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As a method to ascertain the structure of intra-individual variation, P-technique has met 
difficulties in the handling of a lagged covariance structure. A new statistical technique, coined 
dynamic factor analysis, is proposed, which accounts for the entire lagged covariance function of 
an arbitrary second order stationary time series. Moreover, dynamic factor analysis is shown to 
be applicable to a relatively short stretch of observations and therefore is considered worthwhile 
for psychological research. At several places the argumentation is clarified through the use of 
examples. 

The statistical analysis of time series has many ramific~/tions, only some of which 
have so far become fashionable in psychology. In this article, attention will be drawn to a 
branch of time series analysis pertaining to dynamic factor modelling of the lagged covari- 
ance structure of a vector-valued time series. In order to simplify any introduction to the 
dynamic factor model, it may be useful to first take a look at a rather well-known precur- 
sor. Several decades ago, Cattell (1952) suggested the analysis of an observed trajectory of 
a vector-valued time series, i.e., repeated measurements on a single subject across many 
occasions, by means of the usual factor model. Cattell proposed the special application of 
traditional factor analysis, coined P-technique, as a way of determining whether the co- 
variance structure of the observed time series can be conceived of as being caused by an 
inferred latent factor series of reduced dimension. Although similar proposals had been 
made earlier (e.g., Stone, 1947), factor analysis of multivariate time series found general 
acceptance within psychology under the heading of P-technique, and has become a re- 
spectable method used to ascertain the structure of intra-individual variation. For all that, 
P-technique has been criticized on several grounds (cf. Holtzman, 1962; Anderson, 1963). 
The main theme underlying this criticism concerned the proper way in which a lagged 
covariance structure should be handled. In its original conception, P-technique takes into 
account only simultaneous relations between the components of a multivariate time 
series. Thus, the timing of the components is lost, i.e., the relations between component 
series at different times are absent from the analysis. It has been suggested (Cattell, 1957), 
that for each pair of component series one considers the covariances with different lags 
and select the numerically largest one. The difficulties with respect to the interpretation of 
results thus obtained have been illustrated by Anderson (1963). Subsequently, Cattell 
(1963) proposed his so-called method of iteration of factor-variable displacement, which 
involves an iterative search for the lag at which each component of a multivariate time 
series is maximally correlated with a given factor. This method still is too restrictive, 
because for each component series it yields a relationship with a given factor at one 
interval of time, while the relationship may exist over several units of time. For instance, 
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an effect on a component  series that involves the physiology of an individual may take 
several days to wear itself out (cf. Anderson). 

What  is needed is a generalization of P-technique in order to accommodate  the 
lagged covariance structure of a multivariate time series. The primary purpose of this 
article is to outline a dynamic factor analysis that yields the required generalization. It is 
based upon a model in which the latent factors are conceived of as random time- 
dependent functions, called factor series. At each time t, then, the communal  part  of an 
observed series is represented by a weighted sum of the latent factor series at t, t - 1 . . . .  
In reverse, the effect of a realization of the latent factor series at time t will take several 
consecutive times t, t + 1 . . . .  to wear itself out. Particular versions of this model have 
been discussed by, e.g., Priestley, Subba Rao, and Tong (1973) and Brillinger (1975). In 
this article, we will describe a time domain dynamic factor analysis that is applicable to a 
single, relatively short trajectory of a multivariate time series. In addition, a point for 
point description is given of some special properties of the proposed analysis, including 
the estimation of a latent factor series. In the closing section, some of the related ap- 
proaches alluded to earlier will be discussed. 

The Dynamic Factor  Model 

Definition o f  the La99ed  Covariance Structure 

A time series or random function z(t), t - - 0 ,  _+ 1 . . . . .  can be conceived of as an 
ensemble of trajectories which are generated by some random scheme. We can denote this 
ensemble by {z(t, to), to ~ ~ and t = 0, _+ 1 . . . .  }, where to denotes a random variable 
taking values in ft. Accordingly, the function z(t, to) with to fixed is a trajectory or realiza- 
tion of the time series. Henceforth, a finite trajectory will be denoted by z(t) = zt ,  t = 1, 2, 
. . . .  n. The finite dimensional distributions which characterize a p vector-valued time series 
z(t) are defined by: 

Fa, ...a~(Zl . . . . .  Zk; tl . . . . .  tk) = Prob [zal(tx) < Z x . . . .  , Zak(tk) <_ Z~], 

al . . . . .  ak~{1,2  . . . . .  P} and k = l ,  2 , . . .  

Accordingly, the mean function and covariance function are defined by, respectively: 

ca(t) = _t" Z dFa(Z; t), a n d  

ca,a2(tl, t2) = ~ [Zx - -  c a l ( t l ) ] [ Z 2  - -  ca2(t2)] dFa,~2(Zx, Z2; tx, t2). 

A time series z(t) is called second order stationary if: 

Ca(t ) = c ,  Cala2( t t ,  t2) = Caxa2(O, t 2 - -  t l )  = Cata2(U). 

