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A Monte Carlo study assessed the effect of sampling error and model characteristics on the 
occurrence of nonconvergent solutions, improper solutions and the distribution of goodness-of-fit 
indices in maximum likelihood confirmatory factor analysis. Nonconvergent and improper solu- 
tions occurred more frequently for smaller sample sizes and for models with fewer indicators of 
each factor. Effects of practical significance due to sample size, the number of indicators per factor 
and the number of factors were found for GFI, AGFI, and RMR, whereas no practical effects 
were found for the probability values associated with the chi-square likelihood ratio test. 
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The  deve lopment  of  conf i rma to ry  analyses  for covar iance  s t ructures  (Bentler, 1983; 
Joreskog,  1969, 1970, 1971, 1978) has p rov ided  cons iderab le  means  to test and  modify  
theories.  Given  a converged and p rope r  so lu t ion  (Joreskog,  1966, 1967), a researcher  
would  assess how well a p r o p o s e d  mode l  accoun ted  for the da t a  with one or  more  
goodness-of-f i t  indices. However ,  little is k n o w n  a b o u t  the effects of  sampl ing  er ror  (and 
model  character is t ics)  upon  the occurrence  of  nonconvergen t  solut ions  and  i m p r o p e r  
so lu t ions  and  the var ious  goodness-of-f i t  indices. In this pape r  we address  these two issues 
with a M o n t e  Car lo  s tudy.  

The  conf i rma to ry  factor  analysis  mode l  ( Joreskog and  Sorbom,  1981) can be given 
as; 

x = A~ + 6 (1) 

where x is a vector  of  k observed  measures ,  ~ is a vector  of m under ly ing  factors such tha t  
m < k, A is a k x m mat r ix  of weights or  factor  loadings  re la t ing the observed measures  to 
the under ly ing  factors, and  6 is a vector  of  k var iables  which represent  r a n d o m  measure-  
ment  e r ror  and  ind ica tor  specificity. F o r  convenience,  let E ( x ) =  E ( ~ ) =  E ( 6 ) =  0. I t  is 
assumed by this mode l  tha t  E ( ~ 6 ' ) =  E ( 6 6 ' ) =  0. The  var iance-covar iance  mat r ix  for x, 
defined as X is: 

X = A@A'  + Oo (2) 
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where • is the m x m covariance matrix of ~ and O~ is the diagonal k x k covariance 
matrix of 8. If the observations of x are independent and have a multivariate normal 
distribution, full information maximum likelihood (FIML) estimates of the model param- 
eters are provided by the LISREL program (Joreskog and Sorbom, 1978, 1981). 

Nonconvergence and Improper Solutions 

Solutions are nonconvergent when an estimation algorithm, within a set number of 
iterations, is unable to arrive at values which meet prescribed criteria (see Joreskog, 1967). 
Although the computational method of Joreskog and Sorbom (1978, 1981) has better 
convergence properties than alternative methods (Joreskog, t966, 1967, 1969), non- 
convergent solutions can still occur. A primary cause of nonconvergence is a pattern of 
observed correlations that is fundamentally incongruent with the specified model. For 
example, because of sampling error, a negative correlation may be obtained between two 
indicators in a properly specified model even though the corresponding population value 
is positive. 

Solutions are improper when one or more of the unique variances of Oa is less than a 
positive, arbitrarily small, prescribed number such as .005 (Joreskog, 1967). Variances can 
even become negative since the only constraint imposed by the LISREL program is that 
~, is positive definite (Joreskog and Sorbom, 1981). van Driel (1978) has discussed three 
causes of improper solutions: Sampling fluctuations combined with true values of O~ 
close to zero, lack of a factor analytic model which would fit the data, and indefiniteness 
of the model. Jackson and Chan (1980) have stated that because of problems presented by 
improper solutions (e.g., nonunique parameter estimates), "extreme caution" should be 
exercised when interpreting such results. 

Goodness-of-Fit Indices 
The first goodness-of-fit index to be widely used was the probability associated with 

the chi-square likelihood ratio test (Lawley and Maxwell, 1971), which is N - 1 times the 
minimum value of the fitting function obtained for the specified model (Joreskog and 
Sorbom, 1978, 1981). This fitting function, F, is: 

F = log[ ~21 + tr (SE- 1) _ log [ S] - k (3) 

where S is the sample variance-covariance matrix, and 12 and k are defined as in (t) and 
(2). Under the assumption of multivariate normal x, (N - 1)F is asymptotically distrib- 
uted as chi-square. "If the model is correct and the sample size sufficiently large, the 
x2-measure is the likelihood ratio test statistic for testing the model against the alternative 
that I2 is unconstrained" (Joreskog and Sorbom, 1981, p. 1.38). 

T---he associated degrees of freedom (df) for X 2 are: 

dr = [(½)k(k + 1)] - t (4) 

where t is the number of independent parameters that are estimated. The probability level 
for the obtained chi-square value is the probability of obtaining a larger chi-square given 
that the model is correct; so small chi-square values with corresponding large probability 
levels indicate good fit. Thus the probability value associated with the chi-square likeli- 
hood ratio (PRCHI) is used as the goodness-of-fit index, rather than the chi-square value 
per se, as judgments of fit are based upon this associated probability value. 

It has been noted (Bentler and Bonett, 1980; Joreskog, 1978) that this chi-square 
statistic, being partly a function of N, is sensitive to sample size. In very large samples, 
residuals of no practical significance can lead to statistical rejection of a model, whereas in 
very small samples less appropriate models can be judged as providing "adequate fit." 
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Joreskog and Sorbom (1981, pp. 1.38-39) have pointed out that the chi-square measure is 
better thought of as a goodness-of-fit measure rather than a test statistic because assump- 
tions underlying the test (e.g., multivariate normality, large sample size) are seldom fully 
met in practice. 

Joreskog and Sorbom (1981, pp. 1.40--41) recently proposed three additional overall 
goodness-of-fit indices: the goodness-of-fit index (GFI), GFI adjusted for degrees of free- 
dom (AGFI), and the root mean square residual (RMR). The goodness-of-fit index for full 
information maximum likelihood (FIML) is defined as: 

tr (~- IS  - i)2 
GFI = 1 tr (Y2- IS)2 (5) 

where ~, is the fitted variance-covariance matrix. The goodness-of-fit index adjusted for 
degrees of freedom is: 

AGFI = 1 - [k(k + 1)/2d](1 - GFI) (6) 

where d is the degrees of freedom for the model. Joreskog and Sorbom have given the 
following as properties of GFI (and AGFI): a) it should be between zero and one (al- 
though theoretically it can become negative), b) it indicates the relative amount of vari- 
ance and covariance explained by a model, c) it is independent of sample size (unlike 
chi-square) and d) it is relatively robust against violations of normality. Unfortunately, the 
sampling distributions of GFI and AGFI are not known, limiting their usefulness in prac- 
tice. 

