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The polyserial and point polyserial correlations are discussed as generalizations of the biserial 
and point biserial correlations. The relationship between the polyserial and point polyserial corre- 
lation is derived. The maximum likelihood estimator of the polyserial correlation is compared with 
a two-step estimator and with a computationally convenient ad hoe estimator. All three estimators 
perform reasonably well in a Monte Carlo simulation. Some practical applications of the polyserial 
correlation are described. 
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Introduction 

A categorical variable Y is often the result of  coarse-grained measurement  of  an 
underlying cont inuous  variable r/. Fo r  example, a d icho tomous  variable is observed as 
Y = 1 when r /exceeds some threshold value ~, and as Y = 0 otherwise. In  psychology 
[Lazarsfeld, 1959; Lord  & Novick,  1968], biometrics [Finney,  19713 and econometrics 
[Nerlove & Press, Note  13 there are m a n y  examples for which it is reasonable to assume 
that a cont inuous  variable underlies a d ichotomous  or  po lycho tomous  observed variable. 

Table 1 presents several of  the correlational measures that  have been developed to 
assess the relationship between two variables. Al though there are a number  of special 
names for correlations between observed variables having various scale properties, all of  
these correlations can be computed  by the s tandard formula for a p roduc t  momen t  corre- 
lation. 

The tetrachoric correlat ion has been generalized to the case where the observed vari- 
ables X and Y have r and s ordinal  categories, respectively. This correlat ion is called the 
polychoric  correlat ion coefficient. Tallis [19623 derived a max imum likelihood est imator 
for the polychoric  correlat ion that may  be used when r = s = 3. Fo r  the general case, 
Lancaster  and H a m d a n  [19643 derived an est imator based on a series expansion, Mar -  
t inson and H a m d a n  [ t971]  used a two-step estimator,  and Olsson [1979] investigated the 
full max imum likelihood estimator,  and compared  it to  the two-step estimator.  

In this paper  we consider the case where one observed variable is po lycho tomous  and 
ordinal,  and the o ther  observed variable is continuous.  The produc t  momen t  correlat ion 
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TABLE 1 

Types of Correlation Coefficients as a Function of 
Scale Properties of the Observed Variables X and 

Scale of X 

Scale of Y Dichotomous Polyehotomous- Continuous- 
Ordinal Categories Interval 

Dichotomous Observed: Phi Observed: No special Observed: Point 
term Biserial 

Inferred: Tetrachoric Inferred: Polyehoric Inferred: Biserlal 
(Special Case) 

Polychotomous- Observed: No special Observed: Point 
Ordinal term Polyserlal 
Categories Inferred: Polychoric Inferred: Polyserlal 

Continuous- Observed and 
Interval Inferred: Product 

Moment 

Note: Latent variables are assumed to be normally distributed. 

between these observed variables is called the point polyserial correlation, which is an 
obvious generalization of the point biserial correlation. Similarly, the biserial correlation 
[Pearson, 1909; Tate, 1955a, b] has been generalized to the polyserial correlation. Pearson 
[1913] and Jaspen 1-1946] studied the polyserial correlation under a very restrictive type of 
scoring for the categorical variable. The maximum likelihood estimator of the polyserial 
correlation has been derived by Cox [1974]. 

In the next section we derive the relationship between the point polyserial correlation 
and the polyserial correlation. The only assumption made about  the scoring of the categori- 
cal variable is that numbers are assigned to categories in a strictly monotonic fashion. A 
maximum likelihood estimator (MLE), a two-step approximation to the MLE, and a 
computationally convenient ad hoc estimator of the polyserial correlation are then dis- 
cussed. A Monte Carlo study is used to compare the three estimators. Finally, our results 
and their implications are summarized in the Discussion section. 

