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A general model is presented for homogeneous, dichotomous items when the answer key is 
not known a priori, The model is structurally related to the two-class latent structure model with 
the roles of respondents and items interchanged. For very small sets of respondents, iterative 
maximum likelihood estimates of the parameters can be obtained by existing methods. For other 
situations, new estimation methods are developed and assessed with Monte Carlo data. The 
answer key can be accurately reconstructed with relatively small sets of respondents. The model is 
useful when a researcher wants to study objectively the knowledge possessed by members of a 
culturally coherent group that the researcher is not a member of. 
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In t roduc t ion  

In m a n y  s i tua t ions  in the social  sciences, researchers  a t t e mp t  to  gain  object ive knowl -  
edge a b o u t  some cul ture  by  asking  quest ions to informants .  In  some of  these s i tuat ions,  
the informants  are  assumed to come from a coherent  cul tura l  unit,  and  they are  thought  
to possess knowledge  a b o u t  their  c o m m o n  culture, Of  course  the in formants  m a y  vary  in 
their  competence ,  so some of  their  responses m a y  differ, and  the p rob l e m the researcher  
faces is to aggregate  ra t iona l ly  the da t a  to reach norma t ive  conclus ions  a b o u t  the culture.  

Romney,  Weller ,  and  Batchelder  (1986) survey the l i te ra ture  of  an th ropo log i s t s  who  
have discussed such problems.  Similar  p rob lems  occur  for a l inguist  s tudying  the syntax  
of  an  exot ic  language,  a social  psychologis t  s tudy ing  the beliefs of  a dev ian t  group,  o r  in 
the poo l ing  of  exper t  opin ion .  In  all these cases, it m a y  be reasonab le  to  assume tha t  the  
researcher  is ab le  to  wri te  re levant  object ive  ques t ions :  however ,  the  researcher  canno t  be 
expected to  know the cul tura l ly  correct  answers  a pr ior i .  This  a s sumpt ion  is mos t  l ikely to  
be satisfied for d i c h o t o m o u s  i tems of  the  "yes-no" variety,  so this p a p e r  develops  mode l s  
and  me thods  for dea l ing  with d i c h o t o m o u s  test i tems when the answer  key is unknown.  

In the first section, a mode l  is formalized for the case of  homogeneous  items. Next  
some es t ima t ion  theory  for the mode l  is presented inc luding an  in te rp re ta t ion  of  the 
mode l  as a la tent  class mode l  tha t  permits  m a x i m u m  l ike l ihood  es t imates  for small  
numbers  of  informants .  In  the th i rd  section, new es t ima t ion  theory  for a special  case of  
the mode l  is discussed in detail .  A me thod  for es t imat ing  bo th  the in formants '  com-  
petencies and  the missing answers  is presented  that  appl ies  to any  number  of  informants .  
Sect ion four discusses some app l ica t ions  of  the me thods  to  bo th  s imula ted  and  empir ica l  
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data. Section five considers the important  question of how many informants are required 
to obtain accurate estimates of the answers. Section six discusses some limitations of the 
approach and proposes solutions for later work. 

1. The General Model 

Assume each of N informants answers each of M dichotomous questions in some 
domain of their common knowledge. In this paper, the "yes-no" format is analyzed 
because it may  involve response bias, so the case of "unvalenced" response alternatives 
becomes the special case with no response bias. In typical test theory models for yes-no 
items, it is assumed that the theorist has the answer key and each respondent's data are 
scored as corrects or errors. Then the respondent by item per formance  data are analyzed 
by the model, and the result is the estimation of each respondent 's  ability (and perhaps 
response bias parameters), as well as parameters characterizing each item (Lord & 
Novick, 1968). In our approach,  it is not assumed that the answer key is known a priori, 
so the only data available to analyze are the informant by item response data. 

To formalize the situation, define three classes of random variables as follows: 

I. Response  profile data. X = (Xik)N × M, where 

10 if informant i answers "yes" to item k 
X~k = if informant i answers "no" to item k. (1) 

2. A n s w e r  key.  Z = (Zk) 1 × M, where 

{10 if correct answer to item k is "yes" 
Zk = if correct answer to item k is "no". (2) 

3. Per formance  profile data. Y = (y/k)r,,×u, where 

10 if informant i is correct on item k 
Y/k = if informant i is wrong on item k. (3) 

The following observation shows how the three classes of variables are interrelated. It  
is easy to verify by elementary truth tables. 

Observat ion  1. Given any two of X, Z, and Y, we can determine the third by the 
relationships: 

X,~ = Y~kZk + (1 -- Y~k)(1 -- Z k) 

Yik = Xik  Zk + (1 -- Xik)(1 -- Zk) (4) 

Zk = Xik Y/k + (1 -- Xik)(1 -- Y/k)" 

The models that are analyzed are all instances of the "general Condorcet  model" 
(GCM) proposed by Batchelder and Romney (1986). The model assumes that the items 
are homogeneous in difficulty; however, in section 6 the case of inhomogeneous items is 
discussed. The G C M  characterizes each informant by a hit rate given by 

Pl~ = Pr (Xik = 1 I Zk --  1) (5) 

and a fa l se  alarm rate 

Pol = Pr (Xik = 1 ! Zk = 0 ) ,  (6) 

where 0 _< Pl i ,  Poi < 1, i = 1, 2, . . . ,  N, and k = 1, 2, . . . ,  M. The G C M  is formalized in 
the nefft-definitio~'. 
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Defini t ion 1. The general Condorce t  model  is characterized by the following three 

axioms:  

A x i o m  1 : Common  truth. There is a fixed answer key "applicable" to all informants;  
that  is, each item k has a correct  answer, z k = 1 or  z k = O, k = 1, 2 . . . . .  M .  

A x i o m  2: Local  independence. The informant- i tem response r andom variables satis- 
fy condit ional  independence given by 

Pr  [ ( X i k ) N  x M = (Xik) [ ( Z k ) l  × M = (Zk)] 

M N 

= 1-I 17 Pr  (Xik = x,k I Zk = Zk), (7) 
k = l  i = 1  

where (Zk) is the answer key. 

A x i o m  3: H o m o g e n e i t y  o f  i tems. Each informant  i has a fixed "hit rate" PI~ and a 
fixed "false alarm rate" Po~ such that  

(Xik = 1 I Zk = ZR) = ~ P l l  
if ZR 1 

Pr  (8) 
Poi if z k = O. [ 

If  the Z k are assumed to be independent  and identically distributed Bernoulli r andom 
variables with n = Pr  (Z k = 1), 0 < n < 1, then the model  can be viewed as a general 
forced-choice, signal detection model,  (Green & Swets, 1966), with a Bernoulli signal 
presentat ion schedule. Fo r  this interpretation, it is necessary to think of  items with Zk  = 1 

as trials where the signal is in the first interval and items with Z k = 0 as trials where the 
signal is in the second interval. 

