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A coefficient derived from communalities of test parts has been proposed as greatest lower 
bound to Guttman's "immediate retest reliability." The communalities have at times been calcu- 
lated from eovariances between item sets, which tends to underestimate appreciably. When items 
are experimentally independent, a consistent estimate of the greatest defensible internal- 
consistency coefficient is obtained by factoring item covarianees. In samples of modest size, this 
analysis capitalizes on chance; an estimate subject to less upward bias is suggested. For estimating 
alternate-forms reliability, communality-based coefficients are less appropriate than stratified 
alpha. 
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This paper  originated in a paradox.  Bentler and W o o d w a r d  (1980, 1983; hereafter 
BW) reasoned that a certain internal-consistency analysis promises "the greatest lower 
bound  to reliability." Their illustrative coefficients, however, were strangely low. Fo r  
Comrey ' s  measure of  social conformity,  BW reached a coefficient of  .85 whereas Comrey  
(1970) had obtained a coefficient of  .94 from much the same cases. For  the Test of  English 
as a Fore ign Language  (TOEFL),  BW reached .92 as "greatest lower bound" ;  the same 
data  led Lord  and Novick  (LN, 1968, p. 91) to a coefficient of  .95. All these coefficients 
reflect the internal consistency a m o n g  parts  of  the test. The paradox is resolved by 
recognizing that these BW analyses took  se t s  of items as the parts, whereas Comrey  and 
L N  analyzed unaggregated items. 

What  parts should be analyzed has not  been specified by BW or in the pertinent 
papers by other authors.  It  will be argued here that  the BW procedure should have been 
applied to covariances of  Comrey  and T O E F L  items. In  these instances, incorrect choice 
of  unit of  analysis undercut  an otherwise brilliant technical development.  This paper 
extends the interpretation of  the BW procedure and suggests an alternative that  capi- 
talizes on chance to a smaller degree. It  is pointed out  also that  even in the popula t ion  the 
BW coefficient, calculated from items, tends to overestimate alternate-forms reliability. 

Table 1 gives a reference list of nearly all coefficients to be discussed. The unob-  
servable coefficients Pit and Ps are the targets that  various procedures were devised to 
estimate. An estimator p+ which employs communali t ies  of  test parts was proposed by 
BW and others;  this paper  emphasizes its special case p++.  These were developed as 
estimators of  Pit. The more  familiar alpha coefficients, based on average covariances of  
test parts, were developed as estimates of  p,.  Tables 2 and 3 will illustrate many  of  the 
coefficients with data  from Comrey ' s  test. 
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TABLE 1 

Coefficients and Their Symbols 

Taraet r e l i a b i l i t i e $  
Pt, Corre la t ion between independent a d m i n i s t r a t i o n s  

of a f i x e d  c o l l e c t i o n  of  items 
Ps Intraclass correlation across test forms 

constructed by plan ~ with fixed strata 

I n t e r n a l - c o n s i s t e n c y  ~st imators 
p+ Coe f f i c ien t  obtained by est imat ing communali t ies 

from covariances of parts  of a tes t  
p++ p+ obtained from covariances of a l l  items 
p* Coe f f i c ien t  obtained by est imat ing communalit ies 

from covariances w i t h i n  sets of items 
a s Coe f f i c ien t  obtained using average covartances 

w i t h i n  sets of items 
a Limiting case of a s where al l  items are treated 

as a s ing le  set  

Theoretical Background 

First, a brief review. Theoretical statements will rest on three assumptions: when 
tested twice, persons do not change from trial to trial; the sample of persons is indefinitely 
large; and items within a trial are experimentally independent. (That is to say, error scores 
are uncorrelated, where error is defined classically as the difference between the person's 
observed score and true score on an item.) 

The correlation p,, between independent administrations of a fixed item-set is what 
BW sought to bound. This was called "immediate retest reliability" by Gut tman  (1945) 
and "hypothetical self-correlation" by Cronbach (1947); in this conception the true score 
on the test includes item-specific factors and all i tem-common factors. We shall be con- 
cerned also with estimates of the alternate-forms coefficient p~, which is the ratio of 
true-score variance to expected observed-score variance of test forms constructed by 
sampling items from a domain in accord with fixed specifications s. In this conception the 
true score on the family of tests includes only the first centroid factor of the test covari- 
ances. 