The Relation Between the Polyserial and Point Polyserial Correlations 

Model 

The joint distribution of the observed continuous variable X and the latent variable r/ 
2 2 1 and is assumed to be bivariate normal, with parameters #x --/~, trx = a 2,/~, = 0, tr. = 

Px, = P. The categorical variable Y is assumed to be related to q by the step function 

Y=y~ if z j_ ,<r l<z~ ,  j = l ,  2 . . . . .  r, (1) 

where for convenience we define Zo = - oo and z. = + oo. In (1), 

Yi-1 < Y~, j = 2 . . . . .  r, 

and 

zj_1 < zj, j = 2  . . . . .  r - - l .  
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FIGURE 1 
An example of a categorical variable Y formed by imposing thresholds upon an underlying continuous variable t/. 

Note that (1) allows unequal steps (Yi+ 1 - Yj) at the threshold values z~. The relations 
between X, Y, and r/are illustrated in Figure 1. 

Derivation 

We now derive the relation of the polyserial correlation p between X and r/, to the point 
polyserial correlation ~ between X and Y. This is accomplished by using the relation 
between Y and t / to  determine the variance of Y and to determine the covariance between 
X and Y. In this subsection we assume without loss of generality that #x = 0 and tr~ = 1. 

From (1), it is clear that the distribution of Y is 

where 

Prob(Y = yj) = pj = c~(Tj) _ @(zj_ 1), 

• ( * ) -  (2=)x, 2 j _ ® e x p ~ -  -~) dt. 

The mean and variance of Y are 

and 

(2) 

(3) 

#r = ~ Y~PJ, (4) 
j = l  

2 
ay = YJ PJ--#r"  (5) 

j = l  

Because E(X) = 0 and Y is a function of t/, the covariance between X and Y is 

E(X Y) = xyj dp(x, u) dx du, 
j = l  j-i 

where 

u ) _  exp - 

is the bivariate normal density function of X and ~/. 

(6) 

(7) 
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Thej-th term on the right hand side of(6) is 

~)f:xyj4~(x,u)dxdu_, 
2n(1 -- p2),,2 exp~ "20 ~ ~-i~ dx du 

-1 

= (2n)1/2yj q exp - "2- [2n(1 ---- p2)]1/2 exp " __ p2) J dx du 

(2~)1/2 pu exp - du 

= - y : { ~ ( ~ j -  3 - 4,(~j)}, 

where 

(8) 

oxp{ ,9, 4~(~) - (2~),~ 

Substituting (8) into (6) and collecting terms yields 

I"--1 

E(XY)  = ax, = P ~ q~(~jXyj+ l - yj). (lO) 
j= l  

Finally, the correlation between X and Y is 

1 r - - 1  

/5 = p .  - ~ ~ ( ~ j ) ( y ~ + ,  - yj) .  (11)  
O'y j = ,  

Note that (11) presents the relation between the point polyserial correlation, ~, and the 
polyserial correlation, p, in a convenient closed form. It is apparent that t5 depends on the 
number of Y values, the location of the thresholds, z j,  and the scoring system for the 
categories of Y. 

Rating Scales 
Consecutive integers are often assigned to categories of Y. A seven point rating scale, 

with yj = j for j = 1 . . . . .  7, provides one example. If consecutive integers are used, the 
relation in (11) becomes 

/5 = p Z ~(z/) (12) 
Ory 

As noted by Cox [1974], the relation between the point biserial and biserial correlations 
used by Tate [1955a] is a special case of(12). 

Serial Correlation 

The scoring procedure employed by Pearson [1913] and Jaspen [1946] in their deri- 
vations of the "serial correlation" defines the category score Y1 as the mean of the latent 
variable r/between thresholds z j_ 1 and zj : 

I 1 ~' z exp dz [4~(zj-1) - 4~0:/)] (13) 
YJ pj(2n)l/2 Pj 

IlJ~i- 1 

where z o and z, are taken as - to and 0% respectively, and p~ is defined in (2). 
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To derive the serial correlation from (11) and (13), first note that 

1 ' 
- -  ~=lpjyj# j ,  (14) /~ = O'y j 

where ## is the expectation of the observed continuous variable X given Y = Yi. From the 
relations in (1 i) and (14), 

~ P j  Yj/~j 
P = , - 1  j=l (15) 

 %Xyj.I - 
j = l  

Substituting the expressions for Yi* 1 and yj from (13) into the numerator and denominator 
of (15), and then rearranging the summation in the denominator yields 

p = j= 1 (16) 
1) - 4 ' ( * A ]  2"  

/...a 
j =  I Pj 

Equation (16) is Jaspen's [ 1946] equation for the polyserial correlation. 