The root mean square residual (RMR) is defined by Joreskog and Sorbom (1981) as: 

RMR = 2 (sij - 6ij)2/k(k + 1) (7) 

where di~ are the elements of the fitted variance-covariance matrix, ~. Note that in this 
definition, and in the implementation of LISREL V, the diagonal residuals are counted 
twice. This goodness-of-fit index provides a measure of the average magnitude of the 
residuals. Joreskog and Sorbom have noted that RMR should be judged relative to the 
sizes of the elements in S. 

The final goodness-of-fit index included in this study was a reliability coefficient for 
maximum likelihood factor analysis proposed by Tucker and Lewis (1973). This reliability 
coefficient (RHO) can be defined as: 

RHO - M °  - M k  (8) 
u 1 ~  ° _ E ( M R  ) • 

Computational equations for the components of RHO are provided by Burt (1973, pp. 
148-149): 

k - 1  k 
2 E Es,  

i = 1  j = i + l  (9a) 
Mo = k(k + 1)/2 

F 
Mk = ~ (9b) 

E(Mk) = 1/N. (9c) 

This reliability coefficient represents the proportion of covariation to be explained that is 
accounted for by a specified model. Burt has suggested that RHO is less sensitive to large 
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sample sizes than PRCHI because only covariation rather than total variation is con- 
sidered in the computation of RHO. While the values of RHO will typically be between 0 
and 1, it is possible with confirmatory models to obtain values of RHO outside these 
bounds (Burt 1973). 

Bentler and Bonett (1980) have provided an alternate expression for RHO: 

RHO - Qo - Qk (10)  
- - ~ - 1  

where, letting v represent the chi-square statistic, 

Qo = vo/dfo (1 la) 

The term Qo represents the ratio of the chi-square statistic to its degrees of freedom for 
Bentler and Bonett's (1980) null model, which here corresponds to a model with no 
common factors: "the severely restricted model specifying that the variables are mutually 
independent" (p. 596). A similar term can be defined for the model with k common fac- 
tors: 

Ok = Vk/dfk (1 lb) 

According to this interpretation, "The index p represents an index of increment in fit 
obtained by using k common factors rather than none" (p. 599). 

The equivalence of the formulas given by Burt (1973) and Bentler and Bonett (1980) 
follows from an asymptotic identity presented by Tucker and Lewis (1973, p. 4). 

k - 1  k 

F = E ~ g~ (12) 
i= 1 j = i +  1 

where #ij is a partial correlation between variables i and j with the common factors par- 
tialed out. So, when there are no common factors, as in the null model, (10) becomes the 
same as (8) when both the numerator and denominator are multiplied by 1/N. 

Past Research 

Three studies are particularly relevant to the present study. The first is a Monte 
Carlo experiment on unrestricted or exploratory maximum likelihood factor analysis by 
Gweke and Singleton (1980). The distribution (based upon 100 replications) of the chi- 
square likelihood ratio statistic was studied for zero, one and two factor models em- 
ploying five indicators and 10, 30, 150, or 300 observations. When the assumptions un- 
derlying the model were met, the likelihood ratios for a two factor model were chi-square 
distributed for sample sizes of thirty or more. In contrast, when one or two unique vari- 
ances for the two factor model were zero, the distributions of the likelihood ratios for all 
sample sizes were significantly different from the theoretical chi-square distribution, with 
the null hypothesis being rejected more frequently than expected. 

Boomsma (1982) has conducted a Monte Carlo study on confirmatory maximum 
likelihood factor analysis. Two factor models were studied where factor correlation (.0 or 
.3), factor loading pattern (.4 and .6; .6 and .8; and .9), and number of indicators per factor 
(3 or 4) were varied for sample sizes of 25, 50, 100, 200, or 400 (with 300 replications of 
each). Nonconvergence occurred most frequently for sample sizes of 25 and 50 (ranging 
from 0 to 55% of solutions), particularly for models with the .4 and .6 loading pattern. 
The presence of improper solutions decreased as 1) sample size increased, 2) the number 
of indicators in the model was eight rather than six, and 3) the population values of the 
unique variances were further from zero. Unfortunately, improper solutions were included 
with the proper solutions in the analysis, and as Boomsma (1982, p. 158) stated, 



JAMES C. A N D E R S O N  A N D  D A V I D  W .  G E R B I N G  159 

"Throughout this study the reader should realize, especially with small samples, that the 
results are more or less 'biased' by these negative estimated uniquenesses." The chi-square 
goodness-of-fit statistic deviated considerably from the theoretical chi-square distribution 
for sample sizes of 25 and 50. Related to this, there was an overall tendency for the test 
statistic to be too large (particularly for sample sizes of 25 and 50), thereby inflating the 
Type I error rate. In discussing the results, Boomsma concluded that it is "dangerous" to 
use confirmatory maximum likelihood factor analysis with sample sizes less than 100 
(particularly for models with relatively low factor loadings) and for a "low risk of drawing 
wrong conclusions" a sample size of at least 200 should be employed. 

A small Monte Carlo study on confirmatory maximum likelihood factor analysis has 
been done by Bearden, Sharma, and Teel (1982). A two-factor model and a four-factor 
model with three indicators per factor were studied for sample sizes of 25, 50, 100, 500, 
1000, 2500, 5000, and 10000 (with 100 replications of each). Unfortunately, the usefulness 
of this study's findings are limited in that the characteristics of the two population covari- 
ance/correlation matrices employed are seldom found in practice. The within-factor in- 
dicator correlations range from .72 to .86 with 8 of the 18 correlations .8 or greater. As 
indicative of the atypical nature of these matrices, neither nonconvergent nor improper 
solutions were obtained, despite using a sample size of 25. For the two-factor model, the 
sample distribution of the chi-square likelihood ratio was found to not be significantly 
different from the theoretical chi-square distribution for any of the sample sizes, whereas 
for the four-factor model, the distribution of this statistic was significantly different from 
chi-square for sample sizes smaller than 500. 