The coefficient p~ applies to the family, whereas p ,  describes a fixed test. Unless 
additional assumptions are made, values of p ,  differ from test to test within a family. 
Where test t belongs to the family defined by s, p~ < Ep , .  Here and elsewhere, the 

E z expectation is over tests within the family. ( Pus, the expected squared correlation of the 
test score with the true score for the family, is not considered here. p~ <_ Ep2,, but for most 
tests, especially those constructed with a specified distribution of content, the difference is 
small; see Cronbach, Ikeda, & Avner, 1964; and Rajaratnam, Cronbach, & Gleser, 1965.) 

It is not trivial to ask which coefficient an investigator should seek, because a lower 



LEE J. CRONBACH 65 

bound to p ,  may overestimate p~. The choice should depend on the interpretation given 
the test. If  factors orthogonal to the first centroid are nuisance variables, p~ is more 
relevant than P,t. To the extent that common factors beyond the first carry wanted 
information, P~t is more pertinent. The items of TOEFL,  for example, are of no interest in 
themselves; in lengthening the instrument or making a new form one would use fresh 
items that conform to the same specifications and so as a set are targeted on the same 
centroid. 

When subjects have taken only one test form, analysis of scores from parts-- i tems,  or 
sets of i tems--provides a basis for estimating Ptt and p~. Every internal-consistency for- 
mula can be expressed as a ratio: the sum of elements in a matrix divided by the variance 
of test scores. Off-diagonal cells of the matrix contain covariances of test parts; different 
formulas in effect embody different rules for filling diagonal cells of the numerator. And, if 
variances of parts are placed in the diagonal, the sum of elements equals the score 
variance for the denominator.  

When test items have been grouped on some rational basis, ct~ ("stratified alpha") 
estimates p~ for the family of tests constructed on that basis. This type of formula orig- 
inated with R. Jackson and Ferguson (1941) and evolved through papers by Lord (1956), 
Tryon (1957), and Rajaratnam et al. (1965), among others. The LN coefficient for T O E F L  
is an ct~, and Comrey's is a matched-halves coefficient nearly equivalent to ~ .  We may 
think of a large domain of admissible items, and of a rule s that specifies subdomains 
together with the respective numbers of items to be drawn from them. (In what follows, 
each number  is assumed to be two or greater. The item sets need not be presented as 
formal subtests.) This sampling model is an analog of the use of a table of specifications in 
test construction, where the domain of items exists only in principle (Lord & Novick, 
1968, pp. 234-235). 

When every diagonal cell i, i in the item-covariance matrix is filled with the average 
covariance of i with other items in its set, the sum of all elements is the numerator  for ct~. 
Equivalently, in the matrix of covariances between sets, the diagonal cell for a set of m 
items can be filled with m 2 times the average interitem covariance within the set. With 
many ways to partition the domain, there are many  possible coefficients p,.  Whatever the 
partitioning rule, the numerator  for ct~ is an unbiased estimate of the covariance of the test 
with the true score corresponding to rule s. Moreover, the expected value of that covari- 
ance is the true-score variance, and ct~ approximates p~ (Cronbach, Sch6nemann, & 
McKie, 1965). 

The line of thought that seeks a bound for P,t originated with Gut tman  (1945) and 
continued through papers by Bentler (1972), P. Jackson and Agunwamba (1977), Wood- 
house and P. Jackson (1977), Della Riccia and Shapiro (1980), Bentler and Woodward 
(1980, 1983), and ten Berge, Snijders, and Zegers (1981), among others. To obtain Ptt one 
would need to place the non-error variance for item i in the i, i cell of the covariance 
matrix; but the analyst cannot separate true item-specific variance from error. The recent 
papers in this tradition are concerned with coefficients obtained by placing estimated 
communalities of parts in the diagonal cells of the numerator  matrix. Constrained mini- 
mum trace factor analysis (CMTFA) has been accepted for evaluating the communalities. 
The algorithms for C M T F A  recommended by ten Berge, et al. and by Bentler and 
Woodward (1983) are effectively the same. 

Levels of Partitioning 

Bentler and Woodward (1983, p. 237) spoke of the test as "a composite formed from 
unit weighted component  parts", and then presented a theory of decomposition valid for 
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any matrix of part covariances. The impression left by this and other descriptions of such 
methods is that a file of scored test responses yields just one coefficient p +. The coefficient 
changes with the partitioning, however. 

