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Interval estimates of the Pearson, Kendall tau-a and Spearman correlations are reviewed and an 
improved standard error for the Spearman correlation is proposed. The sample size required to yield a 
confidence interval having the desired width is examined. A two-stage approximation to the sample ~ize 
requirement is shown to give accurate results. 
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1. Introduction 

Pearson, Kendall tau-a and Spearman correlations, which will all be denoted by the symbol 
0, are used frequently in behavioral research. Although hypothesis testing is common, interval 
estimation may be more appropriate in applications where the magnitude of a correlation is of 
primary interest. 

Cohen (1988), Desu and Raghavarao (1990), Odeh and Fox (1991), and several intermediate 
level statistics texts, such as Cohen and Cohen (1975) and Zar (1984), give formulas that can be 
used to determine the sample size required to test a hypothesis regarding the value of a population 
Pearson correlation with desired power. To date, sample size formulas to determine the sample 
size required for interval estimation of Pearson, Kendall tau-a and Spearman correlations are 
not available. Recently, Looney (1996) produced a table of sample sizes needed to obtain a 95% 
confidence interval for the Pearson correlation. 

2. Confidence Intervals 

To keep notation simple, let 0 denote both the estimator and the estimate of a population 
Pearson, Kendall tau-a or Spearman correlation. Define ( = tanh -1 0 and ~ = tanh -10.  The 
population variance of ~ and its estimate are both denoted as trY. For the Pearson correlation, 
tr  ? ~-  l / ( n  - 3) for bivariate normal random variables (Fisher, ~ 1925). For absolute values of 

Kendall correlations less than .8, tr 2 -~ .437/(n - 4) for any monotonic transformation of the 

bivariate normal random variables (Fieller, Hartley, & Pearson, 1957). We show that for absolute 
values of Spearman correlations less than .95, tr ? ~-- (1 + 0 2 / 2 ) / ( n  - 3) for any monotonic 

transformation of the bivariate normal random variables. 
Assuming asymptotic normality of 0, a large-sample 100%(1-u)  confidence interval (Hahn 

& Meeker, 1991, p. 238) for 0 may be defined as 

L at 
(1) 
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where zet/2 is the point on the standard unit normal distribution exceeded with probability or/2. 
Note that [d(tanh () /d(]2tr~ ----(sech 2 ()2~r~ - - ( 1 -  tanh 2 ~ 2 ) #  __ ( 1 -  02)2~r2¢ is the approx- 

imate variance of 0 obtained by the delta method (Stuart & Ord, 1994, p. 351) which simplifies 
to (1 - 02)2/(n - 3), .437(1 - 02)2/(n - 4), and (1 + 02/2)(1 - 02)2/(n - 3) for the Pearson, 
Kendall and Spearman correlations, respectively. 

If [01 is large and n is small, (1) may have a coverage probability that is quite different 
from 1 - or. A better confidence interval, originally proposed by Fisher (1925) for the Pearson 
correlation, is defined as 

where 

Lower Limit: [exp(2Ll) - 1] 
[exp(2Ll) + 1] 

[exp(2L2) - 1] 
Upper Limit: 

[exp(2L2) + 1] 

L1 = .5[ln(1 + 0) - ln(1 - 0)1 

L2 = .5[ln(1 + 0) - ln(1 - 0)] + 

C(Zot/2) 
v't- __ b ) 1 / 2  

c(zot/2) 
(n - b) l/2' 

(2) 

with c = 1, (.437) 1/2, and (1 + 02/2)1/2, b = 3, 4, and 3 for the Pearson, Kendall and Spearman 
correlations, respectively. 

David (1938) recommends the use of (2) for Pearson correlations only if n _> 25. The Fisher 
confidence interval for the Pearson correlation also assumes bivariate normality, and the effects of 
violating this assumption deserve careful consideration. Pearson (1929) concluded that "the nor- 
mal bivariate surface can be mutilated or distorted to a remarkable degree" without affecting the 
sampling distribution of the Pearson correlation estimator. Subsequent simulations by Pearson 
(1931), Dunlap (1931), Rider (1932), and Gayen (1951) led to similar conclusions. However, 
Haldane (1949), Kowalski (1972), and Duncan and Layard (1973) have shown that the robust 
properties of the Pearson estimator apply only under independence and that marginal kurtosis 
can have a serious effect on the asymptotic sampling distribution of the Pearson estimator in the 
non-null case. If the assumption of bivariate normality cannot be justified, Kendall or Spearman 
correlations should be considered. The Kendall and Spearman correlations are attractive because 
(2) can be used to generalize from the sample to the population correlation for any monotonic 
transformation of bivariate normal variables, 

As noted previously, the approximate variance of ( for a Kendall correlation is accurate 
only for 101 < .8. Under bivariate normality, a Kendall correlation is equal to 2/zr times the 
inverse sine of the Pearson correlation so that a Kendall correlation of .8 corresponds to a Pearson 
correlation of about .95. Long and Cliff (1997) found that (2) works reasonably well for Kendall 
correlations if n > 10. 

