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In the framework of a robustness study on maximum likelihood estimation with LISREL 
three types of problems are dealt with: nonconvergence, improper solutions, and choice of start- 
ing values. The purpose of the paper is to illustrate why and to what extent these problems are of 
importance for users of LISREL. The ways in which these issues may affect the design and con- 
clusions of robustness research is also discussed. 
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Introduction 

In studies on the robustness of maximum likelihood estimation with LISREL, the 
effects of small sample size and those of nonnormal, discrete distributions were investi- 
gated (Boomsma, 1982, 1983). Three main conclusions from that research were made. (i) 
In LISREL modeling it is recommended not to use a sample size smaller than 100. (ii) 
LISREL is robust against symmetric, discrete distributions with normal kurtosis, but not 
against rather skewed, discrete distributions. (iii) It is not recommended to analyze corre- 
lation matrices instead of covariance matrices, because it may have serious effects on the 
estimated covariances of the parameter estimates. 

The present paper deals with three problems encountered during the work just re- 
ferred to: nonconvergence of the iterative maximum likelihood estimation, improper pa- 
rameter estimates, and the choice of starting values in the estimation process. 

The results discussed below indicate that users of LISREL should be aware of cir- 
cumstances in which nonconvergence and improper solutions may occur, and their fre- 
quency of occurrence. They may also be interested in the effect of the starting values in 
iterative estimation. Some of the materials presented may serve as guidelines for re- 
searchers planning Monte Carlo studies. The emphasis in this paper will be on the practi- 
cal implications of the findings for users of LISREL, illustrated by results from Monte 
Carlo work. 

Monte Carlo design. The sampling design for the small sample part of our study is 
summarized as follows. In the LISREL framework for each specified model with a known 
population parameter vector to, a population covariance matrix ~ is defined. These 
matrices ~ are the covariance structures of multivariate normal distributions from which 
independent samples were taken of size 25, 50, 100, 200, and 400. For each model and 
each sample size N, NRS > 300 samples were taken (NRS = number of replications in 
stock). The samples were generated by using subroutine G G N M S  from IMSL (1982) on a 
CDC Cyber 74/18 and a CDC Cyber 170/760 machine. Thus, for each model and each 
sample size, NRS sample covariance matrices S were obtained. 

After this sampling process a LISREL analysis was done for each S until NR = 300 
samples have led to a solution without numerical difficulties; for all N this number of 
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replications NR was fixed to 300. At the completion of these analyses for the parameters 
co~, their corresponding standard errors se,o,, as well as the likelihood ratio chi-square 
statistic for goodness-of-fit, 300 estimates were available. The Monte Carlo results indi- 
cate how closely the empirical sampling distributions follow known theoretical sampling 
distributions. 

Model choice. In this paper two structural equation models (Models 1 and 2), and a 
number of factor analysis models (Models 3US through 4UL) are used. Model 1 (the 
stability of alienation) and Model 2 (peer influence on aspiration) are discussed by 
Jrreskog (1977, Figure IB & Table II). The population covariances chosen for these two 
models (Boomsma, 1983) are almost identical to the original sample covariances, also 
reproduced by JSreskogand Sr rbom (1981). From these references, it can be deduced that 
Model 1 has 6 observed variables, 17 parameters to be estimated, and 4 degrees of free- 
dom; for Model 2 these numbers are 10, 17 and 17, respectively. 

Twelve factor analysis models were studied, all having two factors. Each of these 
models is indexed by three symbols: (i) a 3 or 4, depending on the presence of three or 
four observed variables for each factor; (ii) a U or a C, depending on the size of the 
correlation ~b between the two factors, chosen as 0 (Uncorrelated; ~b fixed) or 0.3 (Corre- 
lated; tk free); (iii) an S, M or L, depending on the size of the factor loadings, chosen as 
Small (0.4, 0.6), Medium (0.6, 0.8) or Large (0.8, 0.9). 

The factor pattern A (k x 2), where k is the number of observed variables, was chosen 
such that half of the observed variables had a nonzero loading on the first factor and a 
zero loading on the second one, and the reverse for the other half. Let k = [2J,  i = 1 . . . . .  
k, denote the vector of nonzero loadings. Then k~us = L~cs = (0.4 0.4 0.6 0.4 0.4 0.6), and 
~.~us = ~.~cs = (0.4 0.4 0.6 0.6 0.4 0.4 0.6 0.6). Analogously, k~uM = ~.~cM =(0.6 0.6 0.8 0.6 
0.6 0.8), and k~uL = ~CL = (0.8 0.8 0.9 0.8 0.8 0.9). 