The choice among partitionings was discussed in writings on ~ ,  and those ideas will 
help in understanding p +. Subdomains used in test specification may be broad or narrow, 
indistinguishable or distinctly different. At one extreme, placing all items in one stratum 
produces "randomly parallel" tests, and ct~ degenerates to ~. At the other extreme, the 
constructor of an alternate form may  at tempt to write a counterpart  for each original 
item, to present almost exactly the same question again, at a similar level of difficulty 
("matched" tests; Lord, 1955). Comrey specified his measure of conformity by listing five 
subdimensions such as "need for approval",  and then- - to  neutralize the acquiescence 
factor--requir ing two positively keyed and two negatively keyed items for each. Nar row 
strata can be clustered into broader  ones. In Comrey's  plan, a stratum is defined by both 
content and keying; these strata can be grouped in content strata (or, if one prefers, into 
direction-of-keying strata). 

Finer stratification is intended to increase Ps, and it does so when in the domain the 
overall mean of item covariances within the narrow sets is greater than the overall mean 
within whatever broader  set(s) the plan subdivides. When this condition holds, ~ is likely 
to increase with finer partitioning in the analysis (but not necessarily in every sample of 
items). Finer partitioning is likely to increase p+ also, since partitioning moves covari- 
ances originally aggregated within the variances of broad sets out into the base for 
communali ty estimates. The mean-covariance condition stated above is neither a neces- 
sary nor a sufficient condition for increase in p+;  it is doubtful that a general condition 
for the increase can be stated. 

Interpretations of p + 

Communalit ies from the item-covariance matrix yield a p+ that is the greatest de- 
fensible internal-consistency coefficient when the assumptions stated early in this paper 
are satisfied. The symbol p + + will distinguish this from a p + derived from between-set 
covariances, which is expected to be smaller than p + ÷ and cannot be greater. 

Also, a s cannot be greater than p+ ÷. This follows from an argument of Bentler and 
Woodward (1980, p. 254). Their coefficient Pl, calculated from a matrix with just one 
column of unit weights for items (the signs of the weights being determined by CMTFA),  
is the maximum intraclass split-half coefficient for the test. Moreover,  it is not less than a 
p+ from a matrix of weights having greater column rank; hence Pl < P++- Rational 
pairing of items to form matched halves gives the largest cq. Since that cannot exceed the 
empirical maximum Pi, ct~ < p+ +. 

It  is quite poss ible-~ obtain a p + smaller than the a, from the same item-sets. The 
between-set covariances from which p+ comes count only factors that two sets share; in 
contrast, the diagonal cells for the numerator  of a s reflect only factors shared by items 
within the set. Any attempt to define homogeneous strata should create comparatively 
strong within-set factors. 

The Bentler and BW papers offer several illustrative calculations of "greatest lower 
bounds";  half of them take item-sets as parts, hence are not p++.  Typically in these 
instances, published correlations or covariances of sets were the starting point, item 
covariances not being at hand. Even where raw data were available for a Wechsler Scale 
example, Bentler and Woodward  (1983, p. 251) factored subtest covariances (perhaps to 
reduce computing time and cost). Woodhouse and P. Jackson speak of factoring "sub- 
tests" in their numerical example also; these parts were actually separate brief examina- 
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tions that it seemed impractical to divide, especially as the student was allowed to choose 
which questions to write on (P. Jackson, personal communication, January 9, 1987). 

An Alternative Procedure 

Analysis of bias in CMTFA has only begun (Zegers & Knol, 1980). Although in the 
population p+ ÷ is a lower bound to Ptt, variation in covariances due to sampling of 
persons will tend to inflate an estimate/3+ +. Bentler and Woodward (1983, pp. 246-249) 
discuss this and other statistical questions. 

With samples of modest size, one would expect much less bias in the sum of commu- 
nalities from several matrices of low order than in the sum of communalities from a single 
large matrix, because with low order fewer weights are fitted. This suggests that applying 
CMTFA to smaller covariance matrices can reduce upward bias (and reduce computing 
cost). To obtain what I shall call p*, each set of items would be analyzed in turn, 
communalities for items in part P being evaluated by CMTFA of their intercovariances. 
Filling the diagonal of the matrix for all items with such communalities, and then sum- 
ming elements, gives the numerator for p*. (Bentler and Woodward, 1983, p. 243, employ 
the symbol p* for a peripheral concept unrelated to this coefficient.) 