Estimation of  the Polyserial Correlation 

In this section, three different methods for estimation of the polyserial correlation are 
2 1; instead they are considered to be discussed. We no longer assume that #x = 0 and tr x = 

unknown parameters that must be estimated. For  simplicity, we assume that consecutive 
integers are used to score the categories of Y. Note that other scoring systems may affect the 
point polyserial correlation, but the correlation between X and t/is unaffected by the choice 
of scoring for Y. 

The estimation methods are: 

(i) All model parameters are estimated simultaneously by the method of maximum 
likelihood. 

(ii) The mean and variance of X are estimated by the sample mean X" and the sample 
2 and inverse values of the normal distribution function evaluated at the cumu- variance Sx , 

lative marginal proportions of Y are taken as estimates of the thresholds zl, z2 . . . . .  z,_ 1. A 
conditional maximum likelihood estimate of p is then computed, given the other parameter 
estimates. This procedure, termed the two-step method, is computationally simpler than 
maximum likelihood estimation and is therefore appealing if its estimates have properties 
similar to those of maximum likelihood estimates. 

(iii) Sample estimates of/~, ay and the thresholds z i are inserted into (12), thus provid- 
ing a simple ad hoc estimator. 

The Maximum Likelihood Estimator (MLE) 

The likelihood of a sample of N observations (xi, Yi) is 

N N 

L = I-] p(xi, Yi) = I-I P(xi)p(Yi I xl), (17) 
i=1  i = l  

where 

1 
(18) 
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Let Z = (X - /~ ) / a ;  then the condit ional  probabil i ty in (17) can be obta ined by not ing that  
the condit ional  distr ibution of q given X is normal  with mean  pZ  and variance (1 - p2). 
Thus, the condit ional  distr ibution of Y is 

Prob(Y = j IX)  = ~(~*) - ¢i~(~_ 1), 

where 

. . . .  ~ -  p z  
*~" (1 - p2W2" 

j = 1, 2, . . . ,  r (19) 

The  M L E s  are obta ined by maximizing 
/V 

d = log L = Y'. [ log P(Xi) + log P(Yil xi)], 
i = 1  

(20) 

i.e., by differentiating (20) with respect to the parameters ,  setting the partial  derivatives 
equal to zero and solving the resulting simultaneous equa t ion  system for p, #, 0 .2 and zj, 
j = l , 2  . . . . .  r - 1 .  

The  partial  derivatives of  d with respect to the parameters  are:  

Od 1 gP(Yil xi) (21) 
Op = E p(y, i xi) Op 

..... 1 0_..( = 1 . @(x,) + ~ .  (22) 
Z au p y, lx,) 01, / 

O: ( 1 @(x,) 1 0p(y, I x,)'~ (23) 
ga2 = Z p(x,) " ga 2 + p ( y , l x  " Oa 2 fl 

0¢ 1 OP(Yl l x3 
&--]- = Y" p(y, I x~) &~ , j = 1, 2 , . . . ,  r - 1 (24) 

Let z~ = (x~ -/~)/tr.  Then  the partial  derivative of the condi t ional  probabi l i ty  in (21) is 

@(y, I x , )  _ o a , ( f f )  _ a , ( f f _  1) 
Op Op gp 

Op Op 

(1 2 - 3 / 2  * = - p ) E~b(tj)(tjp - z3 - ~(t*_ 1)(t~-xP - z3]. (25) 

Thus,  (21) is 

0: {1 1 } 
Op -- i=a "p(y~-lx~) (1 -- p2)3/2 [~b(~j~Xz~P - z0 - tk(lr~'- tXZ~-lP - zt)] " (26) 

In (26) and th roughout  this section, t*_ 1 and • are the thresholds sur rounding  Yi. 
T o  obta in  an explicit form for (22), note  that 

Op(xi) -- P(xf)" z'2 (27) 
tgl~ tr 

and 

= 1 p 
@(y, I x,) 4~(q)" 1 • P- - ck(z~_ O" _ p2)~/2 " - (28) 

0/2 (1 ~- '~2)  1/2 a (1 a 
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Then 

O~ ~ zi 
t3/~ a i = 1  

To evaluate (23), note that 

and 

Consequently, 

Finally 

Thus, 

1 p 
P(Yi I xi) a(1 -- p2)t12 [~b(z*) -- tk(z*_ 01. 

