 

element (r, s) of (15) becomes 
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0 2 In L ( ~ ;  (nj)) 

OOsOOr 

f 0as(O) 0O~(0) 
/ 00r --;Or 

l Os ] ' : [  [ Os 2 + ( 1 -  Os)2J ' 

i f r  a s  

i f r = s .  

(16) 

By inverting the observed Fisher information matrix, one obtains an estimate of 
the variance-covariance matrix of the estimators; therefore, confidence intervals or 
confidence regions for the estimators can be obtained as well. 

Convergence of the EM Algorithm for GPT Models 

In this section we explore convergence for the class of GPT models from a theo- 
retical perspective. There are many discussions about the convergence of the EM 
algorithm (e.g., Boyles, 1983; Dempster et al., 1977; Little & Rubin, 1987; Wu, 1983). 
These papers have obtained some theorems about the convergence of the EM algorithm 
in a general setting, for example (14), as well as some useful theorems for the expo- 
nential family. Processing tree models are members of the exponential family; however, 
from the general theorems, even a convergent EM sequence only guarantees a station- 
ary point of the likelihood function. This makes the convergence properties of the EM 
algorithm not different from ordinary optimization algorithms for finding MLEs (e.g., 
conjugate-gradient). The guaranteed convergence of the EM sequence to a local max- 
imum can be obtained by adding some restricted conditions, such as Theorem 4 of 
Dempster et al. (1977) or the condition in Theorem 4 of Wu (1983). However, these 
conditions are not easy to verify in general. Nevertheless, when we restrict consider- 
ation to the class of GPT models, we obtain the stronger convergence result in the next 
observation. 

Observation 4. If ®* is the limit of some EM sequence { O (n)), then O* is a (at least 
local) maxima of (7). 

The results of Observation 4 guarantee that any convergent EM sequence will 
converge to a local maxima of (7). Later in this paper, we will introduce a simple trick 
that guarantees a convergent sequence regardless of the starting value of the EM 
algorithm. To assure a global maxima, different starting values should be tried. How- 
ever, in practice we have found that for most identifiable models and data sets, the same 
(global) maximum is reached for a given data set regardless of the starting value. It is 
clear from (2) and (3) that (7) defines a polynomial over the entire S-dimensional reals, 
and for most models in practice, it is a polynomial of low degree. Thus it does not seem 
surprising to us that in most cases the polynomial would have only a single maxima in 

s (0, 1) . We consider it an interesting open problem to try to obtain some precise results 
on this point. 

Testing Hypotheses 

Testing statistical hypotheses is an important part in any modeling effort. By using 
the EM algorithm developed in previous sections, some hypothesis testing problems 
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become very easy. In particular, any hypothesis testing task involving two nested 
models can be done within our EM framework, if each model can be formulated in 
terms of a GPT model, where the parameters of the restricted model are a subset of the 
parameters of the general model. In this case, the EM algorithm can be used to obtain 
the MLEs for each model, and the rest is accomplished by standard methods such as 
the likelihood ratio criterion. In general, when parameter restrictions are imposed on a 
GFF model to create a nested model, link probabilities may no longer satisfy (5) in the 
unrestricted parameters; yet it may be possible to redesign the tree to satisfy this 
property. Observation 5 establishes some very general conditions when this is possible. 

O b s e r v a t i o n  5. Let ~t(O; (c/j); <aijs); ( bus ) )  be a GPT model as described in 
Definition 1, with O = (01, . • • ,  Os).  Suppose the first z parameters, O' = (01, . • • ,  
Oz), are specified by the remaining S - z parameters, ®" = (Oz+ 1 . . . .  , Os) ,  by a 
function O' = ( f l  (®"), - . . ,  f z ( ® " ) )  • Then the restricted model with parameter ®" is 
a GPT model if e a c h f s ( O " ) ,  s = 1, . . .  , z ,  is in one of the following forms: 

i. fs(®") = a ,  a E ( 0 ,  1 ) .  
" "O") S ii. J s t  = Ilk~z+ l 0ff ,  /z k ~ {0, 1}, k = z + I, . . . ,  S. 

iii. fs(O") Y-/~=z+l vkOff k, 

Y~k=z+l vk = I. where the Pk are positive integers and the vk nonnegative reals, with s 

Observation 5 covers many of the ways that nested models are created from a 
general model. For example, the case of equating a parameter to a constant is covered 
by Item i and constraining different parameters to equal each other is covered as a 
special case of Item ii with all but one of the/~k zero. Also Items ii and iii are quite 
general restrictions based on products and weighted sums respectively. In the unlikely 
case that the nested model of interest falls outside the scope of Observation 5, it will be 
necessary to use conventional iterative methods to get MLEs of the restricted model. 

Another important case of hypothesis testing arises in the case of a between-group 
design, where the same multinomial model is thought to apply to each group separately 
with possibly different parameter values. The resulting data structure is a product 
multinomial, where the experimenter controls the group marginals. The extension of 
our EM algorithm to joint multinomial models (discussed next) is required to handle this 
situation. 

Joint Multinomial Models 

In Riefer and Batchelder (1988), the class of multinomial models includes so-called 
joint multinomial models. These models have several category systems, with preset, 
fixed total counts for each system that are distributed over the categories within the 
system. Moreover, all the category probabilities are functions of the same parameter 
vector ®. Such a system covers a within-subject design where, for example, different 
types of items result in different category systems (e.g., Batchelder & Riefer, 1986). A 
special case of a joint multinomial model occurs when data from a between-subject 
experiment exist and one assumes that the same processing tree model fits each group, 
with possible restrictions on the parameters across trees. If the underlying model has 
only a single category system, then the joint model for the between group case is 
technically called a product multinomial model (Read & Cressie, 1988). 