A special case of  the G C M  is the high threshold model  (HTM) (Blackwell, 1963) given 
by the following equat ions:  

P1i = Di + (1 -- Di)g ~ (9) 

Po, = (1 -- Di)gi, (10) 

where 0 < D i < 1 and 0 < gl < 1 are interpreted as informant  i's competence  and bias, 

respectively. Of  course in the signal detection case, one knows the answer key a priori. 

2. Est imation Theory  for the Model  

The next observation is obvious, and it shows that  est imation theory is elementary if 
the answer key is known.  

Observat ion 2. If  the answer key Z is known,  then the max imum likelihood esti- 
mators  (MLEs) for the G C M  are given by 

M 

Xik Zk 
/ ~ l i  k = l  (11) 

- ~ t  

- -  ~ Z k  
k = l  

M 

x ,k (1  - z k )  

/~ k=l (12) Oi ~ *  M ' 

M - -  ~ Z  k 
k = l  
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where 

M 

0 <  ~ Z k < M .  
k = l  

If the answer key is unknown, then the likelihood function is given in the next 
observation. 

Observation 3. If PI = (P11 . . . . .  Pl~r), Po = (Pot, ---, PoN), and Z = (Z 1, . . . ,  ZM) are 
regarded as parameters of the GCM, then the likelihood equation is given by 

L(X; V,, 1"o, Z)= k=,I~ ,=,l-I L ~ -  P--~,)J D --L'-~od ~ [1 - P o J '  (13)  

Proof. Equation (13) is obtained by rearranging the terms of(7) when (8) is substitu- 
ted. To verify this, one can consider the truth table for the four cases of possible values of 
X~k and Z k. [ ]  

It is not straightforward to obtain maximum likelihood estimators of P1, Po,  and Z 
from (13) because each Zk has a dichotomous parameter space. One algorithm to maxi- 
mize (I3) would be to consider each of the 2 M possible answer keys, use (11) and (12) to 
obtain P1 and Po, and then plug back into (13) to see which combinations maximize the 
likelihood function. This algorithm is not polynomial-bounded (Carre, 1979, p. 79) since 
2 M grows faster than any polynomial function of M. We conjecture that the problem of 
maximizing (13) is not polynomial-bounded in M, and, in any event, we have not been 
able to find a computationally feasible solution for large M. 

The GCM is not identifiable as Observation 4 shows. This is due to the fact that the 
model does not contain the restriction that Po, < PI~. 

Observation 4. I f  1~ 1 = ( P l i ) I × N ,  D0 = (tl~0i)I×N, ~ = (Zk)l×M are M.L.E.s for the 
GCM, then so are P* = (/~0i), i~* = (/3u), Z* = (I - Z), where I is a 1 x M vector of Is. 

Proof. The result follows by substituting Pl i  for Po~, Poi for Pi t ,  and 1 - Z k for Z k 
in (13). A simple rearrangement of terms verifies that (13) is unchanged. Therefore, if 1) 1, 

• • [ ]  ~o, and Z maximize (13), then so do f}l, ~o ,  and Z*. 

Despite the nonidentifiability of the GCM, the problem is not severe since the 
possible MLEs form duos, and this means that the answer key can be estimated up to a 
complete reversal. A practical approach would be to select the solution from the duo 
where PI~ > Po~ for the majority of informants. 

The GCM, and hence the general two-interval, forced-choice signal detection model, 
bears an interesting relationship to the two-class latent structure model of Lazarsfeld 
(Clogg, 1981 ; Lazarsfeld & Henry, 1968, chap. 2). 

The two-class latent structure model is a model for response profile data X in (1). 
Each row of X can be regarded as a respondent "signature" over the M questions, and it 
is a member of the set of 2 M signatures given by 

S = {x = (x I . . . . .  xu) [  x k ~ {0, 1}, k = 1 . . . . .  M}. (14) 

The model attempts to account for the frequencies of each of the 2 M members of S, 
namely, f (x), that, of course, are nonnegative integers that sum to N. 

The model assumes that each respondent falls into one of two latent classes, C 1 and 
C2, and respondents in class C t respond independently of each other and independently 
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over items with marginal probabilities Pt~ of responding "yes" to item k in latent class C t, 
t = 1, 2; k = 1, 2 . . . . .  M. Finally, the model assumes that 7~ t is the a priori probabili ty a 
respondent is in class C t, where of course rq + 7t 2 = 1. 

With these assumptions, it is easy to see that for all x E S, 

Pr (x) = 7~ 1 Pr (x I C1) + (1 -- 7tt) Pr (x I C2) 

M M 

= ~ I ]  p7~,(1 - p , ~ ) ~ - ~  + (1 - ~ , )  l q  p~.(1 - p2~) ~ -x , .  (15) 
k = l  k = l  

The two class model has 2M + 1 parameters, namely, nl and the Pig, and 2 u -- 1 
degrees of freedom in the M-way contingency table of the observed f(x).  So as long as 
M > 3, the model implies restrictions on the general M-way table. A variety of iterative 
algorithms are available that provide maximum likelihood estimates of the parameters  of 
the model (see review by Clogg, 1981). Once parameter  estimates are obtained, one can 
estimate respondent recruitment probabilities, namely, the conditional probabili ty that a 
respondent with signature x falls into class C,, and these can be used to classify the 
respondents. Further, as long as there are sumciently many  respondents, a likelihood ratio 
chi-square statistic can be computed to assess the goodness of fit of the model. 

Observation 5 shows that the G C M  is structurally isomorphic to the two class latent 
structure model if the roles of respondents and items are interchanged, that is, that the 
data are given by the transpose of X and the G C M  is viewed as a model for accounting 
for the 2 N item signatures taken over the M items. 

Observation 5. If the answer key is unknown for the GCM,  then the G C M  is 
structurally isomorphic to the two-class latent structure model with the role of  re- 
spondents and items interchanged. The two "latent" classes of items are the items where 
the correct answer is "yes" and the class of "no" items, respectively. 

Proof. Axiom 1 of the G C M  assumes that the M items fall into two classes, namely, 
C1 = { k l Z  k = 1} and C O = { k l Z  k = 0}. Corresponding to each item k is an item- 
response signature x corresponding to the k-th column of X~ x M- If  n is regarded as the a 
priori probabili ty that item k falls into class C 1, then Axioms 2 and 3 require that 

Pr (x) = r~ Pr  (x [ Z k--- 1) + (1 -- r 0 Pr  (x [ Z k = 13) 

N N 

= 7r 1-I P~'~(1 - Pt,) 1 -x, + (1 - 70 I-I P~(1 - Po,) t -x, (16) 
i ~ l  i = 1  

Equation (16) is structurally identical to (15), where 7~ corresponds to n 1, Pt~ corre- 
sponds to Plk and Pot corresponds to P2k" [] 

Observation 5 permits us to use standard estimation theory for the two-class latent 
structure model to estimate the parameters  of the GCM.  Further, the special cases of the 
model can be seen as natural restrictions on the parameters of the two class model. For  
example, the H T M  in (9) and (10) is equivalent to the G C M  with the restriction Pxi > 
P01, and the H T M  with no bias (#i = 21) requires the additional restriction P0i - 1 - PI~. 