This assumption implies that z(t) contains no deterministic trend and that its covariance 
function is invariant under a translation along the time axis. Hence, the covariance func- 
tion of a second order stationary time series can be estimated from a single realization by: 

~(u) = _1 ~ [z(t) - c'][z(t - u) - e] T, 
n t = u + l  

where 

1 
C(u) = {ca~a2(u)} c = - Z z(t), 

n t = l  
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FIGURE 1 
T ime  course  of a 4 vector-valued trajectory.  

and n is the length of the observed trajectory. Although division by n - u rather than n 
might seem more rational because it yields an unbiased estimator for C(u), division by n is 
preferable because it yields an estimate which often has smaller mean square error (Jenk- 
ins & Watts, 1968). 

Consider, for the purpose of clarification, the 4 vector-valued trajectory z(t)= z,, 
t = 1, 2 . . . . .  50, which is depicted in Figure 1. Some such trajectory might, consist of the 
time course of repeated measurements of various indicatory functions on a deviant sub- 
ject. A classic paper by Holtzman (1963) discusses a case like this, involving daily 
measurements with a single schizophrenic patient. The trajectory in Figure 1 is regarded 
as a realization of a second order stationary random function z(t), t = 0, + 1, ... The first 
few estimated coefficient matrices of the corresponding covariance function are given in 
Table 1. The assumed stationarity, both of the mean function and of the covariance func- 
tion, can be tested against suitable alternatives involving models with time-varying coef- 
ficients (Kashyap & Rao, 1976). Consequently, a situation may be found in which the 
condition of constant mean function is violated. As to that, Cattell (1963) has drawn 
attention to the technical difficulties which arise in the handling of trends. Nevertheless, 
the required stationarity of the mean function can be dismissed without invalidating a 
dynamic factor analysis in case the time series has a bounded time-varying trend 
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Table I 

Estimated Covariance Function 

of Figure 1 

~(0) ~(1) 

2.002 0.889 -0.386 0.878 -0.153 

-0.057 1.660 0.440 -0.742 0.045 -0.330 

0.965 -0.425 3.756 -0.046 -0.881 1.935 0.002 

-0.251 0.504 -0.214 3.031 0.076 -0.582 0.172 -1.271 

~(2) ~(3) 

-0.208 -0.258 0.459 -0.024 -0.503 -0.204 -0 .235 0.676 

-0.174 0.329 -0.266 0.034 -0.273 -0.148 0.031 -0.421 

-0.666 -0.064 0.472 0.517 -0.024 -0.013 -0.153 0.827 

0.210 0.070 0.001 0.427 -0.168 0.097 0.679 -0.207 

(Molenaar, 1984). To approach this extension in further detail would, however, involve a 
separate study. 

Definition o f  the Dynamic Factor Model 

Suppose, that the trajectory plotted in Figure 1 has been obtained from repeated 
measurements with a deviant subject and the question is asked, whether a common unidi- 
mensional aetiological process accounts for the covariance function of the observations. 
An application of P-technique to this case is based on: 

z(t) = Ar/(t) + e(t), t = 0, + 1 . . . .  (1) 

where A is a 4-dimensional vector of loadings, r/(t) is a univariate latent factor series which 
represents the aetiological process, and e(t) is a 4 vector-valued residual series. Both r/(t) 
and e(t) are conceived of as random functions, and for u = 0, +_ 1 . . . .  the respective covari- 
ance functions are defined by: 

c o y  I n ( 0 ,  ~ ( t  - u)] = ~ u ) ,  

cov [e(t), e(t - u)] = ®(u) = diag [01(u) . . . .  ,04(u)]. 

An application of P-technique, then, involves the fit of Equation 1 to the zero-lagged 
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coefficient matrix of the covariance function of z(t): 

C(0) -- AE(0)A r + ®(0). (2) 

Hence, for u # 0 the covariance function C(u) is left unaccounted for. This restriction is of 
course only justified if all coefficient matrices of the covariance function of z(t) vanish at 
non-zero lags, i.e., C(u)= 6(u)C, where 6(u) is the Kronecker delta. As to the present 
example, however, Table 1 indicates that C(u) ¢: 0 if u ~ 0. As will be shown in the sequel, 
this can be confirmed by means of a suitable test. Therefore, application of P-technique in 
this case would not seem warranted. 

A reasonable generalization of P-technique in order to arrive at a complete model for 
the covariance function of a second order stationary time series is accomplished by pro- 
ceeding from the dynamic factor model: 

z(t) = ~ A(u)r/(t - u )  + s(t), t = 0, + 1 . . . . .  (3) 
u=O 

where the lag s > 0 is an unknown parameter and A(u), u = 0, 1 . . . . .  s, is a causal filter 
which in our example consists of a sequence of 4-dimensional vectors of lagged loadings. 
Evidently, the determination of z(t) by a realization of q(t) at time t is not instantaneous, 
but is manifest over consecutive time points t, t + 1 . . . .  In reverse, the communal part of 
z(t) at time t is a weighted sum of t/(t), rl(t - 1) . . . .  Strictly speaking, the lag beyond which 
A(u) is zero should be taken to be arbitrarily large. However, the assumed stationarity of 
z(t) generally will give rise to a decaying filter as u--, oo (cf. Hannan, 1970, p. 151). There- 
fore, A(u) can be truncated at a suitable finite lag u = s. The dynamic factor model given 
by (3) covers the entire covariance function of z(t): 

C(u) = i i A(v)E(u + w - v)A(w) r + ®(u), u = 0, -I- 1 . . . .  (4) 
v = 0  w = 0  m 

In general, q(t) is a q vector-valued latent factor series, q < p, whence A(u), u = 0, 1 . . . .  is a 
sequence of (p x q) dimensional matrices of lagged loadings, and ~,(u), u = 0, 1 . . . .  is a 
sequence of (q × q) dimensional matrices of lagged covariances. 