Analytic details. In the study, starting some years ago, LISREL III was used. 
Today, most researchers have access to LISREL VI (Jrreskog & Srrbom, 1984) or 
LISREL V (Jrreskog & Srrbom, 1981), which we did not. It is not known to what extent 
the use of these latest versions would have changed the results obtained for the problems 
discussed here. Indications of no substantial differences between estimates from various 
LISREL versions are mentioned below. 

All the results in this paper are based on the analysis of sample covariance matrices, 
not on those of sample correlation matrices. 

The Problem of Nonconvergence 

In LISREL the modified Davidon-Fletcher-Powell algorithm developed by Gruvaeus 
and Jrreskog (1970) has a convergence criterion EPS = 0.5 x 10 -s. Under continuity 
conditions a solution converges if the absolute value of all derivatives of the function F to 
be minimized is less than EPS. For  most practical problems the convergence criterion is 
met within the maximum of 250 iterations (MAXITE). In LISREL both EPS and 
MAXITE have a fixed value, which cannot be manipulated by the user. 

Nevertheless, it may happen that the EPS-criterion is not met within 250 iterations. 
In our Monte Carlo work this led to specific problems. Because all those results are based 
on the algorithm just described, they need a conditional interpretation: for each N they 
are not based on strictly random samples S from ~, but on the first NR = 300 converging 
ones among a given number of random replications in stock (NRS). Since the asymptotic 
theory holds for the total set of random replications, the restriction to a subset of con- 
verging replications is theoretically unjustified. It could imply that one is dealing with a 
biased sample of size NR from a specified Wishart distribution. There is little choice, 
however, if one wants to study the robustness of LISREL with all its "restrictions" (EPS 
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TABLE 1. 

The P e r c e n t a g e  of  Nonconvergence.  
A * means NR=IO0, otherwise NR=300. A blank means 0%. 

231 

sample size 

Model I 25 50 100 200 400 I 

1 
2 

3US 
3CS 
3UM 
3CM 
3UL 
3CL 
4US 
4CS 
4UM 
4CM 
4UL 
4CL 

22.1% 5.7% 0.7% 
6.5% O. 7% 

46.7% 28.4% 12.8% 
55.0% 35.3% 16.4% 
ii .2% 1.0% 
11.0% 1.3% 

0.3% 
27.0%* 8.5% 
29.6%* 8.3% 
1.0% 
1.6% 

1.0% 

2.0% 
2.9% 

and MAXITE) imposed. Of  course, the maximum number of iterations could have been 
raised, but it was uncertain whether extra iterations would quickly lead to a genuine 
maximum likelihood solution. This is the more questionable, since known population 
parameter  values were used as starting points for the analyses. 

Results on Nonconvergence 

The phenomenon of nonconvergence is expressed in terms of the percentage of oc- 
currence among NR replications. Recall that new replications were analyzed until 300 
convergent ones were found (except for Models 4US and 4CS, where NR = 100). From 
Table 1 it can be seen that in two cases (Models 3US and 3CS) for N = 25 about  50% of 
the samples S did not converge within 250 iterations. 

In general, nonconvergence decreases with sample size. For  all models N = 400 was 
sufficient to raise no problems. 

In comparing the different factor analysis models at least two other elements seem to 
influence the frequency of nonconvergence. (i) The size of the factor loadings (the popu- 
lation covariances). (ii) The ratio number of observed variables/number of factors 
(NV/NF). 

Factor loading size. Nonconvergence increases if the population covariances get 
closer to zero (in Models 3US and 3CS, for variables linked to the same factor, covari- 
ances range from 0.16 to 0.24, in Models 4UL and 4CL from 0.64 to 0.81). A partial 
explanation of nonconvergence with these types of models can be given in terms of the 
sign pattern of the sample covariances of observed variables linked to the same factor. 
Inspection of nonconverging samples S may, for example, reveal that variable 1 has a 
positive sample correlation with variables 2 and 3, but variables 2 and 3 are negatively 
correlated, although in the population model all three variables are attached to the same 
factor. The general idea is that within such a set of variables the sign pattern of their 



232 PSYCHOMETRIKA 

covariances is incompatible with the signs of products of possible factor loadings in the 
population model. Random sampling may very well result in conflicts between the data 
and a perfectly specified model. For  the frequency of such discrepancies the standard 
error of the product-moment correlation coefficient should also be taken into account. 

In an attempt to predict convergence, using incompatible sign patterns of sample 
covariances both between variables 1, 2, 3 and between variables 4, 5, 6 as a criterion, in 
Model 3US the following results were found: for N = 25 (NR = 400) the correct- 
prediction rate of (non)convergence was 98%; for N = 50 (NR = 400) it was 99%. For  
Model 3CS (N = 25, 50; NR = 400) these percentages were 62 and 56, respectively. How- 
ever, using similar prediction criteria for Model 4US was unsuccessful. 