It is straightforward to adapt the EM algorithm, designed earlier, to the case of 
joint multinomial models. Suppose there are K category systems, each arising from a 
GPT model, and each having probabilities in the form of (3) over the same parameter 
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0 .  Let Cjk denote categoryj  in tree k, and let Bij k be branch i that terminates in Cjk, 
where i = 1 . . . .  , ljk,  J = 1 , . . . ,  Jk,  and k = 1 , . . . ,  K. Denote the model 
parameters by ® = (01, • • • , Os). For each category system, (2), (3), and (4) become 

Pijk(O) = P r  (Bijk; 0)  = Cijk 
S 

s=l 
(17) 

lJk 

Pjk(®) ---- Pr (Cjk; 0)  = ~ P(ik(®), 
i = l  

(18) 

and 

Jk 

p j ,  Co) = I ,  
j=! 

(19) 

for a l l ® E 1 2 a n d k =  1 , . . . , K .  
It is easy to join the K systems into a single GPT model with Y~:=I Jk categories. 

Let COk = rkCij k for positive real numbers ~'k such that Y ff=l zk = 1. Then (17) 
becomes 

S 

_pu,(®) = cuk I ]  0a~"(1 -- 0s) b°' ,  
s=l 

(20) 

which defines a GPT model with 

K Jk 

E E P___J k(®) : l, 
k = l j = l  

where pjk(®) = ~'kPjk(O) for all @ E 12. 
The construction leading to (20) can be used to analyze joint multinomial models 

with preset marginals. Define ~'k as the proportion of total observations in category 
system k. Then if the GPT model in (20) is analyzed with the EM algorithm, the 
resulting MLEs will be MLEs of the joint multinomial model. This is because the E-step 
involves only expected frequencies. Of course the joint multinomial model with preset 
category frequencies is not a GPT model; nevertheless, the next observation shows that 
both the MLE and Fisher information matrix of the constructed model in (20) apply to 
the joint multinomial model. 

Observation 6. Assume that for k = 1 . . . .  , K, Ark(O; (Cijk); (aijks); (bijks)), 
@ = (01, • . .  , OS), is a GPT model with likelihood functions Lk(®; (njk)f21). Then 
the following two likelihood functions in (21) and (22) will give the same MLE ~) and 
Fisher information matrix for O: 

K 

1-I Lk(~); (njk)Jk= 1), 

k=l 

where Lk(O; (njk)]~l) is defined as in (8) for each k, and 

(21) 
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TABLE 1 
Group 3 x 3 Data Tables Constructed from Harvey (1985) 

item 
Say 
Think 
New 

Manic Schizophren!c Normal 
NTD TD NTD TD subjects 

(Group 1) (Group 2) (Group, 3) (Group 4) (,Group 5) 
S T N S T N S T N S T N S T i 
22 27 31 43 6 31 13 21 46 44 10 26 23 22 35 
7 54 19 20 15 45 4 42 34 32 8 40 9 45 26 
4 26 50 5 9 66 6 20 54 24 7 49 7 10 63 

Note: NTD=non-thought disordered; TD=thought disordered; responses are as follows: 
S=Say; T=think; N=new. Each entry is the frequency of the column response to the 
row type of item Row marginals are preset by the experimenter. 

N 1~ Lk(O; ( n # ) ~  l) 1 -- rk 
N1 " ' "  NK k=l =1 =1 

(22) 

where ~'1, • . . ,  rK-i are independent of ®, Nk,  k = 1, . . . ,  K, are the observed 
totals for each category system, and N = Y~ff=l Nk. 

One can notice that (21) is the true likelihood function obtained simply by multi- 
plying the individual likelihood functions together, while (22) is obtained in such a way 
that it corresponds to the likelihood function of a joint GPT, with new par~tmeters ck, 
k = 1 . . . . .  K - 1. Clearly the MLE of r k will be the experimenter determined 
proportions, N j N ,  so the thrust of Observation 6 is that the preset N k do not affect the 
variance-covariance matrix of the estimator of O. 

An Example 

Batchelder and Riefer (1990) studied a family of multinomial processing tree mod- 
els for memory experiments involving source monitoring. In this section, we will apply 
some of the results from the previous sections to analyze a set of data with these 
models. Table 1 presents data obtained from Harvey (1985) and analyzed in Batchelder 
and Riefer (1990). Harvey studied manic and schizophrenia patients in a standard 
reality-monitoring task (Johnson & Ray, 1988). In this experiment, various groups of 
subjects first studied a list of written words and for each word were asked either to say 
the word aloud (say) or think the word (think). Then they were tested with old say and 
think words along with new distractors (new) and they were asked to correctly classify 
each word by responding " s ay" ,  " think",  or "new" .  There were five groups of sub- 
jects: Manic, nonthought disordered (NTD); Manic, thought disordered (TD); Schizo- 
phrenic NTD; Schizophrenic TD; and Normal subjects. 