Fieller et al. (1957) claim that or? _ 1.06/(n - 3) for absolute values of Spearman correla- 

tions less than .8. We claim that (1 + ~2/2)/(n - 3) is a more accurate estimate of a2. The results 

of a computer simulation are summarized in the Appendix and provide support for our claim. 

3. Sample Size Determination 

The sample size required to obtain a 100(1 - 00% Fisher confidence interval with a desired 
width (Upper Limit minus Lower Limit) can be obtained by first solving for n in (1). This gives 
a first-stage sample size approximation, denoted as no, equal to 



D O U G L A S  G. B O N E T T  AND T H O M A S  A. W R I G H T  25 

no = 4 c 2 ( 1  - 0 2 )  2 (z~/2]  2 + b, 
\ w / 

(3) 

where w is the desired width of the Fisher confidence interval (2) and 0 is a planning estimate of 
0 obtained from previous research or expert opinion. Round (3) up to the nearest integer and set 
no = 10 if no < 10. Note that c 2 = 1 + 02/2 for the Spearman correlation. 

L e t  Wo denote the width of  the Fisher confidence interval (2) for a sample of  size no and 
set equal to 0. Let n denote the sample size that yields a Fisher confidence interval having the 
desired width. Assume Wo = k l  (no - b) -1/2 in the neighborhood of  no and w = k 2 ( n  - b)  - I / 2  

in the neighborhood of n where kl and k2 are the constants of  proportionality. For no close to n, 
assume kl = k2 and define 

Wo (n - b) 1/2 
= ............ (4 )  

w ( n o . -  b) 1/2" 

Solving for n gives a second-stage approximation to the required sample size 

n = (no - b)  + b, (5) 

which is rounded up to the nearest integer. 
A planning estimate of 0 is often obtained from a range of possible values based on ex- 

pert opinion or confidence intervals from previous research. All other factors held constant, the 
sample size requirement is inversely proportional to 101. Given a range of possible values for 0, 
some researchers will want to compute (5) for both minimum and maximum values of 0 to obtain 
maximum and minimum sample size requirements. 

4. Example 

The following example illustrates the computation of (5) for a Pearson correlation. For 
= .8, w = .2, and a = .05, use (3) to compute no = 4(1 - .82)2(1.96/.2)2 + 3 ~_ 52.8 and 

round up to 53. Setting n = no = 53, c = 1, b = 3, and 0 = 0 = .8 in (2) gives lower and upper 
Fisher interval limits of about .6758 and .880 with an interval width of Wo ~ .2042. Use (5) to 
compute (53 - 3)(.2042/.2) 2 + 3 ~_ 55.1 and round up to n = 56. If a sample of size n = 56 is 
taken from the population and the Pearson correlation estimate is close to the planning estimate 
of .8, the Fisher confidence interval width should be close to the desired width of .2. 

5. Accuracy of  the Two-stage Sample Size Approximation 

The sample size given by (5) approximates the correct sample size for the Fisher confidence 
interval. The correct sample size is defined as the smallest value of n which yields a Fisher 
confidence interval width that is less than or equal to the desired width. The accuracy of the two- 
stage approximation is evaluated by comparing the value obtained by (5) with the correct sample 
size for eight values of 0, three values of w, and two values of o~. The correct sample size was 
obtained by systematically incrementing n by 1 until the width of the Fisher confidence interval 
attained the desired width. The results are summarized in Table 1. 

It can be seen from Table 1 that (5) gives a value of n that is exactly equal to the correct 
sample size or exceeds the correct sample size by a small amount. Although not shown in Table 1, 
(5) tends to overstate the correct sample size to a slightly greater degree if  I01 > .9 and w > 
2(1 - [01) .  

If the correct sample size must be obtained (e.g., in a commercial software package), the 
value given by (5) can be systematically decreased by 1 and the width of (2) can be checked at 
each step. Given the accuracy of (5), only one or two checks will be required in most cases. 
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TABLE 1, 
Accuracy of Sample Size Approximation 