NV/NF ratio. Nonconvergence increases if the N V / N F  ratio decreases: 8-variable 
two-factor models lead to more convergence than their 6-variable counterparts. 

Most of the results reported here are in accordance with the findings of Anderson 
and Gerbing (1984), who conclude for a number of factor analysis models (NR = 100) 
"that the proportion of convergent solutions increased as" Sample size increased, the 
number of indicators per factor increased, loadings varied from mixed to all .6 to all .9, 
and factor correlations increased" (p. 162). Table 1 shows that for most factor analysis 
models convergence occurred somewhat less frequent when the two factors were corre- 
lated than when they were uncorrelated. Note, however, that in our orthogonal models ~b 
was fixed to zero, while for the models used by Anderson and Gerbing ~b had to be 
estimated. 

The question can be posed whether convergence problems may be due to violations 
of the assumption that the function F to be minimized is continuously differentiable (Gru- 
vaeus & J6reskog, 1970, p. 1). It could be that difficulties of nondifferentiability occur if 
the rank of the model is close to the dimension of the covariance matrix. More specifi- 
cally, it is of interest to know how often it occurs that t w o  or more eigenvalues of S are 
almost equal. This could explain the model dependency of nonconvergence. However, 
inspection of the eigenvalues of converging and nonconverging samples gave no expla- 
nation along these lines. 

Summary. The seriousness of the problem of nonconvergence depends heavily on 
the sample size, and may broadly vary with the model under study. A general and most 
direct way to avoid the problem is to have samples of at least moderate size, N > 100 say. 

As indicated earlier, our results are based on the use of LISREL III. It should be 
noticed, however, that nonconvergence (or "serious problems during minimization") may 
also occur with LISREL V and VI. This conclusion is primarily based on two studies. 
First, a number of LISREL V analyses of our random samples (Model 3CS; N = 25) were 
kindly performed by Jfreskog. Compared with LISREL III the results were very much 
the same. Secondly, we analyzed 50 random samples (Model 3US; N = 25) with LISREL 
VI. No differences in convergence were found between LISREL III and VI. In comparing 
both versions using the same starting values, differences between parameter estimates 
were mostly in the fifth decimal place, which is due to the fact that EPS is 10 times as 
large in LISREL III as it is in LISREL VI. It thus seems that our simulation results 
would have been hardly different if most recent program versions would have been used. 

In practice, one can always restart the iteration process by using the "solution" at- 
tained after the first 250 iterations as starting values in a continued analysis. For  Model 
3CS (N = 25) it appeared, however, that the discrepancy between the model under study 
and specific random samples can be so large that even with an unrestricted number of 
iterations, no convergence could be attained with LISREL V. 

The Problem of Improper Solutions 

A second but not less serious issue is that of negative estimates of variances (in factor 
analysis similar problems are known as "Heywood cases"). The occurrence of such im- 
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proper solutions has been studied by Mattson, Olsson, and Ros6n, (1966); see also 
J6reskog (1967). Discussions of the problem in maximum likelihood factor analysis are 
given by Tumura and Fukutomi (1970), and Van Driel (1978). Here, the so-called ultra 
Heywood case is considered only; no specific treatment of boundary estimates (zero vari- 
ances or exact Heywood cases) is given. 

The LISREL algorithm does not handle Heywood cases by imposing constraints on 
the variances (see J6reskog & S6rbom, 1984), although in principle methods like those 
developed by Lee (1980) could be used to modify an inconstrained LISREL program into 
a constrained one. 

In LISREL modeling there are at least four strategies in dealing with sample covari- 
ance matrices leading to improper solutions. (i) Do not bother about them. This leaves the 
researcher with a problem of interpretation if the model would not be rejected. (ii) Given 
a number of negative estimates of variances for a specific model, fix the corresponding 
parameters to zero or to small positive values, and reanalyze the sample under the modi- 
fied model. This practice is disputable, certainly if dependencies among parameter esti- 
mates are considered. (iii) Use clever model respecifications. Recent developments are 
presented by Rindskopf (1983, 1984), and Kelderman (in press). (iv) Instead of a maximum 
likelihood LISREL approach, choose for an alternative type of analysis, e.g., weighted 
least squares, and see whether that is helpful. 

Each of these strategies has its disadvantages, not only for the regular user of 
LISREL, but also for designers of Monte Carlo research. First, results will be presented 
on the occurrence of improper solutions. In the next section two strategies are compared 
in a simulation study. 