The model postulates three processing trees depicted in Figure 2 corresponding to 
say items (Source 1, $1), think items ($2), and new items ($3). Each branch termi- 
nates in one of three responses: R 1 (say), R 2 (think), and R 3 (new). The model is a joint 
multinomial model because there are three category systems, each with (the same) 
three response categories. In our notation for (17), (18), and (19), K = 3, J l  = J2 = 
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Source 1 items Source 2 items 

01 

~ 1 _  01 

Oa R1 

(18 R1 ~ 0 2  1 - 03 
- 06 R2 

~ ,~s - 02 
- 0r ~ R2 

1 - 0s Ra 

04 R2 

1 - 04 
-06 " R2 

~1 
" R! 

~ ~ -  05 '- 07 R,~ 

New (Source 3) items 

~1 
7 ......... R 1  

~ 1  s_ - 0r ~ R~ 

0s Ra 
FIOURE 2. 

Tree representation for the source monitoring model. 

J3 = 3, and I l l  = 3, I2! = 2, I31 = I, etcetera. In keeping with the notation in the 
paper, we denote the parameters by O -- (01, 02, 03, 04, 05, 06, 07); however, Batch- 
elder and Riefer (1990) use different symbols, namely, DI ,  D 2 , d 1 , dE, b, a, g, 
respectively. To motivate the example, 01 and 02 are the probabilities of correctly 
detecting as old say and think items, respectively; 03 and 04 are conditional probabil- 
ities of correctly discriminating the source of detected say and think items, respec- 
tively; 05 is a false alarm probability for nondetected items; and 06 and 07 are guessing 
biases for say items that occur in different places in the tree (see Batchelder & Riefer, 
1990, for more concerning the substantive details). 

There are a total of fifteen branches in the three trees in Figure 2, and the branch 
probabilities are products of the link probabilities. The experimenter determines the 
proportions of items presented to the subjects in each category system, and here we 
denote them by the constants ~'1, ~'2, ~'3, with ~'1 + ~'2 + ~'3 = 1. The three trees can be 
joined as described in (20), and it is easy to obtain the nine category probabilities, 
_pjk(O), from Figure 2 as follows: 

P(SI,  R1)= Pll = "rI[OI03 + OI (1 -  03)06 + ( 1 -  O1)0507], (23) 
m 

P(SI,  g 2 )  --  P21 = " r l [ 0 1 ( 1  - 0 3 ) ( 1  - 0 6 )  + (1 - 0 1 ) 0 5 ( 1  - 0 7 ) ] ,  
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P ( S 1 ,  R3) = P31 = r l ( 1  - 0 1 ) ( 1  - 0 5 ) ,  

P ( S 2 ,  g l )  = P I 2  = " r 2 1 0 2 ( 1  - 0 4 ) 0 6  -l- ( I  - 0 2 ) 0 5 0 7 ]  , 

P ( S 2 ,  R2) = P22 = T2[0204 -{- 02(1 -- 04)(1 -- 06) + (1 -- 02)05(1 -- 07)],  

P ( S 2 ,  R 3 )  = P32  = ' r 2 ( 1  - 0 2 ) (  1 - 0 5 ) ,  

P ( S 3 ,  RI )  = P13 = T 3 0 5 0 7 ,  

P ( S 3 ,  R E )  = P23  = ' r 3 0 5 ( 1  - -  0 7 ) ,  

P ( S 3 ,  R3) = P33 = 'r3(1 - 05). 

The corresponding joint  tree for  (23) has 15 branches leading to 9 categories that 
jointly describe each source-response pair. It is straightforward to obtain the structural 
constants for  this tree,  namely,  the (a i jks ) ,  {b i jks ) ,  and ( c i j k ) ,  for  example,  in the top 
equation in (23) there are three branches leading to category j = 1 in tree k = 1. 
Numbering these branches from left to right in (23) yields the structural constants 

a l l l l  ---- a1113 = a2111 ---- a2116 = a3115 ~- a3117 ----- l ,  

b2113 = b3111 = 1, 

C l l l  = C211 ----- C311 : " / ' I ,  

and the rest of  the a i l l s  and b i l l s  equal zero, for  i = 1, 2, 3 and s = 1, . . .  , 7. 
Notice  that (23) has 7 parameters  and there are only 6 degree of  freedom in the data 

(9 observed frequencies with 3 fixed marginals), so the GPT model in (23) is not iden- 
tifiable. Batchelder  and Riefer (1990) described a number  of  nested versions of  the 
model that are identifiable. To illustrate, with the additional assumptions 03 = 04 = 0~ 
and 06 = 07 = 0~ along with 01 = ~ ,  02 = 0~ ,  05 = ~ (see Figure 2) ,  a testable and 

(b Uks) can as identifiable GPT model with structural constants (a ijks>, be obtained 
follows: 

a ijks ~- a ijks, S = 1, 2 ,  

b *jks = b ijks , S = 1, 2 ,  

a ijg3 = a ijk3 + a ijk4, 

b %'g3 = bijk3 + b/yk4, 

a ijk4 = a/jk5, 

b ~jk4 = bijkS , 

a ijk5 = aijk6 q- aijk7, 

b ~jk5 = bijk6 @ bijk7, 

i----1, . , I j , j = l  2 , 3 ,  k =  1 , 2 , 3 .  E a c h *  • .  , c ijk is given by ~'k where the i j - th  branch 
comes from tree k. We denote the new model by 

At(O*; * " a* * (Ci jk ) ,  ( i j k s ) ,  (b i j k s ) ) ,  (24) 
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TABLE 2 
Parameter Estimates and Goodness-of=Fit Tests for Harvey's (1985) Experiment 

Parameter estimate Goodness-of-fit 
Group 0~ 0~ 0~ 0 ~  0~ G~(1) 

Group 1: Manic NTD .39 .62 .51 .37 .17 0.50 
Group 2: Manic TD .53 .29 .43 .18 .69 9.94" 
Group 3: Schizophrenic NTD .11 .36 .87 .34 .21 0.25 
Group 4: Schizophrenic TD .47 .18 .03 .39 .80 0.18 
Group 5: Normal .44 .59 .42 .21 .30 1.20 

• p < 6:01.  
GU,.!5)=12.07 

where ®* = ( 0 ~ , . . . ,  ~ ) .  With the observed data in Table 1, and the structural 
constants * * * _ ( a i j k s ) ,  ( b i j k s ) ,  to u s e  ( c i j k ) ,  it is straightforward (11 ) and (I 2) to carry out 
the EM algorithm. 