(29) 

Op(xi) p(xi) 1.2 _ 1) (30) 
002 202 ,-, 

OP(yi l ) _ P zi 
Oa ~ (1 _-~2),/2 2-~ [~b(zT)- ~(zT-1)]. (31) 

002 - 202 (z 2 - 1) + (1 -~-5),/2 [~b(z*) - ~b(z*_l) ] . (32) 

I 0 i f k# j ,  k # j - 1  

4~(T 7 ) 8p(yi =jlxi) _ (1 - p2)1/2, if k - - j  (33) 
dZk 

'~(~*-1 ) 
- -  (1 - -  p 2 ) 1 1 2 '  if k = j  - 1. 

Of 1 N 1 
az~ - (I - p2)1/2 i~1 P(Yil xi) [rk. y, ~b($*) - 6k, ty,- l~b(~*- 1)], (34) 

where 6 . . . .  is Kronecker's delta. 
The maximum likelihood estimate of p is obtained by solving the nonlinear equation 

system composed of (26), (29), (32) and (34) set equal to zero. 
Variance estimates for the MLEs. Denote by 0 the vector containing all the par- 

ameters, i.e., 0' = (p, 1*, 02, zl, ~2 . . . . .  z,_ 1). It follows from large-sample theory (e.g., Silvey, 
1970) that the covariance matrix of ~ may be estimated by Cov(6) = I ~  1 . In large samples 
I~0 ~ is the information matrix, whose (m, n)th element is 

l,,,(m,n)=N~=,f~Op(x,y)Op(x,y) 1 = 00, aO, p(x, y----'~) dx. (35) 

Explicit expressions for individual elements of It0) may be found in Cox [1974]. Due to the 
complexity of these expressions, numerically approximating the information matrix (e.g., 
see Gruvaeus and J6reskog, Note 2) may be preferable. 

The Two-Step Estimator 
The two-step estimator is obtained by estimating # by ~', a 2 by s 2 and by estimating 

the thresholds by the inverse normal distribution function evaluated at the cumulative 
marginal proportions, P j,  of y. For example, if N = 200, and if y = 1 is observed 40 times, 
then P1 = .2 and ~1 = ¢I)-1(.2) = -.8416. The estimate of p is obtained by maximizing (20) 
with respect to p only, i.e., by setting (26) equal to zero and solving for p. Formally, the 
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equation system for the two-step estimator may be written as 

0~ 1 
Fx = 0p N 0 

1 
F 2 = # - - ~ x , = 0  

(36) 
1 

F3 = o2 _ y ,  (x, - X)  2 = 0 

F4 = zj -- ~-l(p~) = 0, j = 1 . . . . .  r - 1. 

The variance of the two-step estimator. Let F' = (F1, F2, F3, F~) and Z' = (3~, s 2, 
P1 . . . . .  P,_ x). It follows from asymptotic theory that the large-sample covariance matrix of 
0is 

(OF~-  ' (O---F-F~ ( O F ~ ' r ( O F ~ - ' ] '  (37) 
Coy(O) : \ao/  \ a z j  z L\oo} J' 

where I2 is the covariance matrix of Z, and where 0F/0Z and 0F/t30 are computed in the 
probability limit. 

The Ad Hoc Estimator 

This estimator is obtained by substituting sample statistics into (12), 

.... l~xy Sy 
= E"'q~J) ' (38) 

where 4 i = ~- l (p j )  and rxy is the sample product moment correlation of X and Y. A 
convenient estimate of its variance may be obtained by jackknifing [Mosteller, 1968]. 