Results on Improper Solutions 

Beforehand, it should be remarked that in our research improper solutions cannot be 
caused by misspecification of the model, because the population structures are fully 
known. 

From Table 2 (Model 1 ; 8 estimates of variances) it follows that even for N = 200 
improper solutions may occur. 

Within a single replication more than one variance can have a negative estimate, 
which may or may not be due to dependencies between such estimates. This can be seen 
from the relative frequency distribution of the number K of negative estimates of vari- 
ances within a single replication. Table 3 gives results for Model 1. 

In Model 2 among 17 parameters 6 variances have to be estimated. The percentages 
in Table 4 show that there remains a serious danger of negative estimates f o r N  _< 50, but 
not for N > 100. In comparing Tables 2 and 3 it is noticed that the population values are 
closer to zero for Model 2, but the mean percentage of negative estimates for this model is 
smaller than for Model 1. In general, also given the results from Table 5, the range of 
population values does not offer a sufficient explanation here. 

Only for N = 25 were solutions found with more than one out of six of these vari- 
ances being negative: 2.7% of the replications had two improper estimates, 42.7% had 
only one negative estimate. 

Table 5 shows global results for the twelve factor analysis models. Table 6 gives 
details of the specific variances in Model 3UM. 

Summary. It is concluded that there is a real danger of improper solutions with 
small N. The frequency of its occurrence depends on a combination of three factors. (i) 
The sample size. More frequent with decreasing N. (ii) The population values of the vari- 
ances, a) Across comparable models, e.g. the factor analysis models, more frequent with 
small population values of the variances (Van Driel, 1978, the Close to Zero case), b) 
Among variances within a single model, more frequent for those parameters with rela- 
tively small population values. (iii) The model under study. For  example, more frequent in 
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The 

TABLE 2. 

Percentage of Negative Estimates of Variances, 
Minimum of $.. Model I, NR=300. A blank means 0%. 

and the 

sample size 

I 25 I 5o 1 lOO I 2oo I 4oo 1 

prmt [ % min 1 %  min 1 %  min 1 %  m i n t  % m i n t  ~" 
1 

~11 
~22 

E 

e11 
G22 

e~3 
Q 

°44 

1.3 -5 

3.7 -6 

10.7 -26 

19.3 -31 

18.3 -58 

15.3 -57 

24.7 -108 

7.3 -2396 

0.3 -I 

4.0 -37 

13.7 -27 

7.7 -13 

13.7 -9 

15.7 -140 

1.3 -242 

2 

1 

0.3 -i 

7.0 -13 

1.0 -i 

5.0 -19 

9.3 -11 

0.3 -71 

1.7 

0.3 

2.7 

2 

2 

2 

-3 

0 

-i 

-2 

124 

3 

2 

3 

1 

1 

1 

0 

194 

5 

4 

5 

3 

4 

3 

3 

265 

the 6-variable factor analysis models than in 8-variable ones, which can also be formu- 
lated in terms of the NV/NF ratio. 

Given these results, the user of LISREL should in general be urged to avoid samples 
of size N < 50. 

Comparison of the Inclusion and Exclusion Strategy 

The strategies mentioned previously were also of importance in considering the 
design of the Monte Carlo study and for evaluating results on the robustness of LISREL. 

TABLE 3. 

The Relative Frequency Distribution of the Number K out of 8 
Variances with a Negative Estimate. Model i, NR=300. A blank means 0%. 

sample size 

K J 25 50 100 200 400 ; 

100% 0 
1 
2 
3 

>J4 

32.0% 60.0% 80.3% 95.7% 
41.3% 25.3% 16.3% 4.0% 
20.7% 13.0% 3.3% 0.3% 
6.0% 1.7% 
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TABLE 4. 

The Percentage of Negative Estimates of Variances, and the 
Minimum of~ij. Model 2, NR=300. A blank means 0%. 
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sample size 

I 25 I 50 I lOO 1 200 I 400 I 

prmtl  m min I ~ min 1 %  min 1 %  min 1 %  min I ~ i  

~11 
tP22 
@11 
O22 
033 

£ 

044 

5.7 -0.2 

8.7 -0.2 

6.3 -2.1 

13.3 -2.8 

9.3 -12.4 

4.7 -I .7 

0.0 

O. 7 -0.0 

0.7 -4.0 

6.0 -2.4 

i .0 -0.2 

0.3 -0.0 

0.I 

0.1 

0.i 

0.0 

0.3 0.i 

0.1 

0.i 

0.1 

0.2 

0.i 

0.1 

0.2 

0.2 

0.2 

0.3 

0.2 

0.2 

0.3 

.28 

.27 

.42 

.33 

.30 

.41 

In the following, two approaches in dealing with samples S leading to improper solutions 
are being compared. These strategies are (i) include replications with improper solutions 
(IN), and (ii) exclude replications with improper solutions (EX). 