We ran the version of the model in (24) on all five groups of Table 1 separately using 
a program for the source monitoring model designed by Hu (1990) for an IBM PC and 
obtained the parameter estimates in Table 2 along with the goodness-of-fit G 2(1) values 
and confidence intervals (not in Table 2). The fit statistic reported is the log-likelihood 
ratio statistic G 2 defined later in (29). The statistic G 2 is asymptotically chi-square 
distributed when the model is true. These computations consumed (on an IBM PC 
386-I6Mhz) about 5 seconds. 

Next we consider hypothesis testing between the five groups in Table 1. To illus- 
trate, suppose we want to test the hypothesis that parameter 0~ is the same in all five 
groups. It is easy to join the five models in the form of (24) using the methods described 
leading to (20). Note that this is a second use of the joining principle justified in 
Observation 6. In fact, there are no important differences between a single GPT model 
and a joint GPT model for the EM algorithm. In practice, it is very easy to join GPT 
models together by recoding the structural constants and changing the notations for the 
parameters. For example, by joining 5 structurally identical GPT models like (24), each 
corresponding to an experimental group in Harvey's (1985) experiment, a GPT model 
with 25 parameters (®** = (®]*, • , ®5"), 0~*  ** . .  = ( 0 1 k  , . . .  , 05k) ,  k = I, . . .  , 5), 
45 observed frequencies (subject to 15 marginal constraints), and 30 degrees of freedom 
are obtained. Let ~t be the proportion of observations in group l, Then using the 
notation of Observation 6, the model becomes 

At(O**; ** • ( b  i jt, t s ) ) ,  (25) ((2 ijkls ) ; (_.c iikl), ** ** 

where l  = 1, 5 and ** = • • • , C i j k l  ~ 'k~l .  Then one can test hypotheses for the model in 
(25) such as: 

• ~ *  :#* :g:g :g* : 0 .  
H o . 0 3 1  = 0 3 2  = 0 3 3  = 0 3 4  = 0 3 5  ( 2 6 )  

by estimating parameters of the new model in (25) with the restriction in (26) denoted 
by 

At(O***;  *** *** " *** _ " ( b  ijkls ))  (C i jkl) ,  (a i jkls),  • (27) 
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TABLE 3 
P a r a m e t e r  E s t i m a t e s  and  Goodnes s -o f -F i t  Tes t  for H a r v e y ' s  (1985) 

( joint  t ree  m o d e l )  w i th  0~* = 0;~* = 9;;* = 0 ~  ° = 0;~* 

I I I I J !  t U i l  i i 

Parameter estimate 

Group 1 (k=l): Manic NTD .40 .62 .46 .37 .17 
Group 2 (k=2): Manic TD .53 .29 .46 .19 .69 
Group 3 (k=3): SchizophrenicNTD .19 .40 .46 .31 .19 
Group 4 (k=4): Schizophrenic TD .41 .03 .46 .43 .78 
Group 5 (k=5): Normal .43 .59 .46 .22 .30 

, , ,  i 

G2(9)=15.20 

The hypothesis H 0 in (26) is tested by comparing the fits of the unrestricted model 
in (25) with 25 parameters reported in Table 2 with the restricted model in (27) with 21 
parameters. Table 3 presents the results for the restricted model, and subtracting the 
G 2 values yields G2(4) = 3.13, p > .50. 

It is not practical to illustrate all of our results in this example; however, the 
preceding analyses give some insight in how to apply the methods to a practical prob- 
lem. The Hu (1990) program handles all of the above results, including restricting 
parameters for the model for one group and joining a particular restricted model over 
separate experimental groups, and the reader may write to us for it. 

Extensions to the Power Divergence Family 

So far we have explored how to apply the EM algorithm to GPT models to yield 
maximum likelihood estimators. Due to the special form of processing tree models, the 
idea behind the EM algorithm can also be used to obtain a broader family of estimators. 
Cressie and Read (1984; Read & Cressie, 1988) have proposed a family of power 
divergence statistics for categorical data that compare the fit of observed frequencies to 
expected frequencies based on estimated category probabilities. In our notation, the 
family of power divergence statistics is defined, for every real A, by 

(<nJn>) 2 ~ n,[(njtA_l], 
2nI(;~) :ff = A(A + I) j= I "l[\nlgJ, I (28) 

where/Y is a probability distribution over the categories. The cases of h = - 1 and A = 
0 are defined by taking limits in (28). 

With different h values, different test statistics can be obtained. For example, when 
A = 0 ,  

, 

lim 2nI (;0 :17 = 2 ~ nj log = G 2, 
A ""* 0 j = l  

which is the test statistic based on the likelihood function. For h = 1, 

(29) 
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2ni(1) n :ff = 2 n~ 4 --  X 2, 
j = l  

which corresponds to the Pearson statistic based on the chi-square function. The ex- 
tension of our methods to the power divergence family is useful because different 

2 2 researchers have used fit criteria, such as X instead of G , for parametric multinomial 
models (see Batchelder, 1991). 