Clogg (1981) discusses his MLLSA program that obtains maximum likelihood esti- 
mates of the parameters for a two-class model for dichotomous items (and other gener- 
alizations) by using Goodman ' s  (1974) algorithm based on iterative proport ional  scaling 
of parameter  estimates. MLLSA permits a variety of restricted models to be estimated, it 
allows for routine examination of the identifiability of model parameters,  and it computes 
likelihood ratio chi-square tests of goodness of fit for various nested models. 
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Unfortunately for our purposes MLLSA and other related algorithms are restricted 
to only a few items (six or tess for MLLSA), so it can be used to estimate parameters  for 
the G C M  and its nested submodels only in cases of a few informants. The reason for this 
restriction is the nonpolynomial explosion of the signature set in (14) (also noted in the 
context of Observation 3). 

In most  social science applications of latent structure models, there are six or fewer 
questions and many respondents (often several thousand), so it has not been necessary to 
develop estimation theory when there are many questions. In applications of our model, 
there will be a small number of informants (the counterpart  to questions) though some- 
times greater than six. However, a severe restriction on the application of MLLSA (and 
other approaches based on latent structure analysis) for our model is that it is practically 
impossible to deal with more than forty or fifty questions (analogous to forty or fifty 
informants for the latent class models). For  example, with forty questions and four in- 
formants, there will be a ratio of 2.5 items per signature (40/24), so perhaps MLLSA can 
be used. However, with larger numbers of informants, the parameter  estimation and 
especially the goodness of fit tests that MLLSA and other algorithms provide are not 
usable. Consequently we have developed new estimation theory for the H T M  to deal with 
these cases discussed next. 

3. Estimation Theory For  The High Threshold Model 

In this section, we describe the details of a two  step estimation scheme for the HTM.  
The first step obtains estimates of the informants '  competencies (/9~ s), and the second step 
uses these to estimate the answer key. 

Estimating Respondent Competencies 

Define C~j to be an unbiased estimator of the empirical covariance and Mij to be the 
proport ion of matches between informants i and j. Then in terms of Table 1, 

ad - bc 
Cij - M ( M  -- 1)' (17) 

and 

a + d  
M i j -  M (18) 

Observation 6 presents E(Cij ) and E(Mo) for the H T M  in the case where the answer 
key is governed by a Bernoulli process. 

Observation 6. Assume the H T M  of (9) and (10), and suppose Z is governed by a 
Bernoulli process with Pr (Z k = 1) = n, 0 < n < 1. Then 

and 

i. Irrespective of the biases gi and g j ,  

E(Cij) = n(1 -- n)D i Di, 

ii. If  g~ = g~ = ½, 

(19) 

E(M~j) = Di Dj + 1 (20) 
2 " 

regardless of the value of re. 
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Joint Response Data on Two Informants 

i 

J 
I 0 

I a b a + b  

0 e d e + d  

a+c  b+d M 

a = 

b = 

c = 

d = 

M 

k=l 

M 

Y. 
k=1 

M 

X 
k=l 

N 

X 
k=l 

XikXjk 

Xik(l-Xjk) 

(l-Xik) Xjk 

( 1 - X i k ) ( 1 - X j k )  

and 

Proof  i. Note that 

a d =  
M M 

Z x,~xj~ Z (1 - x, , ) (1  - x x)  
k = l  g = l  

M M 

bc = Z x,,(1 - xjk) Z xj , (x  - x, , ) .  
k = l  t ' = l  

Putting these together yields 

M M M 

ad-bc = M E Xik Xjk -- Z Xik Z Xje 
k = t  k = l  g ' = l  

M 

= (M - 1) Z x , ~ x ~  - Z Z x ,~xj~.  
k = l  k ~ g  

Since X~k and X~k are 1-0 random variables, we have 

~ . P r ( X , k = l ,  X j k = l )  Y ' ~ P r ( X , k = I , X ~ t = I )  
E(Cu ) = k __ k*e 

M M ( M  -- 1) 

From (9) and (10), let A i = Di + (1 --  Di)gi ,  B i = (1 -- Di)9i ,  and A j ,  Bj be defined simi- 
larly. Further, if k ~ ~, Axiom 2 implies 

Pr (Xik = 1, Xit = 1) = Pr (Xik = 1) Pr (Xje = 1). 
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Then 

Using Axioms 2 and 3 and condi t ioning on the values of Z k and Ze, we have 

E(Crj) = [nArA ~ + (1 -- n)BrBi ] -- [nA r + (1 - rc)BJ[nAj + (1 - n)Bj] 

= re(1 - -  x ) ( A  r - -  B i X A  j - Bj) = 7t(1 - -  I t )DID y. 

ii. Define the r a n d o m  variables 

{10 if X , ~ = X J k  
Mo. k = otherwise. 

E(Mo) = ( 1 )  k=l ~ Pr  ( M i j ,  k m 1). 

Further ,  it is easy to compute  

P r  ( M t j  ' k = 1) = D r D j  "I- Df(1 -- Dj)[ngy + (1 -- r~X1 - gj)] 

+ D j(1 -- Dr)[rig r + (1 -- 7z)(1 -- gr)] 

+ (1 -- Di)(l -- D i)[.,qr9.i + (1 -- g,X1 - 9j)]. 

In case gr = gj = ½, the above equat ion becomes 

Pr  (Mrj.k = 1) DrDi + 1 
2 ' 

therefore 

E(Mij) _ D r D i + 1 
- -  2 [ ]  

We can observe the values of  Cr~ and M o for each pair  of  informants. So if we know 
the value of  re, a point  est imator  of  the p roduc t  D r Dj is given by 

Cq = C*. (21) 
Dr Dj = r~(1 -- re) 'J" 

Further,  if we do no t  know the value of  n, but  if we assume gi = gj = ½, a point  es t imator  
of  D~ Dj is given by 

D i Dj = 2M o -- 1 = M~.  (22) 

Nei ther  (21) nor  (22) are M L E s  of  the p roduc t  DiDj since only the summary  da ta  in Table 
1 are used, and they are no t  sufficient statistics for D r Dj. 

Equat ions  (21) and (22) do suggest two natural  ways that  the competencies of  the 
H T M  can be estimated. F r o m  (19), if we know the value of  n, we can write the equat ion 

E(C~I ) D~ "'" ) l  D2 E(C*N[  = [91 . . . . .  DN]" (23) 

. . . . . .  J 
Further,  in case we assume no bias (gr = ½), an identical equat ion holds with E(M~) 
replacing E(C~) in (23). 