Although this past research has provided some information, clearly more research is 
needed on the effects of sampling error upon the occurrence of nonconvergent solutions, 
improper solutions, and the different goodness-of-fit indices. While PRCHI has received 
some study, to our knowledge no work has addressed the other goodness-of-fit indices-- 
GFI,  AGFI, RMR and RHO. Furthermore, a thorough study would require the model 
characteristics of number of indicators per factor, indicator loadings, number of factors, 
and factor correlations to be systematically varied along with sample size within a single 
design. Again, to our knowledge this has not been done. For  these reasons, a large-scale 
Monte Carlo study was undertaken. 

Method 

Desi#n 

A primary challenge of the study was to select a manageable design that addressed a 
reasonably diverse set of factor models and sample sizes. The levels of each factor were 
chosen so as to represent the range of values typically encountered in practice. 

Fifty was chosen as the smallest sample size in that it approximates the lower bound 
for confirmatory factor analysis. Small increments to levels of 75, 100, and 150 were used 
to obtain more detailed information on the performance of the goodness-of-fit indices at 
the lower range of sample sizes. To approximate a relatively large sample size, a level of 
300 observations was included. 

The minimum number of indicators per factor for multiple indicator measurement 
models is two, which was the lower bound in this study. Because three and four indicators 
per factor are commonly found in these models, they were the two other levels used. Five 
or more indicators per factor have seldom appeared in the literature. 

One level of loadings was .9 for all indicators, which approximates the upper bound 
of indicator reliability obtained in practice. A loading of .6 for all indicators was selected 
to represent a moderate loading. For  substantive interest, a level of mixed loadings was 
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TABLE 1 

Independent Variables and Goodness-of-Fit Indices 

Independent Variables 

Code Variable Levels 

S Sample size 50, 75, 100, 150, or 300 

I Indicators/factors 2, 3, or 4 

L Loadings al l  .6, al l  
.4, .8; .4, 

F Factors 2, 3, or 4 

C Correlations of .3 or .5 
Factors 

.9, or mixed: 
.6, .8; or .4, .6, .6, .8 

Indices 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Code Index 

GFI 

AGFI 

RMR 

PRCHI 

RHO 

Goodness-of-fit 

Adjusted goodness-of-fit 

Root mean square residual 

Probability of chi-square given null hypothesis 

Rel iab i l i ty  coefficient 

also included where the loadings averaged .6. The values of this level for two indicators 
were .4 and .8; for three indicators .4, .6, .8; and for four indicators .4, .6, .6, .8.t 

The number of factors in the model was either two, three or four. Two was included 
as a lower bound, whereas three and four factors per model would be encountered more 
often. The levels of factor correlation chosen for study were low and moderate, .3 and .5 
respectively. As some correlation between factors is usually posited in a confirmatory 
factor analysis, a level of zero correlation between factors was not included. 

This 5*3*3*3*2 design is summarized in the upper half of Table 1. The five goodness- 
of-fit indices that were studied are given in the lower half of Table 1. 

Procedure 

Fifty-four population correlation matrices corresponding to the 54 factor models 
(3*3*3*2) were constructed using the rules of path analysis (Heise, 1975). The IMSL sub- 
routine G G N S M  in conjunction with the IMSL subroutine G G U B S  (IMSL, 1980) was 
used to construct a multivariate normal population based upon the corresponding popu- 
lation correlation matrix and to generate samples of size S~ from which sample covariance 
matrices were computed. The G G U B S  subroutine is a uniform random number generator 
whose accuracy has been supported (Learmouth and Lewis, 1973). Multivariate normal 
populations are constructed from the output of G G U B S  using a set of exact transforms 

A necessary confound was introduced between the mixed level of loadings and the number of indicators. 
This level was included because of substantive interest in the effects of mixed loadings. Analysis of the mean and 
variance effects for the goodness-of-fit indices without the level of mixed loadings revealed that this confound 
was of no consequence. 
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embodied in the subroutine GGNSM. An initial random number is supplied as a seed 
which is then replaced by an internally generated random number on each of the subse- 
quent calls to GGNSM. A different random number was used as the seed for each sample 
generation. 

The maximum likelihood confirmatory factor analyses were performed on a CDC 
Cyber 170/750 computer using the LISREL IV program (Joreskog and Sorbom, 1978), 
adapted to run n times successively. Test runs were made using each population covari- 
ance matrix and the corresponding LISREL control statements. The respective popu- 
lation parameter values were specified as the start values for each analysis. A FORTRAN 
program was written to extract the information from the input covariance matrix and the 
LISREL output needed for the goodness-of-fit indices. The PRCHI index was taken di- 
rectly from the output, whereas GFI, AGFI, and RMR were calculated using the formulas 
given by Joreskog and Sorbom (1981, pp. 140-142). RHO was calculated using the formu- 
las given by Burt (1973, pp. 148-149). Computational results from test data for GFI, 
AGFI, and RMR were checked against the corresponding results obtained from a separ- 
ate matrix computational program, whereas the computational results for RHO were 
checked by hand. 

One hundred proper and converged solutions were obtained (as replications) for each 
of the 270 cells in the design. The operational definition of nonconvergence employed was 
that of the LISREL program--failure to reach the convergence criteria (see Joreskog, 
1967, p. 460) after 250 iterations. Improper solutions were not included for two reasons: 
The considerable problems of interpretability (and possible bias) discussed earlier, and the 
desire to generalize the study's findings to solutions most often obtained in practice. 

Analyses 

To assess the effects of sampling error and model characteristics upon the occurrence 
of nonconvergent and improper solutions, two qualitative dependent variables were 
formed. For convergence (CONVER), improper and "good" (converged and proper) solu- 
tions were coded 1 whereas nonconvergent solutions were coded 0. For proper versus 
improper solutions (PROPER), good solutions were coded 1, whereas improper solutions 
were coded 0. Log-linear/logit models were fit to the data using maximum likelihood 
estimation. The proportion of weighted variation explained by each model (Goodman, 
1971), analogous to the coefficient of multiple determination (R2), was calculated in addi- 
tion to the usual likelihood ratio chi-square (X 2) statistic. 