Theoretically the inclusion strategy seems to be the most attractive one, because it 
comes closest to a full set of random replications (the nonconvergent ones are excluded). 

TABLE 5. 

The Percentage of Improper Solutions in Factor Analysis Models. 
A * means NR=IO0, otherwise NR=300. A blank means 0%. 

sample size 

Model I 25 50 I00 200 400 I 

3US 
3CS 
3UM 
3CM 
3UL 
3CL 
4US 
4CS 
4UM 
4CM 
4UL 
4CL 

51.0% 41.3% 
47.3% 32.7% 
37.7% 21.0% 
43.7% 25.0% 
25.7% 9.0% 
24.3% 7.3% 
47.0%* 19.3% 
37.0%* 15.3% 
22.3% 5.0% 
27.3% 1.0% 
7.3% 0.3% 
7.0% 

22.0% 10.7% 
18.3% 6.3% 
ii .3% 1.3% 
5.7% i. 3% 

0.3% 
0.7% 
3.0% 
3.7% O. 3% 

2.7% 
2.7% 
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TABLE 6. 

The Pe rcen tage  of  Negat ive  Es t ima tes  of  Var iances ,  and the 
Minimum of  ~ .  Model 3UM, NR=300. A blank means 0%. 

sample size 

I 25 I 50 I 100 I 200 I 400 I 

print 1 %  min I %  min I %  min I %  min I %  min I~ .  
1 

e44 

2.3 -0.7 

5.7 -8.2 

15.7 -14.7 

2.3 -2.8 

2.3 -0.5 

22.6 -9.4 

0.3 -0.I 

0.3 -0.1 

ii .0 -3.2 

0.3 -0.0 

0.0 

13.3 -6.1 

0.3 

0.3 

2.7 -0.4 

0.3 

0.3 

3.0 -i .4 

0.4 

0.4 

0.7 -0.i 

0.4 

0.4 

0.7 -0.0 

0.5 

0.5 

0.i 

0.5 

0.5 

0.i 

64 

64 

36 

64 

64 

36 

Compared to the inclusion strategy the exclusion of improper cases means that the sam- 
piing distribution of S is once again different from a Wishart distribution. On the other 
hand, the disadvantage with inclusion is that strictly the estimates are not maximum 
likelihood estimates, so the asymptotic theory cannot apply to them. 

The comparison of IN and EX is of interest, because the question may be raised to 
what extent both approaches give different Monte Carlo results. Therefore, for Model 1 
simulation results using IN and EX were compared for N = 25, 50, 100. 

In comparing 25IN with 25EX, 50IN with 50EX, and 100IN with 100EX, it should 
be realized that for 25EX, 50EX, and 100EX the number of replications is 96, 180, and 241, 
respectively, and not 300 as for IN (see Table 3). 

With respect to the bias of parameter estimates the exclusion strategy leads to a 
decrease in bias, and also to a relative decrease in variance and mean square error (es- 
pecially for N ---- 25, 50). The same is found for the bias of the estimated standard errors. 

For  two-sided 95% confidence intervals of separate parameters there are no striking 
differences between IN and EX (see Table 7, showing the observed minus expected per- 
centage of 95% confidence intervals covering the population value cot among NR repli- 
cations). By excluding improper replications there is a tendency towards conservative 
interval estimation. 

When empirical correlations between parameter estimates are inspected, the differ- 
ences with asymptotic correlations are somewhat smaller when the inclusion strategy is 
used. 

Results on the chi-square estimate for goodness-of-fit show no substantial differences 
(see Table 8). 

Summary. For N = 25, 50, 100 a separate comparison of the inclusion and exclusion 
strategy revealed that the Monte Carlo results are not systematically closer to theory 
when improper cases are included rather than excluded. An exception should be made for 
the bias and variance of both parameter estimates and their corresponding standard 
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TABLE 7. 