Notwithstanding important differences in development, the same basic rationale un- 
derlies both the traditional static factor model (including P-technique) as well as the dy- 
namic factor model. In each case the covariance structure of observables is conceived of 
as being due to a common latent source. However, the observed variables in a dynamic 
factor model are random time-dependent functions with a lagged covariance structure, 
and the common latent sources also are random functions that have a lagged functional 
relationship with the observed variables. For  all that, it will be shown that the causal filter 
which constitutes this lagged functional relationship plays the same part in the interpreta- 
tion of a common latent source as the matrix of loadings in a static factor analysis. 
time-dependent functions with a lagged covariance structure, and the common latent 
sources also are random functions that have a lagged functional relationship with the 
observed variables. For  all that, it will be shown that the causal filter which constitutes 
this lagged functional relationship plays the same part in the interpretation of a common 
latent source as the matrix of loadings in a static factor analysis. 

Obviously, it will be a rather tedious matter to fit an intricate scheme such as given 
by (4). As a matter of fact, a rather elegant frequency domain analysis exists for the case in 
which an observed trajectory of sufficient length is available (Brillinger, 1975). For  this 
type of analysis to be rewarding, a reasonable amount of data is likely to be required--  
one hundred to three hundred points is close to the low end (Tukey, 1978). However, 
trajectories which are encountered in psychological research are generally too short to 
justify the application of spectral analysis. In order to advance the use of dynamic factor 
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analysis in psychology, it will be necessary to arrive at a statistical me thod  which is 
robust  against small sample size. Such a method  is shortly presented. 

Analysis  o f  a Short  Trajec tory  

Suppose, for the sake of argument ,  that  the dimension q of  the latent factor series q(t) 
in (3) is known. Suppose also, that  the t runcat ion lag s of the corresponding causal filter is 
known. It is then possible to rewrite the dynamic factor model  as a s imultaneous structur-  
al equat ion system which, for arbi t rary  t, covers a subset of  a + 1 consecutive t ime-points 
t - a, t - a + 1 . . . . .  t, where a > s. This is accomplished by letting: 

which gives: 

A = 

where: 

Accordingly:  

where: 

Likewise: 

z r = [z(t) r . . . . .  z(t - a)r] ,  

r/r = Eq(t) r . . . . .  r/(t - a - s)r], 

e r = [e(t) r . . . . .  e(t - a)r] ,  

z = An + e, (5) 

A(O) A(1) "-- A(s) 0 " "  0 0 ) 

i A(0) . . .  A ( s -  1) A(s) . . .  0 

0 . . . . . .  A(s -- 1) A(s) 

C = A.=.A r + 0 

C =  { C ( i - j ) ;  i , j =  1 . . . . .  a +  1 } =  It(0) )) c11) c(0) 

Cia) C ( a -  1) - - -  C(0 

(6) 

Substi tut ion in (3) gives: 

(a) z(t) = ~ A(u)BUrl(t), 
u=O  

= ~ A(u)B ~ ~ F(v)BO¢(t), and 
u=O v=O 

E = { E ( i - j ) ; i , j =  1 . . . . .  a + s + l} ,  

® = {O( i - - j ) ;  i , j  = 1, . . . ,  a + 1}. 

According to the Wold  decomposi t ion  theorem (cf. Hannan ,  1970) each nondeterminis t ic  
q vector-valued s ta t ionary process ~/(t) can be represented by: 

~(t) = ~ r(u)B"~(t), 
u=O 

where B is the backward shift opera tor  defined by B~(t) = ~(t - 1) (Box & Jenkins, 1970), 
and where 

COV [¢(t), ¢(t - u)] = 6(u)Iq. 
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(b) = ~, A*(u)BU~(t), 
u = O  

where the coefficient matrices A*(u) are obtained by equating coefficients of like powers of 
B, yielding: 

A*(0) = A(0)F(0), 

A*(1) = A(0)F(1) + A(1)r(0), etc. 

As the causal filter is unconstrained, the equivalence of the representations (a) and (b) 
implies that it will not be possible to find a consistent estimator of the covariance function 
of t/(t) (J6reskog, 1976). In order to obtain an identified system, this covariance function 
has to be fixed, e.g., at ~:(u) = Iq, where lq is the (q x q) dimensional identity matrix. 