To assess the effects of sampling error and model characteristics upon the goodness- 
of-fit indices, separate analyses of variance were run for each index. Given the number of 
observations (N = 27000), a criterion of practical significance of effects accounting for 
three or more percent of the variance was adopted in place of traditional statistical signifi- 
cance testing. The 092 statistic (Hays, 1973) was computed for this purpose. To test for 
differences in the variance of each index across the design, an analysis of variance (fitting 
main effects and two-way interactions) was performed using the In s 2 of each cell (Games, 
Keselman, and Clinch, 1979). Again, the practical significance criterion of three or more 
percent of the variance explained was adopted. Summary statistics consisting of means, 
standard deviations, and 5th or 95th percentile values were computed, and are presented 
for each mean and variance effect of practical significance. 

Finally, to determine whether or not the sample distributions of the chi-square likeli- 
hood ratios were significantly from the theoretical chi-square distribution, Kolmogorov- 
Smirnov tests (Siegel, 1956) were computed for each of the 270 cells using the associated 
probability values (PRCHI) (see Geweke and Singleton, 1980). The number of solutions in 
each cell with probability values less than 0.05 and 0.10 was also calculated. 
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Results 

Nonconvergence and Improper Solutions 

To obtain 27000 good solutions, it was necessary to generate 43410 solutions, of 
which 5609 (12.9%) were nonconvergent and 10801 (24.9%) were improper. Although the 
presence of a relatively large number of zero cells (for both CONVER and PROPER) is 
desirable from a consideration of the overall research purpose, their presence made it 
difficult to estimate the higher-order log-linear/logit models. As a result, only main effects 
models could be stably estimated. However, the main effects models provided good expla- 
nation of the data, accounting for 9&3% of the weighted variation to be explained in 
CONVER and 86.1% of the weighted variation to be explained in PROPER. The source 
tables for CONVER and PROPER are presented in Table 2. The proportion of non- 
convergent solutions that occurred in obtaining 100 good solutions per cell are summa- 
rized in Table 3 whereas the proportion of improper solutions are summarized in Table 4. 

Examination of the parameter estimates for CONVER indicated that the proportion 
of convergent solutions increased as: Sample size increased, the number of indicators per 
factor increased, loadings varied from mixed to all .6 to all .9, and factor correlations 
increased. The proportion of convergent solutions decreased as the number of factors 
increased, although this finding is of little practical significance as indicated by its rela- 
tively small chi-square value. Examination of the parameter estimates for PROPER re- 
vealed a similar pattern of findings as obtained with CONVER, with the important differ- 
ences between the two discussed below. 

While it was not possible to fit the two-way or higher-order interaction log-linear 
models for the six-way contingency tables, a separate (though non-independent) assess- 
ment of each two-way interaction effect was possible. Three-way contingency tables were 
formed (e.g., CONVER*S*I), and the chi-square difference values between the main ef- 
fects model (e.g., CONVER*S and CONVER*I) and the two-way interaction (saturated) 
model (e.g., CONVER*S*I) were examined. For CONVER, a two-way interaction effect 
of considerable size was S*I (xz(8) = 175.0, p < 0.0001). It was found that as sample size 
increases, fewer indicators per factor are needed for convergence. 

For PROPER, three two-way interaction effects were of considerable size: I*L 
(X~(4)= 1588.5, p<O.O001), L*C (X2(4)=487.7, p<O.O001), and S*I (X2(a)= 238.7, 
p < 0.0001). It was found from these analyses that with two indicators per factor, loadings 

TABLE 2 

The Effects Of Sampling Error and Model Characteristics 

Upon Nonconvergent and Improper Solutions 

CONVER PROPER 

Source df x 2 x ~ 

Constant I 3384.4 7197.8 
S 4 1527.0 2221.5 
I 2 1915.3 5610.2 
L 2 2203.1 1075.6 
F 2 38.9 146.1 
C I 1198.2 1288.4 

Main effects 
model 258 461.6 2482.4 

Note. All effects signif icant beyond the .0001 level. 
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TABLE 3 

Proportion of Nonconvergent Solutions Across the Design 

I=2 

L=.4,.8 L=.6,.6 L=.9,.9 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

S C=. 3 C=. 5 C=. 3 C=. 5 C=. 3 C=, 5 

50 .58 .31 .53 .23 .13 .01 
75 .48 .22 .44 .10 .05 .00 

100 .40 .11 .31 .06 .02 .00 
150 .25 .04 .20 .01 .01 .00 
300 .01 .00 .04 .00 .00 .00 

I=3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

L=.4,.6,.8 L=.6,.6,.6 L=.9,.9,.9 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

S C=. 3 C = . 5 C=. 3 C=. 5 C=. 3 C=. 5 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

50 .18 .03 .12 .02 .00 .00 
75 .05 .01 .02 .00 .00 .00 

i00 .02 .00 .01 .00 .00 .00 
150 .00 .00 .00 .00 .00 .00 
300 .00 .00 .00 .00 .00 .00 

I=4 

L=.4, .6, .6, .8 L=.6,.6, .6, .6 L=.9,.9,.9,.9 

S C=. 3 C=. 5 C:. 3 C=. 5 C=. 3 C=. 5 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

50 .01 .01 .02 .02 .00 .00 
75 .00 .00 .00 .00 .00 .00 

100 .00 .01 .00 .00 .00 .00 
150 .00 .00 .00 .00 .00 .00 
300 .00 .00 .00 .00 .00 .00 

Note. Summing across the three levels of F. 

of .9 give the largest proportion of improper solutions, whereas with three or four indica- 
tors per factor, .9 loadings give the smallest proportion (no improper solutions occurred 
in obtaining the 6000 solutions). In addition, when factor correlations are .3, loadings of .9 
yield the largest proportion of improper solutions; whereas when factor correlations are 
.5, the proportion of improper solutions for loadings of .9 markedly decreases with the 
largest proportion occurring for mixed loadings. Lastly, as sample size increases, fewer 
indicators per factor are required to obtain proper solutions. 

Goodness-of-Fit Indices 

Mean and variance differences. The information on each of the indices across the 
270 cells can be sumarized by examining, for each index, mean differences attributable to 
the design with o92 _> 3.0%. Table 5a lists for each index all effects which account for 
3.0% or more of the variance in its respective univariate analysis. 