Equa t ion  (23) suggests a me thod  of  est imating competence;  namely, replace the 
off-diagonal expectation terms with empirical observat ions C.*.,, and  seek the vector  of  
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competency estimates ]~ = (/3~)~ × N that gives a "best" fit to the equation. This method is 
dubbed the covariance method, and the counterpart  with M* replacing C* is called the t3 

matching method. 
A method of dealing with (23) is to use the minimum residual method of factor 

analysis first described by Comrey (1962). This method ignores the main diagonal. A 
version of this program is available on SPSS in the PA2 option (see Nie, Hull, Jenkins, 
Steinbrenner, Bent, 1975). By specifying just one factor, 1~ can be obtained. This is just a 
trick to get a least squares solution to (23). 

An additional advantage of using the minimal residual method is that it gives one a 
check on the accuracy of the model. I f  the model holds, then one would expect that 
additional eigenvalues extracted from the matrix of M* (or C*) values to be small with ~J 
respect to the first eigenvalue. This check can be regarded as a mild goodness of fit test of 
the model. 

Estimating the Answer Key 

Suppose that we know the true values of the competencies, D = (D~)~ x N and biases 
g = (gi)l × N, and let z 1 × u be any one of the 2 ~r possible answer keys. Then Bayes' theorem 
can be used to calculate the probability that z is the correct answer key given the response 
profile data XN × M. The result is 

Pr (X I Z = z) Pr (Z = z) 
Pr (Z = z [ X) = , (24) 

Pr (X) 

where Pr (X) is the value of the numerator  summed over z. 
Equation (24) can be interpreted as a posterior distribution over the possible answer 

keys if Pr (Z = z) is interpreted as a prior distribution. A reasonable prior distribution is 
to assume that each answer key is equally likely (this might be achieved by randomizing 
whether each question is put in a positive or negative mode), and a reasonable policy to 
obtain a point estimate Z is to select the z that maximizes the posterior distribution in 
(24). This policy is analogous to selecting the mode of the posterior distribution in 
Bayesian estimation of a continuous parameter  (Hogg & Craig, 1978, p. 229), and it often 
yields estimators that coincide with MLEs obtained by classical estimation theory. 

Note that under the above assumptions, the z that maximizes the posterior distri- 
bution is also the z that maximizes Pr  (X I Z = z). Observation 7 provides a rule for 
obtaining Z. 

Observation 7. Consider the H T M  and assume we know the competency and bias 
parameters D and g. Then the value of ~ ---- (~-k)l ×M that maximizes Pr (X I Z ---- z) is given 
by 2 k = 1 iff 

In particular, if g, = 21 for all respondents, i k = 1 iff 

~¢ r l  + D,..] > 
Gk = ,=IE (2X,k -- 1) In [_1 - - - - ~  -- 0. (26) 

Proof: By local independence (Axiom 2) 

M N 

P r ( X l Z = z ) =  VI l ~ P r ( X , k = X t k l Z  k=zk). 
k = l  i = 1  
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The 2 k can be obtained on a question by question basis by determining whether z k = 1 or 
z k = 0 maximizes 

N 

In Pr (Xik = Xik I Zk). 
i=1  

Substituting D and g into the above equation using (9) and (10) and rearranging terms 
yields the conclusion in (25), and the additional requirement that g~ = ½ yields (26). [] 

Formulas like (25) and (26) were obtained in Batchelder and Romney (t986) using the 
classical Neyman-Pearson theorem, and related formulas are well known in the literature 
on information pooling (Grofman, Feld, and Owen, 1984; Nitzan and Paroush, 1982). 
One interpretation of (26) is that the criterion for determining the correct answer to a 
question is based on linear, log odds aggregation since (1 + D~)/(1 - Di) can be interpreted 
as the odds ratio, namely, the probability of a correct response by informant i divided by 
the probability of an error. 

One interesting point about  (26) is that the rule differs from a majority rule, that is, 
pick Zk = 1 iff a majority of informants give a "yes" response to question k. For  large 
numbers of informants, the two rules lead to the same results in most  cases; however, for 
small N and heterogeneous competencies, it can easily occur that a minority of inform- 
ants with higher competencies will outweigh a majority of informants with lower com- 
petencies. 

In practice, we do not have the true values of the D i. However, if we assume that 
g~ = ½ for each informant, we can obtain estimates /)~ using the matching method and 
insert these in (26). While this approach is not as optimal as obtaining the MLEs  from 
(13) or using MLLSA, it is computationally efficient, and as seen in the next section, it 
works well in practice. 

In empirical applications it may not be desirable to estimate the answer to a question 
unless the evidence is sufficiently strong to justify a particular choice. In this case, the 
evidence dimension ( - ~ ,  ~ )  for (25) can be partitioned into three regions, where the 
middle region corresponds to no estimate of Z k. In section 5, we develop the properties of 
this approach in the (conservative) case of homogeneous informants. 

4. Applications of the Approach 

In this section we present two studies of the matching method;  the first is a Monte 
Carlo study and the second uses real data when the number  of informants is small enough 
so that it is computationally efficient to use MLLSA as a comparison baseline. 

M o n t e  Carlo S tudy  

In the Monte Carlo study we investigated several cases involving N = 10 stat- 
informants and M = 50 questions. In all cases, exactly half of the questions were correctly 
answered "yes". The true competencies studied were in the set T = {0.50, 0.60, 0.70, 0.80, 
0.90} and a given case involved coupling five informants with competency D 1 with five 

with competency D 2 . 

The fifteen cases investigated comprised all ways of coupling D 1 with D ~ ( D I  < D2). 
In each case, 100 Monte Carlo runs were conducted from the H T M  with no bias, where 
each run led to a i0 x 50 response-profile matrix. For  each run, the corrected matching 
matrix from (23) was obtained and submitted to a PC version of the minimum residual 
method, and the output was an estimate of each of the ten star-informant's competence. 
Table 2 reports means and standard deviations of the pool of 500 (5 x 100) est imated/~ in 
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TABLE 2 