Thus, conditional to fixed values of q and s the dynamic factor model given by (4) for 
a p vector-valued second order stationary time series z(t) has been rewritten as a simulta- 
neous structural equation system: 

C = AA r + O, (7) 

where C and O are (p(a + 1) x (a + 1)p) dimensional covariance matrices, and A is a 
(p(a + 1) x (a + s + 1)q) dimensional matrix of loadings. The system defined by (7) can be 
fitted by using the method of maximum likelihood (J6reskog & SSrbom, 1978). Unfortu- 
nately, the only way to remove the conditions on which (7) has been obtained is to carry 
out a search on a grid [q e {1, 2 . . . .  , Q}, s e {0, 1 . . . . .  S}] of a priori specified feasible 
values of Q and S. Moreover, although the number a of consecutive time points at which 
the dynamic factor model is considered in the derivation of (7) is bounded at the lower 
end, i.e., a >__ s, this still leaves open the question about the most efficient value of a. These 
matters will be considered more fully in the next section. At this juncture we will illustrate 
the fit of a specific instance of (7) to the covariance function in Table 1. For reasons of 
conciseness, let q = 1, s = 1, and a = 1. Conditional to these fixed values, the correspond- 
ing coefficient matrices in (7) are: 

\C(1) C(0) A =  A(0) A(1) = \ O ( 1 )  O(0) ' 

where estimates of C(0) and C(1) are obtained from Table 1. This system is fitted by means 
of the method of maximum likelihood. Let ~ denote the set of all matrices C that are of 
order (p(a + 1) × (a + 1)p), symmetric and positive definite. Let 09 be the subset for which 
(7) holds. Let L(~'I) and L(og) denote the maxima of the likelihood function in f l  and 09, 
respectively. Then it is known that for large samples - 2  In [L(to)/L(f~)] is distributed 
approximately as ~2 if (7) is true. Henceforth, we will refer to this ~2-approximation as the 
chi-square goodness-of-fit. Proceeding with our illustrative example, the results of the fit 
are given in Table 2. Apparently, conditional to q = 1, s = 1, and a = 1, the fit of the 
dynamic factor model is fairly satisfactory. We will shortly discuss the merits of this result. 

Further Aspects of the Proposed Analysis 

An Optimum Value of a 

In the foregoing section, the fit of a dynamic factor model with s = 1, q = 1, and 
a = 1 was found to be satisfactory. Referring to (4), this dynamic factor model should 
account for the entire covariance function. Hence, for arbitrary a > 1, the corresponding 
simultaneous equation system, with parameters fixed at the values that have been ob- 
tained with a = 1, should also give rise to a satisfactory fit. However, if such a model 
check is carried out by taking, e.g., a = 3 and, accordingly, with ®(u), u = 2, 3, as the sole 
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Table 2 

Parameter Estimates of the 

Preliminary Model for Figure i* 

~(t)=A(o)n(t)+A(1)n(t-l)+E(t) 

i(o) A(1) 

O ( u ) = d i a g  [ 9 1 ( u )  . . . . .  9 4 ( u ) ]  

0(0) 0(I) 

. ~ 2 1  . 4 4 7  

. 3 5 4  - . 7 9 9  

. 9 5 9  . 9 2 5  

. 1 9 2  - . 3 5 4  

1.453 .695 

.882 -.430 

1.933 .925 

2.821 -1.080 

*Chi-square goodness-of-fit = 5.98 (dff = I0) 

free coefficient matrices, this results in a substantially reduced chi-square goodness-of- 
fit = 87.597 (df= 50). Similarly, if the same dynamic factor model (i.e., with a = 3, while 
s = 1 and q = 1) is fitted from scratch (i.e., with all coefficient matrices free), then this 
results in a chi-square goodness-of-fit = 82.020 (df= 34). Clearly, the outcome of a dy- 
namic factor analysis is dependent upon the particular value of a at which it is carried 
out. This raises the problem of choosing an optimum value of a. 

A similar problem is well-known from spectral analysis and concerns the choice of a 
suitable degree of smoothing. In a nutshell, a small value of a corresponds to a large 
degree of smoothing, i.e., implies an increased bias and a decreased sampling variability of 
parameter estimates. There exist several approaches in the search for an optimum degree 
of smoothing (Jenkins & Watts, 1968; Haykin, 1979), which may serve as guidelines for 
the choice of a. Presently, optimization of a with respect to bias and sampling variability 
awaits further elaboration. 

Model Evaluation 

The simultaneous structural equation system given by (5) is a special instance of the 
class of covariance structure models. For  an extensive discussion of the specific computing 
formulas in the analysis of covariance structure models, e.g., for the likelihood function, 
chi-squared statistics, etc., we refer to J6reskog (1978). Recalling our previous remark on 
the removal of the conditions on which (5) has been derived, if we carry out a search on a 
grid of a priori feasible values of q and s, the corresponding covariance structure models 
have to be compared with each other as to their adequacy. Moreover, (5) has been pro- 
posed with intent to analyze short trajectories, taking into account that statistical theory 
in covariance structure analysis has been developed primarily for large samples. Recently, 
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Bentler and Bonett (1980) have summarized the somewhat unsatisfactory state of affairs in 
relation to model evaluation in this area. Furthermore, they propose incremental fit indi- 
ces comparable to Tucker's reliability coefficient. These indices are quite useful due to 
their relative independence from sample size. On the other hand, the usual chi-square 
goodness-of-fit test is heavily dependent upon sample size, i.e., in small samples virtually 
any model tends to be accepted as adequate. Drawing upon similar observations, Eiting 
and Mellenberg (1980) propose a sophisticated decision theoretic procedure for the com- 
parison of alternative models. From a somewhat different point of view, analogous indices 
for the comparison of alternative models have been discussed in the time series literature, 
a particular case in point being Akaike's information criterion (see Kashyap and Rao, 
1976, for an extensive overview). At present, we will concentrate upon the incremental fit 
indices, which serve their purpose within a hierarchical model comparison scheme. In 
order to obtain the proper application of this scheme to the selection of an adequate 
simultaneous equation system, see (7), it is a prerequisite that the same value of a be used 
throughout all comparisons. Specifically, after a grid G of feasible values of q and s has 
been chosen, it follows that a > S, where S is the maximum s ~ G. Proceeding in this way, 
the comparison of several alternative dynamic factor models can be made in relation to 
the same baseline. 