If we replace each/Sj bypy(O)  in (28), then (28) is a function of O ~ f l  = (0, 1) S 
for fixed frequency counts. In fact, (29) becomes the criterion for parameter estimation 
and hypothesis testing based on the likelihood function, and minimizing it over O is the 
same as maximizing the likelihood function. Read and Cressie (1988, Appendix A5) 
show that all the asymptotic properties of estimation based on the likelihood function 
hold for any member of the power divergence family. Since these inferential methods 
are based on minimizing the criterion function, the rest of this section is devoted to 
extending the EM algorithm to minimize (28) as a function of O in the context of a GPT 
model. 

Observation 7. Assume that the (cij), (aijs), (bijs) are chosen so that (3) defines 
a GPT model over J categories with parameter ® = (0,~, . . . ,  0 s). Also assume that 
2nI(a)((ni/n):p(O)) has minima in the interior of [0, 1] ° .  Then any O = (01, . . .  , 0s)  
that minimizes 2nI  (a) ((nj/n):p(®)) will satisfy 

j~=l n J k ~ ]  i~1 ~ aijs 
0s = , s = l , . . . ,  S. (30) 

[ nj ~ a ~  Pij(~) 
, = 1  " ~ )  i = 1  pj(g) (aijs "F bijs) 

Having (11) as the E part, an EMa algorithm can be constructed. Here, O is not the 
M L E  of the model and EM indexed by A means that the algorithm depends on A. So 
(31), similar to (12), can be obtained in the same manner: 

, ( 
~, ~, mij(®)aijs 

J 1 i = 1  
~b~ a) = , (31) J{  nj / 

J£1 £ mij(O)(aiys + biys) .= knpj(®)] i= 1 

s = 1, . . . ,  S. Note that when A ;~ 0, (31) is not identical to (12), so theoretical results 
from the previous sections about the EM algorithm can not be directly used here. In 
fact, with large A, EMa does not always converge. However,  an alternative algorithm 
can be obtained. The following observation gives the algorithm and the convergence 
result. 

Observation 8. For any real number e, such that e(1 + A) > 0, the limit of a 
convergent sequence {O (n)} such that: 

i~(n  + 1) = ~ ( n )  _ g ( ~ ( n )  _ M A  ( ~ ( n ) ) ) ,  (32) 
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is a minima of 2nlt~)((nj/n):p(O)), where Mx(@) is the vector ($tx), . . .  , rhea)). 

We call the above algorithm EM~ (~) algorithm, since it uses the original idea of EM 
applied to the power divergence family, with an improved iteration formula in (32) 
involving e. It is easy to notice that 

EM = (EMA)a = o = (EM(a~))A = o,, = 1. 

Observation 9. If O is a minima of 2nl (x) ((ni/n):p(@)), then there is a real number 
e # 0 and a neighborhood of O such that the Egl~ ~) sequence {o(n)}, with any initial 
value in the neighborhood, converges to O. 

The EMx ~*) algorithm can also be used to improve the speed of convergence for the 
regular EM algorithm developed earlier. In the literature, instances occur where EM 
sequences reach the neighborhood quite quickly but move slowly in the neighborhood 
itself (see Ruud, 1991). By using the above technique, the speed of convergence can be 
changed dramatically. From (32), we can see that e controls the step size of the itera- 
tion, so that when the EM sequence is moving very slowly, increasing e will speed up 
the search process. As a matter of fact, the only possible case where the EM sequence 
is not convergent is one in which the likelihood function has two or more local maxima 
with exactly the same value and the EM sequence jumps from one to the other. Even 
in this unlikely case, adjusting (in fact, decreasing) lel can prevent the EM sequence 
from jumping and force it to converge to one of the maxima. It is easy to implement this 
idea in designing a computer program. We have done this in our cqmputer package by 
Hu (1991). (See the note after the proof of Observation 9.) Therefore, by adjusting the 
values of e, we can obtain a convergent EM sequence regardless of the starting point. 

Conclusion 

Most of the methods we have described have been programmed for a PC, and they 
have been used to analyze many data sets by ourselves and others, for example, 
Batchelder, Hu, and Riefer (in press), Batchelder and Riefer (1990), Erdfelder and 
Bayen (I991). A program based on the EM algorithm for source monitoring (Hu, 1990) 
is in wide circulation, and a program for handling an arbitrary GPT model is available 
(for an early version, see Hu, 1991). Both programs generate point and region estima- 
tors and conduct goodness-of-fit tests for both within-group and between-group hy- 
potheses. In their current form, they can handle up to 50 parameters and still get 
estimates in under a minute on a 80386 CPU based PC. 