Means and Standard Deviations of Estimates 

D 2 = 0.50 D 2 = 0.60 D 2 = 0.70 

of Competence 

D 2 = 0 . 8 0  D 2 = 0 . 9 0  

D 1 = 0 . 5 0  

D1 = 0 . 5 0  Vl = 0 . 4 9  51 = 0 . 5 2  D1 = 0 . 5 1  D1 

S 1 = 0 . 1 5  S 1 = 0 . 1 3  S 1 = 0 . 1 3  S 1 = 0 . 1 3  S 1 

D2 ffi 0.50 D2 = 0.60 52 = 0.70 D2 = 0.80 D2 

S 2 = 0.14 S 2 = 0.12 S 2 = 0.11 S 2 = 0.09 S 2 

= 0 . 5 0  

= 0 . 1 2  

= 0 . 9 0  

= 0 . 0 6  

D 1 = 0 . 6 0  

D1 = 0 . 6 0  D1 = 0 .59  

S 1 = 0 . 1 2  S 1 = 0 . 1 2  

D2 = 0 .60  D 2 = 0 .70  

S 2 = 0 . 1 2  S 2 = 0 . 1 1  

D1 = 0.60 

S 1 ffi 0.12 

~2 = o . 8 o  

S 2 = 0 . 0 9  

S I 

S 2 

= 0 . 6 0  

= 0.12 

= 0 . 9 0  

= 0 . 0 6  

V 1 = 0.70 

D 1 = 0.71 

S 1 = 0 . 1 1  

D 2 = 0 . 7 0  

S 2 = 0 . 1 0  

D1 = 0.70 

S 1 = 0.10 

~2 = o.8o 
S 2 = 0 . 0 9  

S 1 

S 2 

= 0 .70  

= 0 . 1 0  

= 0 . 9 0  

= 0 . 0 6  

D 1 = 0 . 8 0  

~ l  = 0 . 8 0  D 1 = 0 . 8 0  

S 1 = 0 .09  S 1 = 0 .09  

~2  = o . 8 o  ~2  = 0.90 
s 2 = 0.09 s 2 = 0 . 0 7  

D 1 = 0 . 9 0  

D 1 = 0 . 9 0  S 1 = 0 . 0 6  

D 2 = 0 . 9 0  

S 2 = 0 . 0 6  

N o t e :  F i v e  i n f o r m a n t s  have  t r u e  c o m p e t e n c e  g i v e n  by  row  v a l u e  ( D 1 ) ,  

and f i v e  h a v e  t r u e  c o m p e t e n c e  g i v e n  b y  c o l u m n  v a l u e  (D 2 )  . Each 

s e t  i s  based  on  a samp le  o£ 500 e s t i m a t e s .  

each of the cells. Each cell repor t s  on  two true D values,  D 1 given by  the row label  and  D 2 
given by the co lumn label. 

The  first fact a b o u t  the M o n t e  Car lo  da t a  is that  the means  of the e s t ima ted /~s  f rom 
the ma tch ing  me thod  are  very near  to the true values (within 0.02 in all cases). Fur the r ,  



82 PSYCHOMETRIKA 

this is true regardless of whether the other five informants have the same true competence 
(main diagonal) or different true competence (off-diagonal). Thus we are led to conjecture 
that estimators based on the matching method have at most a small bias; however, we 
have been unable to establish this conjecture analytically. 

To obtain a base line for evaluating the matching method, suppose we knew the 
answer key. Let/~i be the proportion of correct for the i-th informant. Then if tat >_ 0.50, 
/~i = 2/31 - 1 is an MLE (and a best estimator) of Di, with 

~(D~ = I ( l  +D)(I~ -D).] 1/2. 

Plugging in the values of D used in the Monte Carlo study yields 0-(.5)= 0.122, 
0"(.6) = 0.113, o'(.7) = 0.I01, a(.8) = 0.085, tr(.9) = 0.062. 

When the standard deviations of the estimated D's in the Monte Carlo runs in Table 
2 are compared with these MLE lower bounds, it is seen that the correspondence is very 
close (within 0.03 in all cases). Thus we conclude that the matching method yields esti- 
mates of D (based on response profile data) that are almost as efficient as the MLE 
estimates based on the performance profile data. At least this conclusion is warranted for 
the values used, N = 10 and M = 50, that are realistic for field studies. In other runs not 
reported here, similar conclusions were reached for smaller values of M and N. 

We computed measures of skewness and kurtosis of the samples to see if the esti- 
mates were approximately normally distributed. We used the SPSS updated formulas 
designed to conform to Fisher's G statistics (Bliss, 1967, p. 145). The results showed that 
the sampling distribution of the estimates based on the matching method were not normal 
in the great majority of cases. The problem was that the distributions were significantly 
skewed, probably because the probability of correct was 0.75 or larger on only 50 
questions. 

The Monte Carlo study did not permit a stringent test of the ability of the Bayesian 
method to reconstruct the answer key. The reason is that with ten informants whose 
probabilities of correct are so high, very few mistakes are made by the Bayes method in 
most of the cells investigated. Batchelder, Maher, and Romney (1987) have studied runs 
with fewer informants, and these tend to validate the Bayes method as a viable means of 
reconstructing the answer key, and in particular, it outperformed the majority rule in all 
cases of heterogeneous competencies (also see Maher, 1987). 

Examination of Real Data 
In Romney, et al (1986), the matching method for estimating competencies along 

with the answer key estimation rule in (23) was applied to data from N = 41 undergrad- 
uate students each answering a true-false general information test with M = 40 questions. 
The answer key was known, and the matching method developed in this paper worked 
quite well in the sense that the key was accurately reconstructed and the estimates of the 
competencies correlated quite high with the estimates obtained from the key. 

Here we report new results from that data set by randomly dividing the informants 
into ten disjoint sets of four informants each. Four  informants per set allows us to use the 
MLLSA program which generates iterative MLEs based on our modification of the 
two-class latent structure model in Observation 5. Our adaption of MLLSA also classifies 
questions in the same way that respondent recruitment probabilities are obtained in its 
usual application. 

The ten data sets were analyzed by MLLSA in three different ways. First, the un- 
constrained GCM was used to estimate n, Pl i ,  and Poi for each of the four informants (9 
parameters estimated) by using the result in Observation 5. Since there are 16 possible 
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item signatures, there are 6 (16-1-9) degrees of freedom to test the goodness of fit of the 
GCM. Second, the H T M  model with # = 0.50 was fit to the data. This restriction led to 5 
estimated parameters and 10 degrees of freedom for test. Finally, the H T M  with # --- 0.50 
and 7r = 0.475 was fit (4 estimated parameters, i1 degrees of freedom for test). The 
restriction on rr was motivated by the fact that the correct answer key had this proport ion 
of true items. A starting configuration with Pli > Pol was used to try and avoid the 
identifiability problem of the G C M  (see Observation 4), and this was successful and 
yielded estimates satisfying Pli  > Pol in all cases. Thus the G C M  estimated by MLLSA 
can be regarded as the unconstrained HTM.  

Table 3 reports likelihood ratio chi-square statistics on the three nested versions of 
the HTM,  where H(2) is nested in H(1), and H(1) is nested in H(0). Each data set provided 
an average of 2.5 observations per signature, so we decided to treat these as asymptotic 
chi-square values. In no case was the unconstrained H T M  rejected at the 0~ = 0.05 level, 
and summing the chi-square values over the ten (independent) sets yielded a value 
;(2(63) = 64.88 which does not even approach significance. Thus the unconstrained H T M  
does a good job of accounting for the general information data. 