By way of a limited numerical demonstration, a 20-item test was defined with five 
strata, having population item variances equal to 1.00 and item covariances equal to .25 
within strata and .15 across strata, that is, there is a general factor plus five group factors. 
Factor scores were constructed for a random sample of 100 cases and transformed into 
item scores and their covariances. The following coefficients were obtained: 

P + + p *  0t s 

Population value .819 .819 .819 
Sample estimate .906 .835 .813 

A proper evaluation of bias would of course require a great number of samples and a 
variety of parameter sets, but this example suffices to show that the bias in/3+ + needs to 
be considered seriously if item covariances are to be factored. Crossvalidation may be 
essential. (Some BW examples were based on samples on the order of 100, but they 
analyzed only matrices of low order.) 

In a sufficiently large sample,/3* </3+ + </3tt. A factor is "common" with reference 
to a particular set of variables. Enlarging the set of variables entering the factor analysis, 
as we do in going from/3* to/3+ +, is likely to change some variance in the initial set from 
"specific" to "common", and thus to raise communalities. Because /3* capitalizes on 
chance (ordinarily to a lesser degree than/3+ +), we cannot be sure that a small-sample 13" 
is less than Ptt. 

Further inequalities are worthy of note. Just as in the population, the sample ~ _< 
/3+ + for the total test or for a part score. (If the part is not stratified, for the part score ~, 
becomes ct and p++ = p*.) Communalities entering fi* include variance from factors 
beyond the first centroid of items within the part, whereas only that centroid contributes 
to the numerator of ~ for the part. Therefore, for the coefficients obtained by considering 
all parts, ~s <-/3*. Finally, it is likely that/3+ </3* from the same parts. This would follow 
in large samples from the earlier intuitive argument that p + from sets tends to be less than 
cq. The inequality might be reversed, however, if scores from a modest sample are divided 
into a great number of item sets (since the covariance matrix for obtaining/3+ is then 
large). 
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Because 8~< fi*, ~* tends to overestimate p~, the correlation for stratified-parallel 
tests. The still larger fi ÷ ÷ is even less suitable as an alternate-forms coefficient. 

Recognizing Nonindependence 

Turn now to the possibility that, while sets of items are experimentally independent, 
items are not. A familiar example is the reading comprehension test where several 
questions refer to the same passage. On such questions, two errors can arise from a single 
haphazard misinterpretation. The misinterpretation can be regarded as random error, but 
both responses reflect this one departure from the true level of ability. 

When Bentler and BW calculated an a from the matrix of between-set covariances, 
they in effect entered the mean of these covariances in diagonal cells of the matrix. If items 
within sets are experimentally independent (sets being fixed), this is an inappropriate 
formula, as Lord and Novick (1968, p. 91) pointed out in connection with TOEFL.  A 
factor common to true scores of items in one set and not found in any other set is 
mistakenly treated as error. It  should be noted, however, that sets are sometimes interpre- 
ted as random samples from a domain, and then it is appropriate  to treat person x set 
interaction as error (Cronbach, Gleser, Nanda,  & Rajaratnam, 1972, p. 236). 

If  the assumption of independence of items within sets is not accepted, calculating fi + 
from covariances of sets is justified. In general, ~+ from smallest independent parts is a 
superior large-sample estimate of p , .  Also, in this situation, it is appropriate  to average 
covariances of smallest independent sets to obtain diagonal terms for an alpha coefficient. 

The Comrey Example 

A complete set of correlations and s.d.'s from 750 cases was supplied by Comrey for 
his conformity items. Most of these cases entered the analyses in his manual, on which 

TABLE 2 

Coef f i c ien ts  Obtatned fo r  Comrey Scores 
by Averaging Covartances 

Row Covartances Order of  m b Coef f i c i en t  
averaged m a t r t x  a f o r  Quad 2 

m m m m m i m m ~  

1 Ouads 6 4 
2 A l l  duos 10 2 
3 A l l  ttems 20 1 
4 Duos w t t h t n  quad 2 2 .78 
6 l tems w t t h i n  quad 4 1 .81 
6 I tems w t t h t n  duo 2 1 .82 