Observed minus Expected Pe rcen tage  of  95% Confidence I n t e r v a l s  
Covering ~ i "  Model 1. A blank means 0.  
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2siN, 2sEx 5oiN L I looiN I looEx I 
prmt NR=300 I NR=96 NR=300 NR=I80 NR=300 NR=241 

1 

)'2 

~3 
- 8  

YI 

•2 
¢ 

~022 

011 

022 
C 

031 

0 e 
42 

0 ~ 

-3 

-6 

1 

1 

-3 

-4 

-6 

-7 

-9 

3 

4 

i 

2 

I 

3 

3 

-4 

3 

1 

2 

1 

2 

3 

-4 

-I0 

-6 

3 

5 

3 

3 

3 

4 

3 

-3 

-4 

-i 

-5 

-i 

-5 

-8 

3 

2 

2 

3 

2 

1 

-3 

-2 

3 

3 

I 

4 

2 

1 

-2 

-7 

3 

4 

3 

4 

1 

4 

-i 

-6 

-i 

-I 

-3 

-3 

-2 

-4 

-6 

I 

I 

2 

2 

2 

-3 

-3 

1 

3 

-i 

1 

-2 

-2 

-4 

3 

2 

3 

3 

3 

-4 

-3 

errors. On the basis of the limited comparison, however, it cannot be concluded that 
LISREL is generally more robust under an exclusion strategy. 

The results of this section have probably little practical implications for users of 
LISREL, because for nearly all practical purposes they have to deal with model estimates 
based on one set of data, and not on replicated sets. Once again, however, the regular user 
of LISREL, who wants to avoid improper solutions in the only sample available, is rec- 
ommended to be especially concerned about small sample size. 

The Problem of Choosing Starting Values 

In our Monte Carlo work the population values of the parameters, o~i, were chosen 
as initial estimates in each replication. These values can be regarded as ideal starting 
values (ISV). In everyday practice a researcher will start with estimates at some distance 
from those true values. This raises the question whether the results from our robustness 
study give too favorable an impression. Apart from the limited question whether and how 
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TABLE 8. 

Characteristics of the Observed Sampling Distribution of the 
2 Statistic for Goodness-of-Fit compared to the Expected × 

Values of the X~ Distribution. Model I, NR=300. 

observed minus expected value 

N NR median mean st.dev, skewn, kurto. % ×2> 9.491 

25IN 300 
25EX 96 

50IN 300 
50EX 180 

IOOIN 300 
IOOEX 241 

-.2 -.3 -.4 -.3 -1.9 -2% 
-.4 -.6 -.6 -.6 -3.1 -3% 

-.2 -.3 -.I .2 1.4 -1% 
-.2 -.3 -.2 -.I -0.8 -2% 

.1 -.0 .0 .3 1.8 -1% 
-.I -.2 -.0 .5 3.3 -2% 

median mean st.dev, skewn, kurto. % ×2> 9.49 

expected 
value 

st.error 
obs.value 
NR=300 

3.4 4.0 2.8 1.4 6.0 5% 

0.2 0.2 0.2 0.3 2.5 1% 

the choice of other sets of starting values (SV) might affect Monte  Carlo conclusions, there 
is a general, intrinsic interest to study the effect of such choices. 

In this section two questions are answered. (i) What  is the effect of a fixed set of 
alternative starting values (ASV) compared to ISV? (ii) What  is the effect of sample depen- 
dent SV on maximum likelihood estimation? One of the important  improvements o 5 
LISREL V was the feature of "automatic" starting values, using noniterative instrumental 
variable and two stage least squares (TSLS) methods (H/igglund, 1982). These automatic  
initial estimates are dependent on sample fluctuations. More specifically, the second 
question is whether the use of ISV would lead to different results than that of TSLS 
estimates. 

To answer both questions Model 1 was used. In Boomsma (1983) it was recommend- 
ed not to use a sample size smaller than 100 for this model. Therefore, it was decided to 
study ISV vs. ASV, and ISV vs. TSLS for N = 100, 200, 400. Note, that LISREL III  was 
used for ISV and ASV, while LISREL VI was used for TSLS. 

With respect to the first problem a partly arbitrary fixed set of ASV was chosen: the 
ISV plus or minus 1.5 times the standard error for N = 100 (see Table 9, last column). The 
choice for plus or minus was made at random, except that no sign differences between 
ISV and ASV were allowed for. The same ASV were also used for N = 200 and N = 400. 
For all sample sizes the LISREL analyses thus start at the same distance from to. Since 
the large sample estimates of the standard errors, sere, are proportional  to N-1/2 this 
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means for N = 200 and N = 400 choosing ASV as ISV + 2.1 and ISV __+ 3.0 times their 
respective standard error. 

Due to convergence problems the number of common replications (NCR) in comparing 
ISV with ASV was smaller than 300. For  example, for N = 100 the number of non- 
converging replications was 2 for ISV, and 11 for ASV. For  such reasons, NCR was 291, 
299, and 299 for N = 100, 200, 400, respectively. In comparing ISV with TSLS initial 
estimates, NCR was fixed to 100 for all three sample sizes. 