There are several salient advantages of the EM algorithm over other iterative 
methods based on gradient search for analyzing GPT models. First, no special symbolic 
or numerical differentiation is required for a specific model. Second, one does not have 
to worry about setting the step size (unless wanting to speed the algorithm--see Ob- 
servation 8). Third, in our applications the algorithm has proved as fast or faster than 
other conventional iterative methods when applied to specific GPT models, such as the 
source monitoring models of Batchelder and Riefer (1990). Fourth, the entire class of 
GPT models can be analyzed by specifying structural constants (see Definition 1) in a 
single program (Hu, 1991). Finally, the form of (3) is quite general, and given suitable 
parameterizations, captures many models for categorical data that can not be formu- 
lated conveniently as log-linear models. 
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Appendix  A 

P r o o f  o f  Observat ion 1. The result will follow recursively if we can show that the 
submodel  obtained by  setting a single paramete r  to a constant  is a GPT model.  Without  
loss of  generality, set 01 to a constant ,  0 -< kl ~ 1, and let ® '  = (02 . . . . .  Os). Then 
(2) can be rewrit ten 

p o ( O )  = p o ( o ' )  = 

S 

I ]  - 0,) 
s = 2  

(33) 

where  c ~  = cijk  ~u, ( i  - kt)bo~. Clearly the sys tem of  equations in (33) satisfies (2), (3), 
and (4) for  all 0 '  E [0, I] s -1  . I f 0  < kl < 1, it is obvious that the submodel  is a GPT 
model  on the old categorieg and branches  with new pa ramete r  ®' .  I f k l  = 0 or  k 1 = I ,  
then some of  the branches  and perhaps  some of  the other  pa ramete rs  or categories  are 
eliminated. For  example ,  if k l = 0, all branches  with a ijl > 0 have zero probabil i ty and 
all pa ramete rs  that enter  the p 0 ( @ ' )  only on those branches  disappear ,  that is, param-  
eters  where  aos + bus > 0 implies aij 1 > 0. Never theless ,  once the unnecessary  
branches ,  categories,  and parameters  are eliminated, it is obvious  that the remaining 
structure satisfies Definition 1. [ ]  

P r o o f  o f  Observat ion 2. We apply mathematical  induction on the number  of  cat- 
egories J .  I f J  = 1, the model  has S -- 0 parameters ,  so S < J .  Le t  J = 2 and assume 
that  model  has paramete rs  @ = (01, • • • , Os), for S >- 1. F rom (2) and (4), we have  

S S 

c l  H oat*( I 0s )  ~" + c 2  l ~  a,, _ = s - 0 s (1 Os) b:* 1, (34) 
s = l  S = I  

for  all ® E [0, 1] s .  Without loss of  generality, assume a l l  > 0, and set 0 s = 1/2, for 
s = 2 . . . . .  S. Then (34) becomes  

al l  a21 c*lO 1 ( 1 -  e l )  b'~ + c*2O 1 ( 1 -  e l )  b~ = I ,  (35) 

for  all 0 -< 01 -< 1, where  c~ and c~ are posit ive constants .  I t  is easy  to show that  (35) 
and a l l  > 0 require c~ = c~ = a l l  = b21 = 1 and b l l  = a21 = 0. But this is possible 
only i f S  = 1, since otherwise either c~ = 1/2 or c~ = 1/2. Thus,  i f J  = 2, we have  
S < J as required. 

N o w  assume that  any GPT model  with J -< K categories has S < J parameters ,  and 
s e t J  = K +  I .  Fo r  a n y r  = 1 , . . . , S ,  denote  

A r = {jlajr > 0}, 

and 

B r  = {jlbjr > 0}. 

We will use the fact  that  A r # Br ,  for  r = 1, • • • , S. To  see this, suppose  there is an 
r with A r = Br ,  and set all o ther  parameters  equal to 1/2 and retain 0 r. The resulting 
submodel  is a GPT model  by Observat ion  1, so by (2) and (4) it would have  to satisfy 

X ~J'~"lqaJ'(lv r ,~l - -  Or) bjr = 1, 
j E A ,  
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for all 0 - <  O r --< 1 and positive c~, ajr , b j r .  However,  if O r = 0 or Or = 1, this is not 
possible; thus, A r # B r . The family of sets {Arlr = 1 . . . .  , S} will contain at least one 
"min imal"  non empty set  Aro such that no other A r properly contains Aro. Consider a 
submodel that is obtained by setting Oro = 0 and retaining the other S - 1 parameters.  
From Observation 1, it is a GPT model, and it is obvious that it has K or less categories. 
Furthermore,  all other parameters are still in the model, because if any Or, is missing, 

Ar I U Brl C Aro , 

and since Ar, # Br~, Ar,  is properly contained in Aro, which contradicts that Aro is a 
minimal set. Thus, the new GPT model with Oro = 0 has at most K categories and it has 
S - I parameters. From the induction hypothesis, we can conclude S - 1 < K.  Thus 
S < K + 1, and the observation follows by induction. [ ]  

Proof of  Observation 3. First, compute In L(®;  D) and then substitute for pij(O) 
from (2). It is straightforward to see that 

,I 1S [aiysmiy e ' ~ l  0 In L(®; D) = ~, (36) 

OOs j =  1 ,~"~1 [ ~ ' =  1 - OsJ" 

Setting each of  the above equations to zero yields (10). It is straightforward to show that 
(10) maximizes L(®;  D),  since the matrix 

{0 l~l [aijsmij[ 0 2 (i~-bijsmij]os)] 02 In L(®;  D) ~ • + -:--=2", for s = r  

aOsaO-7-r = y=l  '= _ (37) 
for s ~ r, 

is negative definite for all O in the domain. Therefore L(O;  D) has only one global 
maxima given by (10). []  

Proof o f  Observation 4. By using a s ( e )  and [3s(O), (12) becomes 

, s =  
,,,(0) 

o , s ( e )  + / 3  s ( e ) '  

SO 

a,:,s(e) a/3s(e) 
- -  ~ s ( e )  - -  o ~ , ( e )  