tO 

Pearson Spearman Kendall 

Eq. 5 Correct n Eq. 5 Correct n Eq. 5 Correct n 

.10 .1 .05 1507 1507 1517 1517 661 661 

.10 .1 .01 2601 2601 2614 2614 1139 1139 

.10 .2 .05 378 378 382 382 168 168 

.10 .2 .01 650 650 653 653 269 269 

.10 .3 .05 168 168 169 169 77 77 

.10 .3 .01 288 288 290 290 129 129 

.30 .1 .05 1274 1274 1331 1331 560 560 

.30 .1 .01 2198 2198 2297 2297 963 963 

.30 .2 .05 320 320 334 334 143 143 

.30 .2 .01 550 550 574 574 243 243 

.30 .3 .05 143 143 149 149 65 65 

.30 .3 .01 245 244 255 255 110 110 

.40 .1 ,05 1086 1086 1173 1173 448 448 

.40 .1 .01 1874 1874 2024 2024 822 822 

.40 .2 .05 273 273 295 295 122 122 

.40 .2 .01 469 469 507 507 208 208 

.40 .3 .05 123 123 132 132 57 57 

.40 .3 .01 209 209 226 226 94 94 

.50 .1 .05 867 867 975 975 382 382 

.50 .1 .01 1495 1495 1682 1682 656 656 

.50 .2 .05 219 219 246 246 99 99 

.50 .2 .01 376 376 422 422 167 167 

.50 .3 .05 99 99 111 111 46 46 

.50 .3 .01 168 168 189 189 76 76 

.60 .1 .05 633 633 746 746 280 280 

.60 .1 .01 1091 1091 1287 1287 480 480 

.60 .2 .05 161 161 189 189 73 73 

.60 ,2 .01 276 276 325 325 123 123 

.60 .3 .05 74 74 86 86 35 35 

.60 .3 .01 125 125 146 146 57 57 

.70 .1 .05 404 404 503 503 180 180 

.70 .1 .01 696 696 866 866 307 307 

.70 .2 .05 105 105 129 129 49 49 

.70 .2 .01 178 178 221 221 81 81 

.70 .3 .05 49 49 60 60 24 24 

.70 .3 .01 82 82 101 101 39 39 

,80 .1 .05 205 205 269 269 93 93 
.80 .1 .01 352 352 463 463 157 157 
.80 .2 .05 56 56 72 72 27 27 
.80 .2 .01 94 93 122 122 44 44 
.80 .3 .05 28 28 36 35 15 15 
.80 .3 .01 46 45 59 59 23 23 

.90 .I .05 63 62 87 86 30 30 

.90 .1 .01 106 105 147 147 49 49 

.90 .2 .05 21 20 28 27 12 11 

.90 .2 .01 34 33 46 45 18 17 

.90 .3 .05 13 12 18 16 8 8 

.90 .3 .01 21 20 28 25 11 11 
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TABLE 2. 
Empirical Coverage Rates for Spearman Correlations (ct = .05) 

27 

Variance Estimate 

0 n A B C 

• 1 20 95.4 95.8 94.8 
50 95.7 95.5 95.1 

100 95.6 95.3 95.2 
200 95.3 95.0 95.0 

.3 20 95.2 95.3 94.6 
50 95.2 95.3 94.9 

100 95.3 95.3 95.0 
200 95.3 95.2 95.1 

.5 20 94.8 95.6 94.2 
50 95.0 95.6 95.0 

100 94.7 95.4 94.9 
200 94.8 95.5 95.1 

.7 20 94.5 95.7 94.4 
50 94.1 95.5 94.4 

100 94.0 95.8 94.5 
200 94.0 95.8 94.9 

.8 20 93.8 95.8 94.1 
50 93.2 95.5 94.1 

100 93.0 95.6 94.1 
200 93.1 95.6 94.4 

.9 20 92.4 95.1 92.6 
50 92.3 95.5 93.6 

100 92.1 95.6 94.1 
200 92.1 95.6 94.2 

.95 20 89.5 94.0 90.8 
50 90.3 94.5 92.3 

100 90.5 94.6 93.0 
200 91.0 95.5 93.7 

Key: A = 1.06/(n - 3) (Fieller, et al., 1957) 
B = (1 + g 2 / 2 ) / ( n  - 3) 

C = 1 / ( n  - 2) + [~l/(6n + 4n 1/2) (Caruso & Cliff, 1997) 

6. Conclusion 

Testing the null hypothesis that a population correlation is equal to zero may not always be 
interest ing--a  confidence interval may be more informative as suggested by Gardner and Altman 
(1986), Schmidt (1996), and many others. When designing a study to estimate a Pearson, Kendall 
or Spearman correlation, the sample size required to obtain a Fisher confidence interval with the 
desired width will be a primary concern. An accurate sample size approximation can be obtained 
using (5). 

Appendix 

The accuracy of  (2) for a Spearman correlation is investigated using three different estimates 
for a.z: 1) 1.06/(n - 3), 2) (1 + 0 2 / 2 ) / ( n  - 3), and 3) 1 / ( n  - 2) + [~[/(6n + 4nl/2).  The third 

estimate was recently proposed by Caruso and Cliff (1997)• All three variance estimates were 
determined empirically. 
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A computer simulation (20,000 random samples per condition) of the empirical coverage 
of a 95% Fisher confidence interval (2) for Spearman correlations under bivariate normality was 
performed for 0 = [. 1 . 3 . 5 . 7 . 8 . 9 . 9 5 ]  and n = [20 50 100 200]. Column A of  Table 2 shows that 
the empirical coverage rate with the Fieller et al. (1957) variance estimate is liberal for 0 > .7. 
Column B of  Table 2 shows that the empirical coverage rate with (1 + 0 2 / 2 ) / ( n  - 3) is close to-- 
95% for 0 < .9 and slightly liberal for 0 = .95 with small n. Column C of Table 2 shows that the 
empirical coverage rate with the Caruso and Cliff (1997) variance estimate is close to 95% for 
0 < .7 and has liberal tendencies for 0 > .7 that are most pronounced with small n. The results 
of Table 2 hold for any monotonic transformation of bivariate normal random variables. 
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