The two restricted versions of the H T M  also fit the results adequately except for set 
6, although the overall fit is not as good as for the unconstrained H T M  (see the chi- 
square values summed over the ten sets). The unconstrained H T M  gives an improvement 

TABLE 3 

Goodness of Fit Analyses 

Data Set H(0) d f  H(1) d f  H(2) df  H(1) -B(0)  df  H(2) -H(1)  df  

1 1.44 6 6.71 10 7.04 11 5.27 4 0.33 1 

2 5.21 6 10.05 10 11.47 11 4.84 4 1.42 1 

3 7.69 7 11.38 10 11.39 11 3.69 3 0.01 1 

4 6.98 6 10.61 10 11.11 11 3.63 4 0.50 1 

5 6.06 6 8.93 10 9.84 11 2.87 4 0.91 1 

6 13.45 7 27.70** 10 27.72** 11 14.25"* 3 0.02 1 

7 1.62 6 11.94 10 12.02 11 10.32" 4 0.08 1 

8 7.62 6 13.43 10 15.15 11 5.81 4 1.72 1 

9 11.96 7 16.77 10 23.36* 11 4.81 3 6.59* 1 

10 2.85 6 5.34 10 8.09 11 2.49 4 2.75 1 

TOTAL 64.88 63 122.86 100 137.19 

* p < 0.05; **  p < 0.01 

110 57.98* 37 14.33 10 

Note: Llkellhoo~ ratlo chl-square statistic for RLLSR fits to unconstrained HTR (R(0)). 

HTRwIth g = 0.500 (H(1)), and HTRwlth g = 0.500 and ~ = 0.475 (H(2)), along with 

degrees of freed0M (dr). The df = 7 in the third column mean only 8 parameters were 

identified (see Clogg, 1981). 
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in fit over the H T M  with O = 0.50 in Sets 6, 7, and overall (~2(37) = 57.98, p = 0,013). 
There is no evidence that the restriction to n = 0.475 represents a significant improvement  
(X2(10) = 14.33, p = 0.16). 

We obtained estimates with the matching method to compare with the MLEs pro- 
vided by MLLSA. The matching method assumes 0 = 0.50 but leaves n unconstrained. 
The results are reported in Table 4. 

Table 4 reports means and standard deviations of all the estimates of the un- 
constrained parameters for the matching method and the MLEs  of the three nested 
versions of the HTM.  In the only case where the bias parameter  O is unconstrained, the 
observed mean of 0.54 is close to the constrained value of 0.50; however, the standard 
deviation is quite large. Thus the close fit of the unconstrained H T M  (see Table 3) is due 
in large part  to allowing variability in O. On the other hand, the acceptable fit of the 
constrained versions of the H T M  suggest that the model is fairly robust  under violations 
of the 9 = 0.50 assumption. 

Looking at the estimates of the D and n parameters,  the matching method gives 
aggregate results that are comparable to the MLEs provided by MLLSA. To further see 
this, we correlated the 40 competence estimates from the matching method (MM), the 
H T M  with 9 = 0.50, and n free (H(1)), and the H T M  with O = 0.50 and n constrained to 
0.475 (H(2)). The results were r [MM,  H(1)] = 0.91, r [MM,  H(2)] = 0.96, and r[H(1), 
H(2)] = 0.825. Thus the estimates from M M  correlate highly with the MLE estimates, 
and in fact the lowest correlation is between the two versions of the H T M  using MLLSA. 

These results are surprising because the two MLE methods look at all 16 signatures; 
hence they look at four-way interactions among informants, whereas the matching 

TABLE 4 

Descriptive statistics for Estimates 

Method D S~ g s~ v S@ 

0 . 5 4  0 . 2 0  . . . .  0 . 5 5  0 . 0 8  

H ( 0 )  0 . 5 6  0 . 1 9  0 . 5 4  0 . 2 8  0 . 5 2  0 . 0 8  

H ( 1 )  0 . 5 3  0 . 2 4  . . . .  0 . 5 6  0 . 0 8  

H ( 2 )  0 . 5 4  0 . 2 2  . . . . . . . .  

Note: The table reports means and standard deviations for estimates of 

competence, bias, and ~ for the matching method, the unconstrained H~ 

(H(0))0 HTNwlth 9 = 0.50 (H(1))° and H1qMwith g = 0.50 and ~ = 0.475 

(H(2)). There are 40 observations on D and g and 10 for ~. 
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method only looks at interactions among pairs of informants. Thus, if the model is wrong, 
data values could easily exist where the two methods would yield quite different sets of 
estimates. The fact that they yield very similar estimates for the data under study is 
additional confirmation that the H T M  does a good job of fitting these data. 

The MLE methods have built-in goodness of fit tests by examining the likelihood 
ratio chi-square statistics. A mild goodness of fit test for the matching method is to 
examine the latent roots of the minimum residual factoring method (used iteratively on 
residuals from earlier factors) to see if the corrected matching matrix has a one factor 
solution. When this was examined for our ten sets of data, all but sets 6 and 9 had a 
strong one factor structure. It  is interesting that these sets are the only two that are not fit 
well by the H T M  with g = 0.50 (see Table 3). Thus for more than six informants, when 
MLLSA and other iterative M L E  programs cannot be used, the mild goodness-of-fit 
criterion proposed for the matching method seems to have merit. I t  would be useful to 
obtain an approximate distribution of the latent roots under the H T M  from the minimum 
residual solution; however, we have not been able to make progress so far. 

Next the answer key was reconstructed for each of the four methods of obtaining 
estimates. None  of the ten sets were expected to do a spectacular job of reconstructing the 
answer key because each set is based on only four informants, Table 5 (see next section) 
shows that when the Ds are around 0.50 (as in our ten data sets), one must use 9 or more 
informants to achieve high degrees of accuracy. Instead, the major  point of interest was to 
compare the Bayesian component  of the matching method with the recruitment method 
of MLLSA based on the MLEs of the D i. The comparison version of the H T M  was H(1) 
since it constrains only the parameter  g = 0.50 as does the matching method. 

In seven of the ten data sets, there was no difference between H(1) and the matching 
method in their classification of the questions. In set one, there were four (out of 40 
possible) disagreements; however, in all four cases the a posteriori probability of classifi- 
cation by the Bayes method was not extreme. There was one difference in set 6 with an 
unextreme value of the a posteriori probability. Set 9 was the only set that had consider- 
able disagreements. There were 9 questions (out of 40) where H(1) differed from the 
matching method. The cause of the disagreement was that MLLSA found a configuration 
of the answer key where the competencies of the four informants were quite different from 
the solution given by the matching method. In all the other nine data sets, the only 
disagreements (5 of 450) were cases of close calls. This is additional confirmation that 
MLLSA and the matching method give similar parameter  estimates. 