A general result is that all mean differences which met the criterion of practical 
significance are either main effects or two-way interactions. As can be seen from the 
Table, sample size, the number of indicators per factor, and the number of factors in the 
model strongly influence the mean values of GFI, AGFI, and RMR. In addition, factor 
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TABLE 4 

Proportion of Improper Solutions Across the Design 

I=2 

L=.41.~ L= .6 , . 6  L=.91.9 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

S C=. 3 C=. 5 C=. 3 C=. 5 C=. 3 C=. 5 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

50 .62 .58 .57 .38 .86 .53 
75 .60 .50 .49 .29 .76 .36 

100 .58 .54 .46 .19 .69 .22 
150 .55 .42 .37 .I0 .50 .11 
300 .43 .25 .17 .00 .21 .00 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I=3 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

L=.4,.6,.8 L=.6,.6,.6 L=.9,.9,.9 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

S C=.3 C=.5 C=.3 C=.5 C=.3 C=.5 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

50 .53 .38 .25 .07 .OO .DO 
75 .40 .22 .08 .03 .00 .DO 

100 .30 .13 .03 .00 .00 .00 
150 .16 .04 .00 .00 .00 .00 
300 .03 .00 .DO .00 .00 .00 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I=4 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

L ~ . 4 , . 6 , . 6 , . 8  ~ . 6 , . 6 , . 6 , . 6  L = . 9 , . 9 , . 9 , . 9  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

S C=. 3 C=. 5 C=. 3 C=. 5 C=. 3 C=. 5 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

50 .25 .13 .06 .01 .00 .00 
75 .10 .06 .00 .01 .00 .00 

I00 .08 .00 .00 .00 .00 .00 
150 .01 .01 .00 .00 .00 .00 
300 .00 .00 .00 .00 .00 .00 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Note. Summing across the three leve ls  of  F. 

loadings exert a considerable effect upon the values of RMR. Note that factor correlation 
(with levels of .3 and .5) was found not to have any effects of practical significance for any 
of the goodness-of-fit indices. Considering the indices, the design factors account for the 
most variance in GFI  (86.8%) followed by RMR (74.9%) and AGFI (66.6%). The corre- 
sponding ANOVA tables for each univariate analysis where effects with 092 _ 3.0% were 
found are presented in Table 6. 

Variance differences across the design with ~2 > 3.0%, as indicated by analyses of 
variance of In s z, are presented in Table 5b_Considering the indices, variance effects for 
GFI,  AGFI,  RMR and RHO are all well explained by the design factors with sample size 
having by far the strongest effects. Note that although no practically significant mean 
effects were found for RHO, strong differences in variances across the design occurred. 

Useful descriptive statistics for each index are the mean, standard deviation and 5th 
or 95th percentile. The 5th percentile was used for indices in which large values indicate a 
good fit whereas the 95th percentile was used for indices in which 0.00 indicates a perfect 
fit. These reported percentile values provide the index value of interest for evaluating the 
fit of a model in practice, given that the null hypothesis is true that the proposed model 
fit~ the data, and assuming an underlying multivariate normal distribution. The calculated 
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TABLE 5 

Effects with w 2 ~ 3.0% 

for Goodness-of-Fit Indices 

Table 5a: Mean Effects 

Index 

Effect GFI AGFI RMR PRCHI RHO 

Sample size 28.3 41.7 24.7 
Indicators 28.7 10.8 21.9 
Factors 17.7 10.0 8.9 
Loadings 19.4 
S*I 8.3 4.1 
S*F 3.8 

Total 86.8 66.6 74.9 

Table 5b: Log of Variance Effects 

Index 

Effect GFI AGFI RMR PRCHI RHO 

Sample size 68.6 69.6 50.5 3.8 31.1 
Indicators 11.2 13.1 3.1 3.6 19.7 
Factors 4.8 6.7 9.7 4.4 
Loadings 21.1 31.2 
S*F 3.7 
I*F 5.4 5.3 

Total 90.0 89.4 89.7 11.1 86.4 

TABLE 6 

Analysis of Variance for Goodness-of-Fit Indices 

GFI AGFI 

Effect df SS F SS F 

Between 269 55.42 1009.21 
Sample size 4 17.24 21117.98 
Indicators 2 17.48 42813.45 
Factors 2 10.78 26400.44 
S*I 8 5 .07  3102.60 
S*F 8 2 .33  1428.92 

Within 26730 5.46 
Total 26999 60.87 

106.93 278.58 
60.57 10611.65 
15.67 5490.42 
14.58 5107.91 
5 .89 516.27 

38.14 
145.07 

RMR 

Effect df SS F 

Between 269 12.96 514.97 
Sample size 4 3.82 10211.76 
Factors 2 1 .38  7393.46 
Loadings 2 2.99 15992.68 

Within 26730 2.50 
Total 26999 15.46 
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index percentile values are correspondent with a 95% confidence interval, the boundary 
values of which are typically constructed from a sample mean and standard deviation. 

These descriptive statistics for each index across the 270 cells are summarized accord- 
ing to the pattern of mean and variance effects with o92 > 3.0%. At one extreme, if no 
design effects for an index are of practical significance, then the design can be summed 
across and only a single mean, standard deviation and percentile value need to be report- 
ed. At the other extreme, if a five-way interaction was of practical importance, then the 
descriptive statistics would need to be reported for all 270 cells. The descriptive statistics 
were computed by summing across as many design factors as possible given the o~ 2 > 
3.0% criterion. These statistics for the main effects are listed in Table 7; the interaction 
effect statistics appear in Table 8. 

A primary finding is that GFI  and AGFI  tend to increase as sample size increases, 
although the presence of S*I and S*F interaction effects moderate this pattern. As the 
number of indicators per factor or the number of factors increases, the values of GFI  and 
AGFI decrease, particularly for smaller sample sizes. Thus the smallest values are found 
with four indicators per factor or four factors in the model, and a sample size of 50. As an 
example, the GFI  grand mean is .95 but the GFI  mean value for four indicators and a 
sample size of 50 is .85, as shown in Tables 7 and 8. Similarly, when there are four factors 
and a sample size of 50, the GFI  mean value is .87. 