0~) s O0 r OOr 
OOr [O~s(~)  + ~ s ( ~ ) ]  2 " 

Next  consider any point @ in (0, I) s ,  such that ~) = M(@), i.e., 

bs = a s ( 0 )  + / 3 s ( 0 )  " 

Then 

a4,s 

:aas(O) 

80r 
a/3,(~)l 

- #2- ij 

(38) 

(39) 
aOr Os 
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Denote  

032 In L ( O ;  ( n j ) f =  1)) 

I ( 0 )  = - OOzier 
S xS O=O 

°s)l v 0  
s,r S x S  O = 0  

and a diagonal matrix 

([ 0s, ]) 
w ( O )  = , 

S,S S × 

Then by (16), (39), and using (38) again, and from 

we have 

- [ " ~ s 2  + ( 1 " = ~ i 2 ' ]  = L O - ~ l - ~ s ) ] '  

V((~) = - I (~)W((~)  + E, (40) 

where E is the unit matrix, E s x s .  
Consider any EM sequence (® (")), where O ("+ 1) = M(O (")). Then, we have 

o(n  + 1) _ o(n) = M(®(n)) _ M(®(n - 1)). (41) 

From (11) and (12), it is easy to see that M(®) is differentiable with respect  to ®, when 
O E (0, 1) s , and by the mean value theorem in calculus, there is a O~n such that 

[/[°~'(°)l / ] 1,1, M(O(n)) _ M(®(~ - 1)) = ~ [®(n) _ O(~ - (42) 

[/[ J~,r]S×S o=o.~ 

and if 

[/?~'(°'1/ ] --v(~, .m [ ~ [ ~  j ] o. .  
n----~ s,r S x S  O = 

exists, from (41) and (42), when n is very large, we have 

~)(n+ 1 )_  ~) (n)~  V ( ~ ) [ ~ ) ( n ) _  ~ ( n - 1 ) ] .  

Thus (®(n)) is a convergent sequence if and only if the eigenvalues of  V are bounded 
by l, and it is obvious that when (O (n)) converges to any point ®* E (0, 1) s ,  V = 
V(O*). 

When O* = limn~® ® (,0 exists, then ®* is a stationary point of  (7). On the other 
hand, the eigenvalues of  V(®*) are bounded by 1, so all eigenvalues of - I ( ® * ) W ( ® * )  
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are negative. The eigenvalues of W(O*) are already positive, so that the eigenvalues of 
- I (O*) ,  the matrix of second derivatives of the log-likelihood function, must be neg- 
ative. Therefore 0 "  (at least locally) maximizes (7). []  

Note: As Wu (1983) points out, the reason that a convergent EM sequence is not 
necessarily convergent to a maxima is because the log-likelihood function is written in 
such a form that I(O) is the difference of two negative definite matrices (Wu, 1983, p. 
97). This prevents one from establishing the definiteness status of  I(@) from the ex- 
pression. In our case, I (~)  can be expressed by (40), so it is easy to see that it is 
negative definite. 

Proof  o f  Observation 5. It is clear that the restricted model defined above is a 
multinomial model over the same J categories with S - z functionally independent 
parameters, each defined in [0, 1]. Further, each pj(O") can be written as 

/j S 

pj(O") E c~iXij H ao, - -  = O k (I Ok) ~U', 
i = 1  k = z + l  

(43) 

where 

z 
= 0 't b0s Xij [-I fs(O"la°'( 1 - f s (  11 

$=1 

It is obvious from Items i, ii, and iii that fk(O")aus(1 -- fk(O")) bus has one of the 
following forms, for each s = 1 . . . .  , z: 

Ot a u ' ( 1  - -  Or) b~ ' ,  ( 4 4 )  

0~* 1 -  I-I off k 
k = z + l  k=z+l 

(45) 

o r  

k=z+l k = z + l  

Next, we show that (43) can be rewritten in GPT model form, namely, 

(46) 

pj(O")=X H 
i = 1  k=z+l 

(47) 

(aijs) (bijs). for new constants (c ij), and 
Equation (44) provides no problem since it is a constant independent of  O". We 

show that the other two cases can be handled by adding unobserved categories but 
preserving the observed categories and the GPT model form. First consider (45). With- 
out loss of generality, let/Zz+ 1 = 1. Then 
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Using mathematical induction, it is not hard to show that 

isis, 1-  H o~" = Z (1-oi,~) H o,,,, 
k = z + l  k = l  l = l  

, S where z + 1 -< K k ~ S and t~K, +~ 0 and Ss = Y-k=z+l tzk- So expand (45) to the form 

S 

du I-I 0~' ' (1 - Ok) '7-k. (48) 
u k = z + l  

Finally, consider (46). It is easy to see that 

1 -  VkO~ k = V k [ 1 - -  Ok Z 
k = z + l  k = z + l  k = z + l  

,] ~k ( 1 - 0 k )  Y~ 0 
l = l  

Therefore (46) yields the same form as (48)• Since Xij is just  a product  of  forms like (48), 
it has the same form as (48). Hence  (43) can be written as (47), and the restricted model 
is a GPT model. [ ]  

Proof of  Observation 6. Denote (22) by 

u(o; T; A)= L(O; A)V(T; A), 

where 

L(@; A ) =  
K 

YI Lk(O; (njk)~k= 1) 
k = l  

and 

K - I  

V(T; A ) =  N i ' ' ' N K  [k= l  zk 1 - k = l  ~'~ rk 

with T = ( r l ,  . . .  , 1"r_l)  , A = ( ( n j l ) / ~ l ,  . . .  , (njK)/=Xl). 
The Fisher information matrix for (6); ~ ,  from (22) is 