Conclusions o f  Estimation Studies 

With four informants and 40 to 50 questions, MLLSA can be used to obtain MLEs 
and goodness-of-fit tests for the G C M  and its various nested versions. In this case, the 
matching method appears to give very similar results when the model is true. For  six or 
more informants, MLLSA cannot be used, and Monte  Carlo studies suggest that the 
matching method yields estimates of  competency that are not strongly biased and are 
almost as efficient as the MLEs based on knowing the answer key. For  very large 
numbers of informants, one also can use the majority rule to obtain the answer key and 
then use Observation 2 to obtain (conditional) MLEs of the D i. The resulting Ds can be 
input to the Bayes component  of the matching method to obtain a measure of confidence 
or evidence strength for each question. 

Overall, for small, intermediate, and large numbers of informants, the matching 
method seems to yield very efficient and at worst only slightly biased estimates of the 
competence parameters. 
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5. H o w  M a n y  Informants  Are Needed 

In order  to determine the minimal number  of  informants needed to estimate accu- 
rately the answer key, we consider only the conservative case of  homogeneous  informants  
and no bias for the H T M .  In  case D 5 = D for all informants,  the evidence for 2 k = 1 in 
(26) becomes 

(1+ 
V k = (2S k -- N ) I n  I,,1 -- D ] '  (27) 

where 
iv 

S k = ~ Xik" 
5=1 

The homogeneous  informant  case is conservative as the next observat ion shows. 

Observation 8. Suppose (D5)~= 1 are competencies of  N informants  with 
( l /N)  ~ D r = D, and 95 = ½. Then E(G k I Zk ---- t) in (26) is at  least as large as E(F k I Zk = 
1), where the latter assumes D 5 = D, for all i = 1, 2 . . . . .  N. 

SO 

Proof. In  case D 5 = D, 

E(Fk I Zk = 1) = [2E(S k t zk = 1) - N]  In \i--------D/ 

( l + O ~  
-- NO In \ 1  -- D] "  

In the heterogeneous case 

E(2Xsk-- 1 I Zk = 1) = Dj, 

1 + Di~ 
E(Gk ] Zk = 1) = l=1 ~ D, In \ 1  - - - - ~ J  

> ~D, ~ ,~ln\ l_D,, , /  

since In [(1 + Di)/(1 --  Oi) ] is an increasing function of  D r. 
Since ~ D 5 = ND, the desired conclusion will obtain  if it can be shown that  

( N )  ~ In (1+Di'~ In (1  + D'] .  
- \ 1 - o 5 / > -  \TS--~/ 

(28) 
5=1 

Equat ion  (28) is an immediate  consequence of  the lemma that  if W is any r a n d o m  
variable with finite expectat ion and g is convex on (0, ~ ) ,  then 

E[g(W)] ___ g[E(W)] (29) 
Lo6ve (1963, p. 159). To apply the lemma, note tha t  g(D) = In I-(1 + D)/(1 - D)] is convex 
on (0, ~ )  since 

d2f(D) 4D 
-- > 0 .  d2D (1 -- D2) 2 

Further,  f rom (28) D can be interpreted as a r a n d o m  variable with equally probable  
D N values ( ~)~=1 and, E(D)----D by hypothesis. With  these interpretations, (28) follows 

immediately from (29). [ ]  



WILLIAM H. BATCHELDER AND A. KIMBALL ROMNEY 87 

Observat ion 8 shows that  if we can estimate the answer key adequately with a g roup  
of  N homogeneous  informants,  then we can expect to do no worse with a heterogeneous 
g roup  of  the same average competence.  This result is true because an identical a rgument  
shows that  E(G k I Z~ = 0) is at least as small as E(F k I Zk = 0) under  the condit ions of  
Observat ion 8. 

In the homogeneous  case, we decide the answer to a question k by observing the 
value of  S k. Clearly Sk is integer valued and 0 < S k < N. Suppose we are willing to 
suspend judgment  on the value of  Z k unless the evidence is sufficiently strong. In  the case 
of  no response bias, the si tuation is symmetric,  so est imation rules involving a "no 
decision opt ion"  amoun t  to picking an integer decision threshold c > N/2  and  estimating 
Z k by the rule 

1 if c < S  k 

2 k =  N o  Decision if N - - c < S  k < c  (30) 

0 if Sk < N -- c. 

The choice of  the decision threshold c should depend on the selection of  some desired 
confidence level T satisfying 

P r ( Z k =  1 ISk>--C)>X,  (31) 

then c is selected to be the smallest integer satisfying (31). This assumes that  for the 
selected c, the posterior probabil i ty that  Z k = 1 must  be larger than x if the evidence 
exceeds the threshold c. Observat ion 9 shows how to calculate c as a function of  the N, D, 
and z. 

Observation 9. Assume the H T M  with no bias, N informants of  c o m m o n  competency 
D, and T in the interval (½, 1). Let 

in (7_S_2_~ + N l n ( 1  + D~ 
c* = ~" ~" \ 1  - D J  (32) 

2 In \ i - L ~ /  

Then if N / 2  < c* < N,  the smallest integer c satisfying (31) exists and is given by smallest 
integer not  exceeded by c*. If  c* > N, then no c satisfies (31). 

P r  (Zk = 1 I Sk = x) = 

Proof. For  x = 0, 1 . . . . .  N, 

Pr  (Sk = x I Zk = 1) Pr  (Z k = 1) 

Pr  (S k = x) 

+ o 7,- 
x / \ - - 7 / \ - - Y - /  

1 + o 71- 1  y(1 + 
5 \x / k - - - f - / k - Y - /  + ~ \ x / \ - - Y - / \ - Y - /  

1 
1 -- D I 2 " - N '  

1 + 1_77-o I 
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Since the above is an increasing function of x, it is easy to see that Pr ( Z  k = 1 I Sk >___c) > z  

iff c > c* in (32). If c* > N, it is clear that Pr  ( Z  k = 1 I Sk = X) < Z for all x = 0, 1 . . . . .  N. 
[ ]  

Given N, D, and a choice of z, the probability E that the response data will lead to a 
decisive classification in (30) is given by 

E =  1 - P r ( N - - c < S  k < c )  

= 1 -- Z \ n,] \ ~ - - f  \ \ , ]  " (33) 
n = N - c + l  

Other things being equal, one would like to select a threshold c that yielded a large value 
of~. 

Now we are in a position to answer an interesting question; namely, given D, what is 
the smallest value of N that attains prespecified values of z (confidence) and f (deci- 
siveness)? Table 5 provides a partial answer to this question. It  is clear that very high 
levels of z and ~e can be attained with relatively small numbers of informants. 

In practice we do not know the respondents '  competencies a priori, so the minimal 
Ns in Table 5 are somewhat under estimated. The larger the number  of questions, the 
more accurate is the competence estimation, so Table 5 can be regarded as valid if M is 
sufficiently large. 

6. Generalizations of the G C M  

The G C M  is restricted in two salient ways. First, it applies only when there are two 
response alternatives; and second, it assumes the items are homogeneous. The next two 
subsections show how these limitations may  be removed. 