Estimation of the Latent Trajectory 
Whenever an adequate dynamic factor model has been selected, it will be of interest 

to estimate the time course of the particular realization of the latent factor series ~/(t) 
underlying the observed trajectory. This endeavour can be conceived of as the dynamic 
analogue of the estimation of factor scores in a traditional static factor model. Whereas in 
the latter case the factor scores pertain to subjects, in a dynamic factor model the "factor 
scores" pertain to consecutive time points. Unfortunately, estimation according to the 
usual methods of factor analysis, e.g., the regression method, leads to nonsensical 
results--the estimate of the realization of r/(t) at each time t is not unique, but consists of a 
set of different values. One could explain the breakdown by saying that it is not legitimate 
to conceive of (5) as a single covariance structure model. Specifically, we may say that (5) 
holds for arbitrary t and hence refers to an ensemble of equivalent models. As is explained 
more fully in the Appendix, the correct method requires the translation of a dynamic 
factor model into a Markovian state model. Subsequently, the latent trajectory can be 
estimated by means of the Kalman filter (Jazwinsky, 1970). 

A Substantive Application 

At this juncture, it is time to reveal the true nature of the trajectory in Figure I. In 
fact, this trajectory has been simulated, using the dynamic factor model shown in Table 3. 
As the true model underlying the observed trajectory is known, we are in a comfortable 
position when it comes to an evaluation of the results from the point of view of appli- 
cation of the proposed analysis to this case. Proceeding, a grid of feasible values [q e Q, 
s ~ s]  is determined. Assuming that a priori information about  the parameters of the 
dynamic factor model is lacking, we will, with a view to the rather small dimension p = 4 
of z(t), take Q = {1}. In addition, considering the relative shortness of the observed trajec- 
tory (n = 50), we will take S = {0, 1, 2}. Accordingly, C = {C(i- j);  i, j = 1 . . . . .  4} is a 
(16 x 16) dimensional so-called block Toeplitz matrix with 58 degrees of freedom. Con- 
secutively, our null model based on modified independence among variates (Bentler & 
Bonett, 1980) is introduced: 

z(t) = h(o)~( t )  + ~(t), 
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Table 3 

Dynamic One-factor Simulation Model 

z(t)=A(O)n(t)+A(1)n(t-1)+¢(t) e ( t ) = r ( 1 ) ¢ ( t - l ) + ~ ( t )  

A(O) A(1) r(1) diag T 

1 .8 .5 1 

1 -.8 -.5 1 

1 .8 .5 2 

1 -.8 - . 5  2 

*Coy [ a ( t ) , a ( t - u ) l  = 6(u) T 

M o: 

E(u) = 6(u) ®(u) = diag [016(u) . . . . .  04 6(u)]. 

Notice, that if M o is rewritten as the simultaneous structural equation system defined by 
(5), then the latter can be conceived of as a concatenation of P-techniques. Notice also, 
that the expected covariance function of our null model is: C(u) = 6(u)C, where C is an 
arbitrary positive-definite matrix. Hence, incremental fit indices based upon this null 
model will have lower values than would have obtained by choosing the most extreme 
null model with expected covariance function C(u) = diag [c16(u) . . . . .  cab(u)]. However, 
in the present context we find the current choice of M o more appealing because it yields 
values of incremental fit relative to P-technique. Next, a convenient sequence of increas- 
ingly less restricted dynamic one-factor models is obtained by allowing the components of 
e(t) to become arbitrarily autocorrelated processes, and by taking s = 0, 1, 2, respectively: 

M I :  

M2: 

M3: 

z ( 0  = h ( 0 ) n ( 0  + e(t), 

z(t) = A(0)t?(t) + A(1)q( t  - 1) + e(t), a n d  

z(t) = A(0)r/(t) + A(1)r/(t  - 1) + A(2)r/( t  - 2) + e(t), 

where in each case 

E(u)=b(u), ®(u) = diag [Ox(u) . . . . .  OJu)]. 

The incremental fit indices which will be used in the comparison of these models are 
defined by: 

(Qk - (2,) 
Ok, = (Qo - 1)' 
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Table 4 

I n c r e m e n t a l  F i t  I n d i c e s  

191 

Model  C o m p a r i s o n s  

M 0 M 1 M 2 M 3 

M 0 . 5 5 2  . 7 2 5  . 7 7 9  

M 1 . 4 9 4  . 1 7 3  . 2 2 7  

M 2 . 7 1 6  . 222  . 0 5 4  

M 3 . 7 6 0  . 2 6 6  . 0 4 4  

where Qs is the ratio (v/df)  s of the chi-square goodness-of-fit v to dfcorresponding to M s, 
and 

(Fk -- F,) 
Akt - - ~  

Fo 

where F s is the maximum of the log likelihood function corresponding to M s. The model 
comparisons associated with this application are shown in Table 4. Below the main diag- 
onal are estimated Pkt values, above the main diagonal are estimated Akt values. Notice 
that the redundancy in the block Toeplitz pattern of C implies that the chi-square 
goodness-of-fit statistic, which involves a comparison with the completely saturated 
model Ms, is inflated. Hence, the corresponding model tests have been omitted. In fact, 
one of the virtues of the incremental fit indices in conjunction with the use of the same 
value of a is their insensitivity to this inflating redundancy. 