Monte Carlo Simulation 

A Fortran IV computer program was written to examine the effectiveness of the three 
estimators of p. Sample size (N), skewness (~) of the polychotomous variable in the popu- 
lation, correlation (p) and number of categories (r) of the polychotomous variable are input 
to the program. The program then generates bivariate normal data by the IMSL [1975] 
GGNSM routine. Thresholds are determined that produce the proper amount of skewness 
in the polychotom0us variable (see Olsson, 1979) and are then applied to one of the normal 
variables to yield the polychotomous variable. 

For each sample generated in this way, all three estimators of p were computed. The 
ML estimator was obtained by numerically solving the equation system composed of (26), 
(29), (32) and (34), set equal to zero, using a subroutine developed by Gruvaeus and 
J6reskog [Note 2]. The routine E04BBF from the NAG [1979] library was used for 
univariate maximization of (20) with respect to p. The ad hoc estimator, finally, was 
obtained by substituting sample statistics into (12). 

Design of Simulation 

To examine the behavior of the three estimators, parameters were manipulated in a 
four-way factorial design. The factors are: 

(i) Sample size--samples o fN = 100 and N = 500 were generated; 
(ii) Skewness--thresholds that yield symmetric (y = 0) and asymmetric (~ = 1) distri- 

butions were used; 
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(iii) Polyserial correlation---data with low (p = .25), moderate (p = .50) and high (p = .75) 
polyserial correlations were generated; 

(iv) Number of thresholds--polychotomous variables with r = 3 and r = 7 categories were 
simulated. 

Fifty replications in each of the 24 cells of the design were generated. 

Results 

The bias of the estimators can be studied by examining mean estimates of the poly- 
serial correlation in each cell of the design. These means are presented in Table 2. Mean 
point polyserial correlations are also presented in Table 2 because the point polyserial 
correlation is frequently used by practitioners as if it were an estimate of the polyserial 
correlation. 

There is very little bias evident in Table 2 for the ad hoc, ML and two-step estimators. 
The mean estimates for the ML and two-step estimators are virtually identical, and tend to 

TABLE 2 

Means and Root Mean Squared Errors of Estimates 
of the ~olyserial Correlation 

Point 
p r y Polyserial Ad Hoe ML Two-Step 

N=I00 

.25 

.50 

.75 

N=500 

,25 

.50 

.75 

3 0 .222(.0781) .249(.0817) .247(.0810) .248(.0813) 
3 1 .207(.1060) .253(.1181) .252(.1169) .253(.i172) 
7 0 .250(.1034) .260(,1078) .260(.1072) .260(.1073) 
7 1 .206(.i057) .237(.1122) .237(.1100) .237(.1103) 

3 0 .452(.0814) .505(.0728) .503(.0709) .504(.0710) 
3 1 .399(.1357) .491(.i122) .490(.1087) .490(.1083) 
7 0 .485(.0796) .506(.0815) .502(.0815) .503(.0812) 
7 i .435(.0971) .500(.0835) .497(.0777) .498(.0777) 

3 0 .680(.0897) .763(.0634) .756(.0611) .757(.0609) 
3 ! .619(.1392) .755(.0552) ,755(.0551) .755(.0546) 
7 0 .727(.0448) .758(.0395) .754(.0391) .753(.0387) 
7 1 .650(.1034) .759(,0573) .756(.0552) .755(.0543) 

3 0 .224(.0502) .250(.0479) .249(.0478) .250(.0478) 
3 1 .207(.0625) .253(.0565) .252(.0562) .252(.0563) 
7 0 .232(.0453) .240(.0443) .240(.0442) .240(.0442) 
7 1 .217(.0546) .248(.0493) .248(.0500) .248(.0500) 

3 0 .453(.0581) .505(.0382) .504(.0580) .504(.0380) 
3 1 .404(.1021) ,493(.0417) .493(,0385) .493(.0385) 
7 0 .485(.0365) .501(.0342) .501(,0341) ,501(.0340) 
7 i .440(.0730) .502(,0477) .501(.0466) .501(.0466) 

3 0 .673(.0793) .751(.0229) .750(°0230) .750(.0228) 
3 1 .617(.1355) .754(.0285) .751(.0245) .752(.0246) 
7 0 .729(.O271) .753(.0177) .752(.O175) .752(.0173) 
7 1 .659(.0931) .751(.0228) .749(.0209) .749(.0212) 

Note: All means are based on 50 replications. Root mean squared errors 
are given within parentheses. 
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be quite close to the means for the ad hoc estimator. The ad hoc estimator does not appear 
substantially more biased than the ML estimator. 