The RMR index dramatically decreases as an inverse function of sample size, from 
.060 for a sample size of 50 to .025 for a sample size of 300. The RMR mean value for four 

TABLE 7 

Summary Statistics on Indices for Main Effects with ~2 ~ 3.0% 

Index 

Effect GFI AGFI RMR 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Mean SD 5pcnt Mean SD 5pcnt Mean SD 95pcnt 

Overall .949 .047 .850 .903 ,073 .758 .043 .024 .087 

Sample Size 

50 .909 .064 .791 .828 .084 .697 .060 .028 .105 
75 .936 ,045 .853 ,880 .060 .785 .050 .023 .086 

100 .952 .034 .887 .908 .045 .838 .043 .020 .074 
150 .965 .026 ,919 .932 .051 .881 .036 .016 .061 
300 .983 .012 .960 .968 .016 .942 .025 .012 .043 

Indicators 

2 .980 .022 .939 .933 .068 .812 .027 .019 .064 
3 .948 .038 .869 .902 .063 .775 .048 ,021 .087 
4 .918 .054 .805 .874 .076 .723 .054 .023 .096 

Factors 

2 .974 .027 ,918 .933 .062 .817 .033 .024 .077 
3 .947 .044 .860 .900 .072 .762 .045 .022 .087 
4 .925 .054 .813 .876 .074 .729 .051 .023 .093 

Loadings 

mixed .051 .024 .094 
.6 .050 .024 .091 
.9 ,028 .015 .055 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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indicators (.054) is twice the size of the mean value for two indicators (.027). High factor 
loadings (.9) also yield smaller mean values (.028) than moderate (.050) or mixed (.051) 
loadings, and the RMR mean values increase with the number of factors in the model. 

Considering the log of variance (In s 2) effects, sample size was found to have a pre- 
dominant influence upon GFI,  AGFI, RMR and RHO, with its effects in the expected 
direction. As an illustration of this, the standard deviation of the GFI  values for a sample 
size of 50 is .064, whereas for a sample size of 300 the standard deviation is just .012. 
Corresponding to this marked decrease, the fifth percentile value for GFI  increases from 
.791 to .960 (as sample size increases from 50 to 300). A consistent pattern of results can 
be observed in Table 7 for AGFI, RMR, and RHO. 

As noted earlier, strong variance effects were found for RHO, although the mean 
values were practically constant, varying in Table 7 from .989 to 1.035. The effect of 
outliers on the distribution, and in particular, the variance of RHO, was considerable. To 
better understand this effect, further analyses of RHO were done: the outlying observa- 
tions were identified whose absolute values were greater than or equal to 50, and the 
marginal means and standard deviations were recomputed for a related index, RHO*, 
where these outliers were not present. Eleven observations out of the 27000 were found to 
surpass this criterion value. The values of these observations for the five goodness-of-fit 
indices are presented in Table 9, and the comparison values for RHO* appear in Table 7. 

TABLE 7 (continued) 

Summary Stat is t ics  on Indices for Main Effects with ~2 _> 3.0% 

Index 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Effect PRCHI RHO RHO* 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Mean SD 5pcnt Mean SD 5pcnt Mean SD 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Overall .471 .292  . 0 3 5  1.014 2.836 . 8 2 3  1 . 0 1 7  .809 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Sample Size 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

50 .442 .299 .020 .989 5.788 . 6 1 5  1 .029  1.690 
75 .464 .292 . 0 3 1  1 .050 2.579 . 7 9 4  1 . 0 2 6  .582 

100 .475 .293 . 0 3 8  1.019 ,251 . 8 5 8  1 . 0 1 9  .251 
150 .485 .287 . 0 4 4  1 . 0 0 9  .107 . 9 0 2  1 . 0 0 9  .107 
300 .488 .288  . 0 4 9  1 . 0 0 1  .056 . 9 4 9  1 . 0 0 1  .056 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Indicators 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 .536 .282 .075 i .  030 4. 254 .724 1. 066 i .  366 
3 .461 .290  . 0 3 4  1 . 0 0 0  .295 . 8 4 1  1 . 0 0 0  .295 
4 .416 .292 . 0 2 0  1 .010 2,440 .864 .984 .093 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Factors 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 1.028 2.131 . 7 6 8  1 .035  1,118 
3 1.017 4,386 . 8 3 0  1 . 0 2 0  ,596 
4 .996 .599 .849 .996 .599 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Loading s 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

mixed 1.035 3.079 . 7 6 0  1.014 1.081 
.6 1.008 3.828 . 7 5 9  1 . 0 3 9  .890 
• 9 .998 .044 .946 .998 .044 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Note. RHO*corresponds to RHO where the 11 out l iners 
~'TI-/~7000 or .04%) with absolute values larger than or equal 
to 50 have been removed. 
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TABLE 8 

Summary Stat ist ics on Indices 

for Interaction Effects with ~2 ~ 3.0% 

Index 

Effect GFI AGFI 

Mean SD 5pcnt Mean SD 5pcnt 

S*I 

50, 2 .967 
50, 3 .908 
50, 4 .851 
75, 2 .977 
75, 3 .932 
75, 4 .899 

100, 2 .982 
100, 3 .950 
i00, 4 .922 
150, 2 .982 
150, 3 .966 
150, 4 .947 
300, 2 .994 
300, 3 .982 
300, 4 .972 

.026 .921 .886 .083 .754 

.042 .842 .826 .061 .733 

.054 .771 .771 .065 .673 

.019 .944 .922 .057 .835 

.035 .872 .873 .051 .784 

.038 .840 .844 .045 .776 

.014 .956 .940 .042 .866 

.024 .911 .906 .035 .850 

.030 .875 .880 .036 .826 
026 .918 .940 .080 .773 
016 .939 .936 .024 .897 
021 .914 .918 .025 .881 
005 .984 .978 .016 .952 
008 .968 .967 .012 .948 
011 .955 .958 .013 .937 

GFI PRCHI 

S*F Mean SD 5pcnt Mean SD 5pcnt 

50, 2 .952 .038 .886 .496 .287 .049 
50, 3 .903 .058 .803 .443 .297 .024 
50, 4 .870 .063 .778 .387 .304 .009 
75, 2 .967 .026 .922 .505 .287 .051 
75, 3 .936 .036 .879 .474 .291 .037 
75, 4 .904 .046 .837 .415 .292 .018 

100, 2 .975 .020 .939 .500 .286 .058 
100, 3 .951 .028 .908 .482 .295 .039 
100, 4 .928 .035 .875 .445 .295 .026 
150, 2 .983 .013 .960 .504 .283 .060 
150, 3 .963 .024 .930 .483 .289 .041 
150, 4 .948 .025 .911 .467 .287 .037 
300, 2 .991 .007 .979 .501 .286 .050 
300, 3 .983 .010 .966 .486 .287 .051 
300, 4 .974 .012 .955 .478 .290 .040 