Inspection of Table 4 reveals the substantial improvement of M2 and M 3 o v e r  Mo. 
Since M 0 corresponds to the model underlying P-technique, the latter approach would 
not seem preferable in this case. As the distinction between M 2 and Ma is negligible, M~ 
is the preferred model by appeal to Ockham's razor. The corresponding parameter esti- 
mates are shown in Table 5. With regard to the estimation of the trajectory of the latent 
factor series, we already alluded to the inapplicability of the usual methods such as the 
regression method. As is indicated in the Appendix, the correct method involves the trans- 
lation of the dynamic factor model into a Markovian state model enabling the use of the 
Kalman filter. An appeal to the Kalman filter in order to estimate the latent trajectory of 
the factor series requires that a suitable process model be fitted to the covariance function 
of e(t), the result of which is also shown in Table 5. With these specifications, the Kalman 
filter can be invoked and the resulting estimated trajectory of the latent factor series is 
depicted in Figure 2. Having obtained the estimated trajectory r/(t) = r~t, t = 1 . . . . .  50, the 
possibility arises of estimating the common component 

~(t) = A(0)r/(t) + A(1)r/(t -- 1) 

of z(t) by substitution. 
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Table 5 

Parameter Estimates of M 2 

!(t)fA(O)q(t)+A(1)~(t-l)+c(t) c (t)=r (i)~ ( t-i )+r (2)E (t-2)+a (¢) 

. 56  .56  .63 - . 3 9  .96  

.41 - . 8 1  - . 4 4  0 .64 

.90  .76 .50  0 1 .76  

.28 - . 3 0  - . 4 0  0 2 .40 

* c o y  [ a ( t ) , a ( t - u ) ]  = ~ ( u )  T 

This completes the description of the application of dynamic factor analysis to the 
simulated trajectory in Figure 1. An evaluation of the results thus obtained with respect 
to the true model shows that: 

- -  the correct dimension q = 1 of the latent series ~/(t) has been identified, 
- -  the correct truncation lag s = 1 of the causal filter has been identified. 
- -  in view of the short length of the observed trajectory (n = 50), the estimated pa- 

rameters of the dynamic factor model are fairly close to their true values. 

An Application to Real Data 

At this juncture, it will be convenient to consider an application to real data in order 
to emphasize the major steps in an applied dynamic factor analysis and to illustrate the 
interpretation of a latent factor series. The data set is due to Hutt, Lenard, and Prechtl 
(1969). While investigating the time course of behavioral states of a single 8-day-old 

I I I 
0 20 40 

FIGURE 2 
Kalman filtered estimate of the latent trajectory. 
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infant, a 6½-hour polygraphic record yielded the following measurements per 3 minutes: 

zl(t): 

z~(t): 

zs(t): 

z,(t): 

zs(t): 

power of the EEG (#V2/3 min.), 

heart rate (beats/min.), 

respiration rate (cycles/min.), 

heart rate variability, and 

respiration rate variability. 

As the component series of z(t) are expressed in different measurement units, the original 5 
vector-valued trajectory z(t) = z t, t = 1, 2 . . . . .  124, has been standardized and is depicted 
in Figure 3. The first few coefficient matrices of the corresponding correlation function are 
shown in Table 6. The interesting question is, whether time-dependent communalities 
between the observed physiological indices can be conceived of as being due to a single 
underlying process, i.e., a univariate latent factor series. If so, then it might be attempted 
to interpret this latent process in terms of, e.g., arousal (Duffy, 1962). 

We will consider the sequence of increasingly less restricted dynamic one-factor 
models Mk, k = 0, 1, 2, 3, which has been invoked in the foregoing section. Specifically, 
M~, k = 1, 2, 3, are dynamic one-factor models with s = k - 1, respectively, and with 
component series of e(t) being arbitrarily auto-correlated. Moreover, we will consider a 
similar sequence of increasingly less restricted dynamic two-factor models Mkk, k = 1, 2, 
3, with s = k - 1, respectively, and with component series of e.(0 being arbitrarily auto- 
correlated. In order to apply (6) we will, for arbitrary t, consider each dynamic factor 
model at a + 1 = 5 consecutive time points t, t - 1, . . . ,  t - 4. Accordingly, the ensuing 
(25 x 25) dimensional block Toeplitz matrix C = {C(i - j ) ;  i,j = 1, 2 . . . . .  5} is determined 
from Table 6, and each dynamic factor model Mk, k = 0, 1, 2, 3, Mkk, k = 1, 2, 3, consecu- 
tively fitted to C. The resulting incremental fit indices are given in Table 7. Below the 
main diagonal are estimated Pkt values, above the main diagonal are estimated Akt values. 
Table 7 shows that, compared with Mo (i.e., a concatenation of P-techniques), M 3 and 
M33 yield substantial improvements. As the difference between M3 and M33 is negligible, 
the former model is preferred because it is simpler. The parameter estimates correspond- 
ing to M 3 are shown in Table 8. With these specifications the Kalman filter can be in- 
voked, and the resulting estimated trajectory of the latent factor series corresponding to 
M 3 is depicted in Figure 4. 