Other  Response  Spaces  

In typical testing situations, there is a general response space and a performance rule 
that maps responses into graded performance scores such as "pass" or "fail". In this case, 
absence of the answer key amounts to lack of knowledge of the performance rule, and 
without more specification, little progress can be made. 

Consider a multiple choice situation, where each item has L possible response alter- 
natives and one correct response. The G C M  and its special cases can be generalized for 
this situation, and many of our results and methods still apply. For  example, the H T M  
with no bias can be generalized by 

J O L + 1 

(34) 
Pr (X'k = ~) = [ I~LD , Z k V L f  , 

f = 1, 2 . . . . .  L and i and k as before. This model is briefly discussed in Romney, et al. 
(1986). 

It is easy to develop the analogue of (20), namely, 

E ( M o )  = (L --  1 ) 0 , 0  i + 1 (35) 
L 

and of (20), namely, 

~ -  f A/tik- 1 (36) 
D, Dj -- L -- 1 
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Table 5 

89 

Minimal Number of Informants Needed 

Proportion of 
~)uestlons (~) 

Average Leve l  o f  C u l t u r a l  competence (D) 

0.50 0.60 0.70 0.80 0.90 

.90 Confidence Level (T) 

.80 9 4 4 4 4 

.85 11 6 4 4 4 

.90 13 6 6 4 4 

.95 17 10 6 6 4 

.99 25 16 10 8 4 

.95 Conf idence Level 

.80 9 7 4 4 4 

.85 11 7 4 4 4 

.90 13 9 6 4 4 

.95 17 11 6 6 4 

.99 29 19 10 8 4 

.99 Conf idence Level  

.80 15 10 5 4 4 

.85 15 10 7 5 4 

.90 21 12 7 5 4 

.95 23 14 9 7 4 

.99 * 20 13 8 6 

.999 Confidence Level 

.80 19 11 7 6 4 

.85 21 13 8 6 4 

.90 23 13 10 8 5 

.95 29 17 10 8 5 

.99 * 23 16 12 7 

* Nell Over 30 Informants Needed 

Note: Table reports the smallest number of informants needed to classify a 

desired p r o p o r t i o n  of questions ~ with a specified confidence level 

x when average cultural competence Is known. 

Thus competencies can be estimated by the matching method used for the H T M  with no 
bias. Further, the Bayesian approach to estimating the answer key is easily extended if it 
is assumed that each possible alternative is equally likely a priori. 

Maher  (1987) has applied the approach to multiple choice exam data where the 
answer key is known, and estimated competencies correlate in the high 90s with those 



90 PSYCHOMETRIKA 

obtained from the answer key. Also her empirical work shows that the answer key can be 
estimated from very few informants. 

l nhomooeneous Items 

One of the restrictive assumptions of the G CM is the item homogeneity axiom 
(Axiom 3). In most test theory models, each item is allowed to have its own performance 
characteristics (Lord, 1974). These characteristics are reflected in the item characteristic 
curve (ICC) which gives the probability of a correct response to an item as a function of 
one or more latent ability or competence parameters. Each model is characterized by a 
class of possible ICCs. It is not straightforward to extend these models to our situation 
since they are developed to deal with performance profile data. However, if the informant- 
item competencies, Dik, are modeled, progress is possible. 

An example of a test theory model with separate competence and item difficulty 
parameters is the Rasch model (Rasch, 1960). The model is developed for performance 
profile data, and it postulates respondent "ability" parameters, fit > 0 and item "easiness" 
parameters, ek > 0. The model relates the parameters to performance data by 

tS~ek 
Pr (Yl~ = 1) - 1 + f ie  ~ "  (37) 

Equation (37) is strictly increasing in both 6~and e~,and it satisfies a desirable monotoni- 
city condition, namely, for any respondents i and j, if there is an item k, where Pr 
(Y~k = 1) > Pr (Yjk = 1), then for all items t ,  Pr (Y~e = 1) > Pr (Yje = 1). 

The Rasch model can be adapted to the H T M  by allowing competence, Djk, to 
depend on both informants and items by 

Ol ek (38) 
Dl~ = 1 -- D~ + D i e. k ' 

where ek > 0 is an item easiness parameter and, as before, Di is the informant's com- 
petence. Equation 38 is easily seen to be consistent with (37) when the range restriction 
0 < D~ < 1 is imposed. 

In case e k = 1 for all items, then D~k-  D~. Happily a monotonicity condition is 
satisfied by (38), since if Dik >_ Djk, for any item k, then D~e >_ Dje for all items ~. 

The inhomogeneous HTM has informant-item hit and false alarm rates given by 

Plik = [Dick + (1 -- Dl)gJ (39) 
[ 1  - -  D i + e k D t] 

(1 - -  Oi)oi ( 4 0 )  
P0tk ~- [I -- Di + ekDi]' 

respectively. Further, the model has 2N informant parameters, M item easiness parame- 
ters, and M dichotomous answer key parameters, so in principle it is estimatable in case 
2(N + M) < N M .  

The two extensions of the model reported here are currently under study (see Bat- 
chelder, Maher, and Romney, 1986, for preliminary results). 

Conclusions 

Psychometricians have developed many models and methods for dealing with test 
data where a unitary answer key is known. This work has made possible the estimation of 
latent ability parameters of a respondent as well as parameters characterizing an item. 
These models have been applied extensively in the area of educational testing. 
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When there is no unitary answer key, as in the case of subjective items, methods such 
as latent structure analysis have been developed for disaggregating respondents into 
homogeneous latent groups and characterizing the opinion structure of each group. These 
methods have been applied by sociologists and public opinion pollsters as well as pro- 
fessionals in other areas of social science. 

On the other hand, there has not been much work on the case of inhomogeneous 
respondents where there is reason to feel that a unitary key exists but it is not known a 
priori to the researcher. This situation is one faced by social scientists attempting to 
investigate objective knowledge in cultures different from their own. As pointed out in the 
introduction, anthropologists, linguists, and social psychologists face this problem rou- 
tinely. 

This paper shows that standard models and methods from test theory can be adapted 
to handle the case of an unknown answer key. Our approach is to develop parametric 
models and methods for simple testing situations because they are relatively easy to run 
on other cultural groups. The methods work rather well even with small groups of 
informants. 

Typical test theory models analyze performance profile data and work by exploiting 
structure in the item by item association matrix. In the early history of test theory, several 
psychometricians tried to develop methods for analyzing respondent by respondent as- 
sociation measures; however, the conclusion was that relatively little can be obtained 
from this approach (for example, Guilford, 1954). This conclusion is true if performance 
profile data are used, because the models postulate independence over items. However, if 
response profile data are used, there is large amount of information in respondent by 
respondent association measures as shown by such results as (19) and (20). This structure 
turns out to provide the information for models and methods that develop test theory 
without an answer key. 
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