It can be seen from Table 9 that the observed values for the other indices compare 
favorably to their respective mean values in Table 7. As an example, the observation with 
the largest absolute value of RHO (-295.67)  has a G F I  value of .990 and an RMR value 
of .028. As can be seen from a comparison of RH O  and RHO* in Table 7, removing the 
11 outliers from consideration results in a change in both the size and pattern of the 
standard deviations. For  instance, the standard deviations of RH O  values as a function of 
the number of indicators per factor are 4.254, 0.295 and 2.440 for two, three, and four 
indicators respectively. This peculiar pattern of standard deviations, however, is due to a 
single outlying observation with four indicators per factor which has a RHO value of 
232.27 (as another comparison, the next largest value of RHO for the 99 other observa- 
tions in that cell is 1.182). Removal from consideration of this one observation from the 
9000 observations with four indicators per factor lowers the standard deviation to .093, a 
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TABLE 8 (continued) 

Summary Statistics on Indices 

for Interaction Effects with ~2 ~ 3.0% 

Index 

GFI RMR 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I*F Mean SD 5pcnt Mean SD 5pcnt 

996 .007 .984 .012 .012 .036 
978 .020 .946 .031 .016 .062 
966 .022 .922 .039 .018 .073 
973 .019 .935 .040 .019 .076 
947 .031 .888 .050 .021 .089 
923 .042 .847 .054 .021 .092 
952 .029 .897 .048 .021 .088 

.916 .049 .823 .054 .022 .095 

.886 .057 .786 .059 .023 .101 

2,2 
2,3 
2,4 
3,2 
3,3 
3,4 
4,2 
4,3 
4,4 

decrease of 2.347 (96.2%). Similar changes can be observed for variance effects due to 
sample size and the number of factors in a model. 

No mean effects of practical significance were found for PRCHI. Apart from this, 
only small variance effects due to sample size, indicators per factor, and sample size by 
number of factors were found. A finding of interest for PRCHI, however, is the conver- 
gence of the fifth percentile value upon the expected probability value (.05) as sample size 
increases to 300 (.049). 

Kolmogorov-Smirnov values. For the purpose of parsimony, an analysis of variance 
was performed on the Kolmogorov-Smirnov (KS) values resulting from the 100 repli- 
cations within each of the 270 cells. For the main effects and the two-way interactions 
which were estimated, effects of practical significance (as given by 092 ) were found for 
sample size (17.7%), factors (12.9%), indicators (11.5%), indicators by factors (8.9%), 
sample size by factors (8.2%), sample size by indicators (5.5%), and indicators by loadings 
(3.3%)• As expected, the Kolomogrov-Smirnov mean values decrease as sample size in- 
creases, and the mean values increase with the total number of indicators in the model 

TABLE 9 

Values of Goodness-of-Fit Indices 

for Observations with IRHOI ~ 50 

Design Index 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

S I L F C RHO GFI AGFI RMR PRCHI 

50 2 .6 3 .3 -295.67 
50 4 m 3 .3 232.27 
75 2 .6 3 .3 107.84 
75 2 m 2 .3 103.75 
50 2 m 3 .5 -84.85 
50 2 .6 2 .3 -84.23 
50 2 .6 3 .3 77.85 
75 2 .6 2 .5 -72.97 
75 2 .6 3 .3 -60.21 
50 2 m 2 .3 -57.44 
75 2 .6 2 .3 54.96 

• 990 
• 879 
986 
994 
981 
998 
975 
999 
998 

.993 

.997 

965 .028 .961 
815 .080 .738 
951 .040 .759 
941 .029 .348 
935 .036 .827 
983 .014 .681 
913 .053 .716 
987 .010 .663 

.991 .014 .997 

.926 .030 .390 

.969 .017 .494 
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TABLE 10 

Correlations Between Goodness-of-Fit Indices x 

Index 

Index GFI AGFI RMR PRCHI RHO 

GFI 1.00 .86 -.67 .78 .03 
AGFI .91 1.00 -.68 .72 .03 
RMR -.73 -.71 1.00 -.72 -.03 
PRCHI .43 .50 -.40 1.00 .03 
RHO .01 .02 -.01 .03 1.00 

Note. N = 27000 

i Grand mean deviated below the diagonal, 
Within-cell deviated above the diagonal. 

(the pattern of the factor and indicator main effects, and their interaction). This increase in 
mean values as the number of indicators per factor and the number of factors increase is 
strongly attenuated as sample size increases. For example, the mean values for two, three 
and four factors are .119, .176, and .271 for a sample size of 50 compared to .103, .096, and 
.095 for a sample size of 300. The mean values for two three and four indicators are .131, 
.164 and .270 for a sample size of 50 compared to .096, .090 and .108 for a sample size of 
300. There is an overall tendency for the likelihood ratio test to become conservative 
when the sample distribution significantly departs from the theoretical distribution, re- 
suiting in rejection of the null hypothesis (at both the .05 and .10 levels) more often than 
would be expected. 

Index correlations. The correlations between the indices are presented in Table 10. 
The usual grand mean deviated correlations are given below the diagonal. Correlations 
were also computed by deviating each of the 27000 values of each index from its respec- 
tive cell mean as suggested by Finn (1974). 

A general result is that GFI, AGFI, and RMR are all highly correlated with one 
another using either correlational approach. GFI and AGFI evince the highest corre- 
lation, .91 (or .86). From this table it is clear that RHO hardly correlates, whereas PRCHI 
has a moderate correlation with GFI, AGFI, and RMR. 

Discussion 

Several contributions have been made by this study. First, detailed information on 
the effects of sampling error and model characteristics upon the occurrence of non- 
convergent, and improper solutions has been provided. Second, differences of practical 
significance which resulted from the design factors have been determined for the various 
proposed goodness-of-fit indices. Related to these differences, the expected sample values 
of the goodness-of-fit indices for a wide variety of factor models have been tabled. These 
tabled values allow researchers to compare their results with values that would be ob- 
tained from correctly specified models with multivariate normally distributed data, given 
a particular sample size. Finally, the relationships between the goodness-of-fit indices 
have been provided, as well as the values for these correlations independent of the design. 

Nonconvergence and Improper Solutions 

The occurrence of nonconvergent solutions and improper solutions was found to 
depend primarily upon sample size and the number of indicators per factor. With three or 
more indicators per factor, a sample size of 100 will usually be sufficient for convergence, 
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whereas with only two indicators per factor, problems can arise with sample sizes of 150 
or lower. A related general finding is that to obtain solutions that are proper as well as 
convergent requires a sample size that is somewhat larger, or more indicators per factor. 
A sample size of 150 for models with three or more indicators per factor will usually be 
sumcient for a convergent and proper solution. 