Before turning to results the following remark is made. If different starting values are 
used, given the same S it is possible that the convergence criterion is met both for ISV and 
ASV (or for ISV and TSLS), while the solution does not arrive exactly at the same (local) 
maximum. Large differences between solutions being compared might indicate that for 
the two sets of SV no absolute maximum was found but a local one. Rubin and Thayer 
(1982) suggest the possibility of multiple local maxima of the likelihood function, which 
would make the choice of starting values highly important. (See Bentler and Tanaka, 
1983, and Rubin and Thayer, 1983, for a discussion.) The literature shows little empirical 
evidence how often maximum likelihood solutions converge to local maxima. 

Results on the Effect of Different Starting Values 

Magnitude of Differences for Model Estimates. All differences are expressed as a 
single number, the decimal place in which absolute differences occur. This is exemplified in 
Table 9. For  N 100 and parameter 21, among 291 replications max ] ~.Isv .^Asv = f lJ i j  - -  ~ i j  [ 
0.001068. Therefore, a 3 is reported. 

For  parameter estimates Table 9 shows that the maximum absolute difference de- 
pends on the size of the population value (ISV), and that it does not affect the second 
decimal place for most parameters. For  two-thirds of the parameters the median absolute 
difference is in the fourth decimal place. Hardly any differences between the use of ASY 
and TSLS are observed. 

No detailed results are given for the estimates of the corresponding standard errors. 
Considering the size of their population values the findings are about the same as for the 
parameter estimates, showing no substantial differences between the ISV, ASV and TSLS 
approach. 

The latter is all the more clear for the chi-square estimate for goodness-of-fit. Studying 
ISV vs. ASV, for all N the maximum, minimum, and median absolute difference is in the 
5th, 9th and 6th decimal place, respectively. Here also, the effect of TSLS is about the 
same as for ASV. 

Finally, it is noted that for all three types of estimates there are no striking differences 
between the sample sizes N. 

It can be concluded that when using a standard LISREL output, which on default 
gives final maximum likelihood estimates in three decimal places, for most replications the 
results would be exactly the same for ISV, ASV, and TSLS. This suggests that LISREL is 
quite robust against different starting values, and that its users should not bother too 
much about their choice. 

Differences in Distributional Properties of Estimates. The findings of the previous 
section are also of importance for a question more specifically relevant in the context of 
evaluating Monte Carlo results: would the use of ASV have affected the conclusions from 
our robustness study? An answer can be found by inspecting the distributional properties 
of the LISREL estimates. For  this purpose ISV has been compared with ASV only. 

Given the previous results, it cannot be expected that an analysis of distributional 
properties of the estimates gathered with ASV will lead to other conclusions than those 
based on an analysis with ISV. This expectation was fully confirmed. For example, no 
differences were found in the percentage of improper solutions, only minor differences in 
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TABLE 9. 

The Effect of Starting Values in Model I. 

M ,^ISV ^ASV ^ISV ^ASV ^ISV ^TSLS ^ISV -TSLS 
axl to . .  - t0. .  I Medl 13 13 13 lJ 13 lJ to.. -0J.. Maxlto. • - to . .  and Med I ~ to.. --60,. I j 13 ij j j j 

among NCR Replications. Decimal Place Difference Indication. 

prmt 

N=I00 I N=200 l N=400 

max 1 med max med max I med 
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3 4 
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3 4 
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5 0.98 

5 0.921 

4 5.221 

5 -0.61 

5 -0 .57  I 

5 -0.231 

4 6.811 

4 4.85 

4 4.09 

4 4.73 

4 2.57 

4 1.62 

4 4.40 

4 0.34 

4 3.07 

4 2.80 

3 264.98 

0.70 

1.20 

7.16 

-0.37 

-0.83 

-0.47 

9.80 

2.69 

5.95 

2.65 

0.71 

3.07 

6.78 

1.54 

5.07 

5.14 

181.37 

bias of parameter estimates and that of estimates for standard errors. Also, the agreement 
in estimates for 95% confidence intervals, as well as in the chi-square estimates for 
goodness-of-fit, was very close. 

Summary. For Model 1 it is concluded that the use of ideal starting values does not 
give too favorable a picture of distributional properties of the estimates, compared to the 
use of alternative nonideal starting values. 

Recommendations 

Given the results of the first two problems, for many models users of LISREL, who 
in most cases base their conclusions on just one sample, should be advised to have a 
sample size larger than 100. Considering the fact that they often do exploratory research, 
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there is a s t rong need for replication and cross-validation. In such circumstances a sample 
size of  at least 200 is no  statistical luxury:  the statistician is then in a position to explore 
data  on one half of the sample, while in principle the other  half  could be used for con-  
f i rmatory purposes. This r ecommenda t ion  is not  weakened if many  other statistical 
properties of  model estimates in covariance structure analysis are being considered 
(Boomsma,  1983). 