Summarizing, the correlation function of the neonatal physiological indices can be 
satisfactorily accounted for in terms of the dynamic one-factor model M3. Hence, the 
time-dependent communalities between these indices can be regarded as being due to a 
unitary latent process. A tentative interpretation of this latent process might be derived 
from the parameter estimates presented in Table 8. First, respiration rate, variability of 
respiration rate and power of the EEG have substantial filter loadings, whereas the filter 
loadings of heart rate and heart rate variability are much smaller. Hence, the usually 
found cardiac-respiratory coupling (Porges, Bohrer, Keren, Cheung, Franks, & Drasgow, 
1981) seems to be lacking. This may be due to the relatively low sampling rate used by 
Hutt  et al. (1969) (At = 3 min., whereas At ~ 250 msec. is customary in the study of 
cardiac-respiratory relationships). In so far as cardiac-respiratory coupling occurs on a 
fast time scale, it cannot be detected in the Hurt et al. study where the focus is on physio- 
logical processes that take place on a rather slow time scale. In this connection Hutt  et al. 
refer to slowly evolving metabolic influences that might contribute to the relative auton- 
omy of cardiac activity. Second, a lead-lag pattern can be discerned as to the way in 
which the latent series affects the rate indices (viz. heart rate and respiration rate) and the 
variability indices (power of the EEG, heart rate variability and variability of respiration 
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F i g u r e  3 
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FIGURE 3 
Time course of the 5 vector-valued trajectory obtained by Hutt et al. 

rate). Specifically, the maximum filter loading of each rate index occurs at lag u = 2 
(/~2(2) = .342 and ~a(2)= .522), whereas the maximum filter loading of each variability 
index occurs at lag u = 1. Grossberg (1982) has pointed out that arousal acts as a tuning 
mechanism that in the first instance increases the response range (i.e., variability) of 
physiological processes. Subsequently, the availability of an increased response range 
allows for the selection of a more adaptive mean response rate. In conclusion, then, a 
tentative interpretation of the latent factor series in terms of arousal would seem to be 
justified. 

Discussion and Conclusion 

We have conceived of dynamic factor analysis as yielding a causal model for an 
observed vector-valued time series. From a different stance, we might have concentrated 
upon the approximation of an observed p vector-valued time series by a q vector-valued 
series of reduced dimension q < p. As to this reduction of the dimension of vector-valued 
time series, there exists an important time domain approach due to Subba Rao (1975, see 
also Subba Rao & Tong, t974). This approach pertains to the particular case in which 
both the input and the output series of a stochastic system are assumed to be given. In 
contrast, in a dynamic factor analysis only the output  series z(t) is assumed to be known, 
while the input series, viz. the latent factor series, forms part of the hypothesized causal 
model for z(t). If the approach by Subba Rao would be applied to the case in which only 
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-.020 .151 .098 - . 0 7 4  ,071 

-.149 ,174 ,056 ,169 .029 

- . 0 4 4  . 0 2 6  . 0 5 4  - . 0 6 8  . 0 3 7  

the output series z(t) is given, then one would proceed by fitting an autoregressive model 
to z(t). Consecutively, a principal component analysis of the variance of the innovations in 
this autoregression would yield a reduction of the dimension of z(t). Notice, that this 
principal component analysis would not pertain to the covariance function of z(t), but to 
the variance of a derived series of innovations. A related time domain approach to the 
reduction of the dimension of a vector-valued time series is due to Box and Tiao (1977). 
Their approach yields a transformation of the original time series, where the components 
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Table 7 

Incremental Fit Indices 

Model Comparisons 

M 0 M 1 MII M 2 M22 M 3 M33 

M 0 •486 .516 .693 .731 

M 1 .323 .030 .207 .245 

M .389 .066 .177 •215 
11 

M 2 . 6 3 5  . 3 1 2  . 2 4 6  . 0 3 8  

M22 .635 .312 .246 .000 

M 3 . 7 6 3  . 4 4 0  . 3 7 4  . 1 2 8  . 1 2 8  

M33 . 7 6 5  . 4 4 2  . 3 7 6  . 1 3 0  . 1 3 0  

Table 8 

Parameter Estimates of M 3 

• 795 

• 309 

• 279 

• 102 

• 064 

• 002 

• 8 3 9  

. 3 5 3  

. 3 2 3  

. 1 4 6  

• 108  

• 0 4 4  

z ( t ) = A ( O ) n ( t ) + A ( 1 ) n ( r - l ) + A ( 2 ) n ( t - 2 )  E ( t ) = r ( 1 ) E ( t - l ) + ~ ( t )  

r(1) d i a g  T ~ 

-,248 -,453 -.316 

-.073 .182 .342 

.387 •391 .522 

.179 .392 -.002 

. 3 6 3  . 5 8 0  . 4 9 9  

.655 .222 

.864 .227 

.591 .171 

• 422 .646 

-,528 .058 

* coy [ ( ~ ( t ) , a ( t - u ) ]  = ~(u) T 
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FIGURE 4 
Kalman filtered estimate of the realization of the latent factor series corresponding to the trajectory obtained by 

Hutt et al. 

of the transformed series are ordered from least to most predictable. This transformation 
is based upon a principal component analysis of the variance of the error of the one-step 
ahead forecasts, whence the covariance function of the original series is only remotely 
involved. 