Coe f f i c i en t  
fo r  t es t  

m m ~ m ~  ~ I m a m  m m  

.823 c 

.876 

.908 

.918 

.930 

.937 

aOrder Of se t  w i t h i n  which averages are taken i average ts 
based on one less than th i s  number of covar tances .  

bNumber of  i tems in s m a l l e s t  subset  taken as a v a r i a b l e .  
CCoeff tc ient eva lua ted  by BW; may be compared wtth the 

" f l o o r "  of  .862 obta ined  w i th  zeros in d iagonal  c e l l s  
of the i t e m - c o v a r t a n c e  matr tx .  
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BW relied; using all 750 cases changes the various coefficients negligibly. It  will be 
recalled that the 20 conformity items are divided into five sets; the four-item set will be 
called a "quad", and like-keyed items within a quad a "duo". Although I carried out 
calculations on all quads, the table is simplified by reporting coefficients for the full test 
and for Quad  2 only. Each coefficient for Quad  2 was at or near the median of such 
coefficients for all quads. (Since sampling of persons is not a central concern here, the ^ 
symbol is omitted from the text and from Table 3.) 

Table 2 lists coefficients calculated by averaging item covariances. It was argued 
earlier that the coefficient in Row 1 is inappropriate, and the coefficient in Row 2 has the 
same reliance on between-set covariances. Row 3 gives the simple ct (expected to be 
unsuitably low for a stratified test). The ct~ coefficients in Rows 4 and 5 place items with 
unlike keying in the same part, while Row 6 gives ~ for Comrey's  narrow strata. This 
coefficient is greatest because the analysis fully recognizes the two-level stratification. 

Table 3 gives results from CMTFA.  Rows are ordered by size of coefficient, but row 
numbers are assigned to correspond to Table 2. In both tables, increase in coefficients is 
associated with smaller m. Holding m constant, larger order of the matrix analyzed goes 
with a larger coefficient in Table 3 and the reverse is true in Table 2. The test coefficient 
from covariances of duos within the quad has no label, though it is roughly like a p*. The 
two test coefficients labelled p* are subtly different. The one from items within quads is 
.005 greater; it considers more information and is also subject to more bias. 

Greatest interest attaches to the largest values: .951 for/9+ +, .942 for p* from quads, 
and .937 for cts(=p* from duos). In this example, the difference among the coefficients is 
not impressive, especially when we recall that greater bias goes with greater order in 
Table 3. Among coefficients for the five quads, p+ + typically exceeds ~+ by about  .015, 
and never by as much as .03. It  would be hazardous to generalize from data for Comrey 's  
test, constructed by a sophisticated stratification plan guided by a factor analysis of items. 

TABLE 3 

C o e f f i c i e n t s  Obta ined f o r  Comrey Scores 
by E s t i m a t i n g  Communal i t ies  

Row a Covar iances  Order o f  B b C o e f f i c i e n t  C o e f f i c i e n t  
f a c t o r e d  m a t r t x  f o r  Quad 2 f o r  t e s t  

1 A l l  quads 6 4 p+ = .850 c 
4 Duos w i t h i n  quad 2 2 p+ = .78 . 9 1 8  
2 A l l  duos 10 2 p+ = .929 
6 I tems within duo 2 1 p*  = .82 p* = .937 
5 I tems w i t h i n  quad 4 1 p++ = .83 p* = .942 
3 A l l  i tems 20 1 p++ = .951 

aNumbering corresponds to Tab le  2.  
bNumber of  i tems in s m a l l e s t  subset  taken as a v a r i a b l e .  
C C o e f f i c i e n t  e v a l u a t e d  by BW; see note c in  Table 2. 
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Still, the similarity among p÷ ÷, p*, and cq (the coefficients that are not plainly inappro- 
priate) is much more striking than their differences. 

Conclus ions  

1. Where items are independent and the sample of persons is large, CMTFA of items 
gives a greatest defensible internal-consistency coefficient p+ ÷ - -a  superior lower bound 
to immediate retest reliability. 

2. A coefficient fi* gives an estimate of immediate retest reliability that is subject to 
less upward bias. 

3. Applying CMTFA to covariances between sets of items does not give a suitable 
coefficient when items within sets are experimentally independent, and person-set interac- 
tion is regarded as a source of true variance. 

4. For  an investigator concerned with reliability across stratified-parallel forms, the 
appropriate estimator is ~ .  
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