Researchers designing Monte  Carlo  studies for L I S R E L  should be well aware of  the 
problems to be expected in s tudying the effects of  small sample size. The number  of  
replications in stock needed is larger with decreasing sample size. It  is still disputable 
whether replications with improper  solutions should be included or  excluded in such 
research. 

The choice of  ideal starting values did not  seem to have influenced Monte  Carlo 
results. In large sample studies the use of  ideal start ing values in robustness research is 
recommended,  not  only because of  the fact that  different starting values have very little 
effect in estimation, but  because it saves some compute r  time. In converging samples, 
compared  to the use of  TSLS estimates, on  average ISV analyses are faster (L ISREL VI). 
Also, TSLS starting values m a y  not  lead to convergence where ISV do;  e.g. a m o n g  50 
replications (Model 3US, N = 25) this happened three times. On  the other hand, when 
both  ISV and TSLS end up in nonconvergence,  ISV take more  computer  time. More  
important ,  in practical applications where popula t ion  values are unknown,  the use of  
au tomat ic  starting values is highly attractive, also because no indications for convergence 
to local max ima  were found. 

References 

Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and 
goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49, 155-173. 

Bentler, P. M., & Tanaka, J. S. (1983). Problems with EM algorithms for ML factor analysis. Psycbometrika, 48, 
247-251. 

Boomsma, A. (1982). The robustness of LISREL against,small sample sizes in factor analysis models. In K. G. 
Jrreskog & H. Wold (Eds.), Systems under indirect observation: causality, structure, prediction (Part 1, pp. 
149-173). Amsterdam: North-Holland. 

Boomsma, A. (1983). On the robustness of LISREL (maximum likelihood estimation) against small sample size and 
non-normality. Unpublished doctoral dissertation, University of Groningen, Groningen. 

Gruvaeus, G. T., & Jrreskog, K. G. (1970). A computer program for minimizing a function of several variables 
(Research Bulletin 70-14). Princeton, N J: Educational Testing Service. 

H~igglund, G. (1982). Factor analysis by instrumental variable methods. Psychometrika, 47, 209-222. 
IMSL (1982). IMSL Library. Reference Manual. (Vol. 2, 9th ed.). Houston, TX: International Mathematical and 

Statistical Libraries. 
J6reskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32, 443~182. 
J6reskog, K. G. (1977). Structural equation models in the social sciences: Specification, estimation, testing. In 

P.R. Krishnaiah (Ed.), Applications of statistics (pp. 265-287). Amsterdam: North-Holland. 
J6reskog, K. G., & S6rbom, D. (1981). LISREL V. Analysis of linear structural relationships by maximum likeli- 

hood and least squares methods (Research Report 81-8). Uppsala: University of Uppsala, Department of 
Statistics. 

J6reskog, K. G., & S6rbom, D. (1984). LISREL VI. Analysis of linear structural relationships by maximum 
likelihood, instrumental variables, and least squares methods. User's guide. Uppsala: University of Uppsala, 
Department of Statistics. 

Kelderman, H. (in press). LISREL models for inequality constraints in factor and regression analysis. In P. F. 
Cuttance & J. R. Ecob (Eds.), Structural modeling. Cambridge: Cambridge University Press. 

Lee, S. Y. (1980). Estimation of covariance structure models with parameters subject to functional restraints. 
Psychometrika, 45, 309-324. 

Mattson, A., Olsson, U, & Rosrn, M. (1966). The maximum likelihood method in factor analysis with special 
consideration to the problem of improper solutions (Research Report). Uppsala: University of Uppsala, De- 
partment of Statistics. 

Rindskopf, D. (1983). Parameterizing inequality constraints on unique variances in linear structural models. 
Psychometrika, 48, 73-83. 



242 PSYCHOMETRIKA 

Rindskopf, D. (1984). Using phantom and imaginary latent variables to parameterize constraints in linear struc- 
tural models. Psychometrika, 49, 37-47. 

Rubin, D. B., & Thayer, D. T. (1982). EM algorithms for ML factor analysis. Psychometrika, 47, 69-76. 
Rubin, D. B., & Thayer, D. T. (1983). More on EM for ML factor analysis. Psychometrika, 48, 253-257. 
Tamura, Y., & Fukutomi, K. (1970). On the improper solutions in factor analysis. TRU Mathematics, 6, 63-71. 
Van Driei, O. P. (1978). On various causes of improper solutions in maximum likelihood factor analysis. Psy- 

chometrika, 43, 225-243. 

Manuscript receiv~ed 8/5/82 
Final version received 1/24/85 