Contrary to the aforementioned approaches, a dynamic factor analysis is based on a 
model which explicitly accounts for the entire lagged covariance function of an arbitrary 
second order stationary time series. Hence, the criticism raised by e.g., Anderson (1963) 
concerning P-technique would not seem to apply to dynamic factor analysis. Moreover, 
the proposed analysis would seem to be justified in the case where a relatively short 
trajectory is observed and therefore may be considered worthwhile for application in the 
field of psychology. It has in fact already been proven to be useful in such diverse areas as 
single subject research in psychotherapy (Molenaar, 1981), and the investigation of indi- 
vidual differences in EEG topography (Motenaar, 1982a). The proposed analysis involves 
a reformulation in terms of a simultaneous structural equation system, thereby giving rise 
to a search on a grid of a priori feasible values both for the dimension of the latent factor 
series as well as for the truncation lag of the causal filter. It is one of the main qualities of 
a frequency domain analysis that this search is substantially simplified. Hence, much em- 
phasis is placed on a modified spectral analysis for short trajectories, which becomes 
possible by appealing to evolutionary spectral analysis (Molenaar, 1982b). Finally, the 
dynamic factor model can be extended in order to accommodate time-varying trends 
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(Molenaar, 1984). As will be explained in a separate study, this opens up the possibility to 
carry out a simultaneous analysis of the lagged covariance function in conjunction with 
intervention effects on the mean function in a single-subject design. 

Appendix 

A Recursive Estimator 
for the Latent Trajectory 

As far as the residual series e(t) is concerned, the fit of a simultaneous equation 
system results in an estimate of the covariance function ®(u), u = 0, _+ 1 . . . .  , 4- a. In order 
to be able to rewrite the dynamic factor model as a Markovian state model, it is necessary 
that a process model corresponding to this covariance function of e(t) is determined. Al- 
though there is no inherent necessity to do so, it will be helpful, in order to avoid undue 
technicalities, to restrict the class of candidate models for e(t) to autoregressions: 

e(t) = ~ r (u )e ( t  - u) + ct(t), 
u = l  

where 

F(u) = diag [y1(u) . . . . .  -~,p(u)], 

c o v  [~ ( t ) ,  ~ ( t  - u ) ]  = a ( u ) ' f ,  a n d  

Y = diag [ol . . . . .  %]. 

If autoregressions of consecutively increasing order r 6 R, R = {0, 1 . . . . .  a}, are fitted to 
the estimated covariance function of e(t), then the selection of an adequate r*-th order 
model can be accomplished by appealing to Akaike's information criterion: 

I" l r * = m i n  - ~ l n d e t Y - r p  2 . 
r ~ R  

Accordingly, the dynamic factor model thus obtained: 

z(t) = ~ A(u)~/(t - u) + e(t), 
u = O  

e(t) = ~, r ( u M t  - u) + a(t), 
t t = l  

~ ( u )  = ,~ (u) /~ ,  

can be rewritten as a Markovian state model:  

x( t  + 1) = n x ( t )  + u(t), 

z(t) = Fx( t ) ,  

where: 

and 

and 

x(t) r = [, /( t)  ~ . . . . .  ,7(t - s) T, ~(t) ~ . . . . .  a(t - Or ' l ,  

u(t)  r = [r/(t) r ,  0 . . . . .  0, ~(t)  r ,  0 . . . . .  03,  

0 
dim H = [(s + 1)q + (r + 1)p, (s + 1)q + ( r  + 1)p], 

H2,]' 
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(i0 HI = 0 "'" 
) 

0 --- I q , f  

y F ( t )  F ( 2 ) " ' "  F0(r)" ~ 

H2 = t I:l , 0 ... ) ,  
\ o  o . , .  I ~ 1  

dim HI  = E(s + 1)q, (s + 1)q], 

dim H2 = [(r + 1)p, (r + 1)p], 

F = [A(O), . . . ,  A(s), lp . . . .  , (3], dim F = [p, (s + 1)q + (r + 1)p], 

vat  [u(t)] = W = diag [ I , ,  O, . . . .  O, "f, O, . . . .  0]. 

The  Ka lman  filter corresponding to this model  is defined by: 

£ ( t )  = H £ ( t  - 1) + K(t)[z(t) - F H £ ( t  - 1)], 

K ( t )  = [ H R ( t  - 1)H T + W ] F T " { F [ H R ( t  - 1)H r + W ] F  r } - ' ,  

R ( t )  = [ I ~  - K ( t ) F ] [ H R ( t  - 1)H T + W], 

r n = ( s + l ) q + ( r + l ) p ,  £(0)=x o, and R(0)=W. 

and 
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