(a O) ,49  
where  

A = A s × s  = E 0 0 i 0 0 j  o = 0  

B = B ( K - I )  x(K_I) = E O ' ruOrv  IIT=~ 

Since A is the Fisher information matrix that can be obtained from (21), and it is also 
the Fisher information matrix for 6) in (49), we conclude the proof. [ ]  
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Proof o f  Observation 7. Differentiate 2nl(X)((njln):p(O)) with respect to Os, s = 
1 , . . . ,  S, assign each of them zero, and then rearrange the derivatives. Then (30) can 
be obtained by the assumption that O minimizes 2nl (x) ((nj/n):p(®)) in the interior of 
[0, l]  s .  [ ]  

Proof o f  Observation 8. In order to prove Observation 8, we need to introduce 
some notations and use two lemmas. Denote 

a (" ) (0 )  = E nj pj(O) aijs, 
i=l J 

-' { ,j ~' ~ p, j (e)  
f,~*,(o) : = z  " t ~ )  , , ,,,(o) "'~" 

/ I I , (6 )  = 1t X \ " l  ! |  / , 

\L ao:ao, J:,,tsx~ o=~  

t[0,:71 
v~' (6) : tL oo, L ] s x ,  ,,o~' 

/[ 0"(1-0') ] t 
w, (,~)= l[~: N _ , : - ~ % , , ] s  x ~, 

Lemma 1. I,~(O), Wx(O), Vx(®) are continuous with respect to O ~ (0, 1) s and 
X ~ (-o~, +~) .  

Lemma 2. If  0 satisfies (30) then 

v ~ ( ~ )  = E - (1 + X ) & ( ~ ) W , ( ~ ) ,  (50) 

where E is the unit matrix E = Es x s. 

Proof of Lemma 1 is straightforward. Proof of (50) in Lemma 2 is almost the same 
as that for (40), except one has to consider A # 0. 

From (32), 

(O(n + 1)_  O(n)) = (O(n)_  ®(n-  1)) _ e ( ( o ( n ) _  ® ( n -  1)) - ( M ,  (®(n)) 

Using the same argument for (42) and denoting 

v ~ ) ( e )  = (1 - ~)E + e V , ( O ) ,  

we have 

- M~ ( e  ~'~- ~))). 
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( o ( "  + ~) - O (")) = ( v ] ~ ) ( o ) ) o  = o , .  [ O  (") - o ( "  - ~)], 

for some Oe. ~ (0, I) s. From Lemma I, and the convergence of {O(n)}, 

-- I ] 
, , _ , =  O O r Va(('5) lim [I [ j s , , ) s×so=o. .  

45 

(51) 

By (50) and the continuity of M~(O), and Lemma 1, matrix 

V¢x~)(~) = E - e(1 + A)la (O)Wa (~),  

has eigenvalues in ( -1 ,  1). Since e(1 + )t) > O, Ix(O) is positive definite, and O is a 
minima of 2nl (x) ((nj/n):p(O)). [] 

Proof of Observation 9. The key to this proof is to show that there is an e and a 
neighborhood of 6 ,  such that whenever O is in that neighborhood, eigenvalues of 
V~ ~)(O) are in ( -  I, + 1). 

By assumption, Ix(O) is positive definite. By the continuity of Ix(O), Wx(O) and 
(50) of Lemma 2, it is easy to show that there is a a I neighborhood ~ (6 ;  8 l) of 6 ,  such 
that 

1. 2nl(~)((nj/n):p(®)) has only one minimum in N(O; 81), 
2. for any O E ~¢(O; al) ,  Ix(O)Wx(®) is positive definite. So, there is e ~ 0, such 

that e(1 + A) > 0 and 

E -  e(1 + A)Ia(O)Wa(®) 

has eigenvalues in ( -1 ,  +1), for all O E ~(O; 80. 
3. Vx(O) = E - (I + A)Ix(O)Wa(O) + F(O), where limo..~ F(O) = 0. 

In other words, when ® G ~ ( 6 ;  61), 

V(xe)(O) = (l - e)E + eVa (O) (52) 

= E -  e(1 + A)Ia(O)Wa(O) + e r (O) .  

Since 

lim V~)(O) = E - e(1 + A)Ia (~)Wa (O), 
O-- ,~  

and using Lemma 1, there is a 3 2 neighborhood N(6; 82), such that the eigenvalues of 
Vx(e)(®) are in ( -1 ,  +1), for any O E N(6; 62). Let 8 -- min {81, 62}, then whenever ® 
E d4(6; 6), eigenvalues of V~)(O) are in ( -  1, + 1). So, the EM~ ~) sequence {®(n)}, with 
initial value in ~(O; ~), is convergent. 

Since there is only one minimum in N(O; 8), by Observation 8, the EMx (e) sequence 
has 6 as its limit. []  

Note: From (52), e is controlling the eigenvalues of VxC')(O). Decreasing lel and 
keeping e(1 + ;t) > 0, one can assure that eigenvalues of V~)(O) remain in ( -1 ,  1), 
which guarantees the convergence. We have designed a PC program for the EM] 0 
algorithm using the above results. For many data sets and models that we have tried, 
when X is very small (for example, [A[ < 0.5), convergence has always been obtained 
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regardless of the starting value. When A is large, we have been able to adjust the values 
of e, so that the EM~ e) sequence converges. 
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