The loadings of the indicators upon their factors can also be a consideration, particu- 
larly in conjunction with the number of indicators per factor. As an example, loadings of 
.9 provided the highest proportion of convergence for two indicators per factor models, 
although loadings of .9 also resulted in the highest proportion of improper solutions (for 
two indicators per factor models). Further, mixed loadings for the three indicators per 
factor models were the only three (or four) indicators per factor models which were found 
to give improper solutions when a sample size of 150 or 300 was employed. 

The occurrence of improper solutions will additionally be lessened when the factor 
intercorrelations are moderate (.5), rather than small (.3). (It should be remembered that 
the atypical occurrence of zero correlation between factors in confirmatory models was 
not considered in this study.) Improper solutions which correspond to the close to zero 
case (van Driel, 1978) are much more frequent when there are only two indicators per 
factor. As a general finding, two indicator per factor models were problematic for obtain- 
ing a convergent and proper solution. 

Goodness-of-Fit Indices 

Given the range of sample sizes and the factor models studied, mean differences of 
practical significance due to sample size, number of indicators and number of factors were 
found for GFI,  AGFI and RMR. As sample size increases, relatively larger values of GFI  
and AGFI are needed to indicate acceptable model fit, whereas relatively smaller values of 
RMR are needed. Increasing the number of indicators per factor or the number of factors 
in a model has obverse effects upon these indices. In addition, high factor loadings result 
in lower values of RMR than do either moderate or mixed loadings. 

Sample size, by far, had the greatest effect upon the variances of the goodness-of-fit 
indices, having an expected inverse relationship with them. Variance differences of practi- 
cal significance were also due to the number of indicators and number of factors. As noted 
earlier, factor correlation was found to not have any mean or variance effects of practical 
significance for any of the goodness-of-fit indices. 

The lack of mean effects due to sample size for PRCHI can be explained by the 
assumptions under which the data were generated. Statements about a positive relation- 
ship between sample size and PRCHI have referred to (somewhat implicitly) a residual 
matrix containing residuals of a fixed size, where these residuals may in part be due to 
trivial discrepancies between the specified model and the data. Given these residuals of a 
fixed size, it can readily be seen that there will be a positive relationship between sample 
size and PRCHI. By contrast, the data in this study were generated from a known multi- 
variate normal population, and perfectly specified models were fit to them. Because of 
this, the generated sample covariances became more accurate population estimates as 
sample size increased, thereby enabling the LISREL program to more accurately estimate 
the underlying covariance structure. The magnitude of the residuals was thus inversely 
related to sample size, as evinced by the findings for RMR, and the related values of the 
fitting function (3) were smaller as sample size increased. The net result of this is that, 
when the assumptions underlying the likelihood ratio test were fully met, there were no 
effects of practical significance for PRCHI  due to sample size. 

Some clarification also is needed with respect to the findings for GFI  (and AGFI), 
and Joreskog and Sorbom's (1981) statement that these goodness-of-fit indices have the 
advantage of being independent of sample size. There is some ambiguity perhaps in their 
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use of "independent of sample size." Whereas GFI  (and hence AGFI) is independent of 
sample size in that sample size is not an explicit part of the equation which defines GFI, 
the distribution of GFI  values is strongly affected by sample size. 

Smaller sample sizes led to sampling distributions of the likelihood ratio test statistic 
that were found to be different from the corresponding theoretical chi-square distribution. 
The total number of indicators in the model, as evidenced by the main effects of number 
of factors and indicators per factor, and their interaction, produced similar results. These 
results for number of factors and indicators per factor, however, are strongly attenuated 
as sample size increases. As only main effects and two-way interactions were fit (due to 
considerations of the degrees of freedom to estimated parameters ratio), it may be the case 
that number of factors, indicators per factor and sample size interact, though this was not 
tested. Throughout, significant departures of the obtained sampling distributions from the 
corresponding theoretical distributions resulted in conservative hypothesis tests where the 
number of solutions that had associated probability values greater than .05 and .10 was 
larger than expected. The results with regard to sample size are consistent with Boomsma 
(1982), and the results for sample size by number of factors are consistent with Bearden, 
Sharma, and Teel (1982). 

The relationships between the goodness-of-fit indices revealed that the information 
provided by AGFI adds little to the information provided by GFI, although AGFI ap- 
pears to be less sensitive to the interaction of the number of factors with sample size. 
RMR is also highly related to GFI  and AGFI. RHO is unrelated to all of the remaining 
goodness-of-fit indices, perhaps because of the extreme sampling variability of RHO. 

This variability of RHO was largely accounted for by a very small number of outliers 
whose values were either much smaller than zero or much larger than one. These outliers 
only occurred with small sample sizes, and with one exception, for models with two in- 
dicators per factor. For the remaining models and sample sizes, the values of RHO were 
much closer to their predicted values. An explanation for these outlying values can be 
seen in the relationships of the three components of RHO to one another when sample 
size is small (i.e., 50 or 75). For smaller sample sizes the LISREL program provides a 
much better fit of the specified model than expected, so Mq is much smaller than E(Mq). 
The sign and degree of aberration in the corresponding value of RHO depends upon the 
sample values of covariances which determine Mo, and in particular, the difference be- 
tween M o and E(Mq). When Mo > E(Mq) > Mq, aberrant positive values of RHO must 
occur, whereas when E(M~) > M o > Mq, aberrant negative values must occur. 

While this study was ambitious in scope, nonetheless, generalization of the findings of 
any Monte Carlo study is limited by its design. One limitation of the present study is that 
the number of indicators per factor was not varied within the same model, which is more 
typical in practice, However, where models "fall between" the models (and sample sizes) 
studied here, their related goodness-of-fit values will likely be between the corresponding 
tabled values. Unfortunately, appropriate rules for interpolation are presently not known. 

Perfect model specification and multivariate normality in the population were as- 
sumed throughout this study. What the differential effects, if any, of model misspecifica- 
tion or the violation of multivariate normality would be upon the behavior of these 
goodness-of-fit indices is also not known. These limitations not withstanding, the models 
used in this study should give the researcher worthwile guidelines in the application of 
maximum likelihood confirmatory factor analysis. 
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