Table 2 illustrates the substantial bias that can result if point polyserial correlations 
are used as estimates of polyserial correlations. The bias increases as the number of categor- 
ies decreases, as skewness increases and as the polyserial correlation increases. Consider- 
ation of(12) explains all three of these results. 

The accuracy of an estimator fi of p can also be examined by considering the root 
mean squared error, 

1 50 /1/2 
RMSE = 2 (P, - p)2 . 

i=1 
(39) 

RMSEs for the various estimators are presented within parentheses in Table 2. 
When studying the RMSEs in Table 2, a number of general trends are evident. Note 

that increasing the sample size decreases the RMSE, increasing the number of categories 
usually decreases the RMSE, increasing the skew tends to increase the RMSE, and increas- 
ing p generally decreases the RMSE. 

The ML and two-step estimators yield nearly equivalent RMSEs in Table 2. Of course 
we would expect to see more accurate estimation by the ML estimator if the number of 
replications was increased to a sufficiently large number. However, Table 2 shows that the 
two-step estimator, which requires less computer time to calculate, is almost as accurate as 
the asymptotically optimal ML method. This is particularly evident in samples of N = 500, 
where the differences in RMSEs for the ML and two-step methods are all less than .0003. 

The ad hoc estimator performs surprisingly well: its RMSE values exceed the ML 
estimator's RMSEs by less than .0058 when N = 100 and by less than .0040 when N = 500. 
The point polyserial correlation has reasonably small RMSE values when p = .25, over the 
range of values of r and ~ that we studied. The small RMSEs occur despite the bias seen in 
Table 2 because the sampling variance of the point polyserial is usually smaller than the 
sampling variances of the other estimators.* As p increases, however, the bias of the point 
polyserial increases and the sampling variance of the other estimator decreases. When 
p = .75, N = 500, r = 3 and ~ = 1, the RMSE for the point polyserial is substantially larger 
than RMSEs for the other estimators. 

Discussion 

The simulation described in the preceding section indicates that the ML, two-step, and 
ad hoc estimators all have relatively small biases. This result was expected for the maximum 
likelihood methods, but was not completely expected for the ad hoc method. At least with 
respect to the ad hoc estimator, generalizations beyond the scope of our simulation pa- 
rameters are not warranted. The RMSEs of the estimators were surprising only in that the 
two-step and ad hoc estimators performed nearly as well as the ML estimator. 

The results presented here, in conjunction with Olsson's [19791 Table 8 indicate that 
product moment correlations computed from categorical variables can be seriously mis- 
leading. This is particularly evident when rating scale items, with varying numbers of 
categories and varying degrees of skewness, are used to assess substantively important 

* Sampling variances can be obtained using the relation 

s 2 = RMSE 2 _ (/~ _ p)2, 

where RMSE is a root mean squared error and ~ is the corresponding mean estimate of the polyserial correlation 
in Table 2. 
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constructs. Interitem correlations and item-total correlations can be seriously distorted by 
discrete measurement of latent continuous variables. 

The ad hoc estimator appears to be sufficiently unbiased and accurate for applied 
research. Because Olsson's [1979] methods for estimating the polychoric correlation also 
appear sufficiently accurate for practical work, there are now estimators for the various 
types of "inferred" correlations in Table 1. These estimators should be quite useful to 
substantive researchers who wish to construct scales. For example, a correlation matrix for 
factor analysis may be constructed by computing product moment correlations between 
continuous variables, polychoric correlations between categorical variables and polyserial 
correlations between continuous-categorical variable combinations. Such a correlation 
matrix may not be Gramian, but might reduce problems caused by difficulty factors. The 
most recent version of the LISREL [JSreskog & SSrbom, 1982] computer program con- 
tains options that allow calculations of the polyserial and polychoric correlations. 
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