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Most  of  the currently used analytic rotation criteria for simple structure in factor analysis are 
summarized and identified as members  of  a general symmetric family of quartic criteria. A unified 
development of algorithms for orthogonal  and direct oblique rotation using arbitrary criteria 
from this family is given. These algorithms represent fairly straightforward extensions of present 
methodology, and appear to be the best methods currently available. 
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1. Introduction 

Analytic rotation for simple structure in factor analysis proceeds by minimizing or 
maximizing a criterion which is usually a quartic function of the factor loadings over a 
family of rotationally equivalent loading matrices. Early work in this area was carried out 
independently by Carroll (1953), Ferguson (1954), Newhaus and Wrigley (1954), and 
Saunders (1953). (Harman, 1976, gives a nice account of the history and motivation 
behind the development of analytic rotation.) Carroll's work dealt primarily with oblique 
rotation while that of Ferguson, Newhaus and Wrigley, and Saunders was devoted to 
orthogonal rotation. We will discuss the orthogonal case first. In this case the criteria 
proposed by the authors named, while expressed in various forms, were all equivalent 
under orthogonal rotation to the quartimax criterion: 

QMAX = )-" 2~, (1) 
i=1 r = t  

where the Air denote the components of a p by m matrix A = (Air) of factor loadings. The 
algorithms employed by the various authors were also equivalent; all were based on 
planar rotations. The algorithms proceeded by stepping uniformly through pairs of fac- 
tors. Each pair was orthogonally rotated in the plane it defined to a position that 
optimized the relevant criterion over all possible orthogonal rotations of the factor pair. 
This process was continued until it converged to a loading matrix A that hopefully 
optimized the criterion over all loading matrices orthogonally equivalent to an initial 
loading matrix A. 

Kaiser (1958) proposed an alternative criterion for orthogonal rotation called the 
varimax criterion: 

( / 1 ~ .  ~ 22 (2) V M A X =  ~ ~ 2 ~ - - p  
i=1 r = l  r = l  i = l  
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which is again a quartic function of the loadings 2i,. The algorithm used by Kaiser (1959) 
to maximize the varimax criterion was, as before, based on planar rotations. 

A natural generalization of the quartimax and varimax criteria are the orthomax 
criteria" ( )2 

- -  

i = 1  r = l  r = l  i = l  

This family of criteria includes quartimax and varimax by choosing y equal to 0 and 1 
respectively. It was apparently suggested by Carroll and appeared in Harman (1960, p. 
334). Planar rotation algorithms for the orthomax criteria were implemented and incor- 
porated into the BMDP, SAS, and SPSS factor analysis programs. Jennrich (1970) dis- 
cussed planar rotation algorithms for orthogonal rotation in a general context which 
included orthomax rotation and gave several examples. 

Independently, Crawford and Ferguson (1970) proposed a family of criteria for or- 
thogonal rotation: 

CF = K 1 E E 2,2~2,2~ + K2 E ;t,22; 2 (4) 
r # s  i = 1  i # j  r = l  

that is equivalent to the orthomax family and discussed the application of this family. 
They apparently also used planar rotations to optimize their criteria. 

The algorithms for orthomax rotation used by BMDP and SPSS are discussed in 
section 3. The algorithm used by SAS is apparently similar if not identical to those used 
by BMDP and SPSS. 

The initial development of analytic rotation in the oblique case was done by Carroll 
(1953) who introduced the quartimin criterion: 

QMIN E E 2 2 (5) = 2 j r  21 s • 
r ~ s  i 

In Carroll (1953), and in other early work on oblique rotation, the 2~, represent covari- 
ances between the observed variables and what are called reference factors (see, e.g., 
Harman, 1976, p. 270). The quartimin criterion is a natural generalization of the quarti- 
max criterion to the oblique case. As an oblique generalization to the varimax criterion 
Kaiser (1958) proposed: 

CMIN ~ ( ~  2 2 l~212r~22s  ) (6) = 2it 2i~ p ~ 

which Carroll (1957) called the covarimin criterion. Generalizing both these criteria, Car- 
roll (1957, 1960) introduced the oblimin family: 

= 2,,21s ~ 2/2, ~ 22~ . (7) 
r ~ a  " ' 

The choices 3' = 0 and y = 1 give the quartimin and covarimin criteria. 
Carroll (1960) gave an elegant algorithm for optimizing the oblimin criterion applied 

to a reference structure matrix. This algorithm did not use planar rotations. 
Jennrich and Sampson (1966) gave an algorithm for minimizing the quartimin cri- 

terion applied directly to the factor loadings. This algorithm was based on planar rota- 
tions similar to those used in the orthogonal case. It was later generalized to handle the 
oblimin family and has been incorporated into the BMDP and SPSS factor analysis 
programs. It and further generalizations are given in section 4. 
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Harman  (1976) has called the application of oblique rotation criteria to factor load- 
ing matrices, rather than to reference structure matrices, direct methods. They are con- 
ceptually simpler than those using reference factors and for this reason we will restrict our 
attention here to them, Thus in both the orthogonal and oblique cases the criteria to be 
optimized will be applied directly to the factor loadings. 

There are analytic rotation methods which are not based on quartic criteria. These 
include, for example, oblimax (Saunders, 1961) and promax (Hendrickson & White, 1964). 
Our  discussion here, however, is restricted to methods based on quartic criteria. 

2. Quartic Rotat ion Criteria 

As noted, most analytic rotation criteria for simple loadings are quartic functions of 
the loadings. If these functions are homogeneous quadratic functions of the squares of the 
loadings and are row and column symmetric; that is, are invariant under permutations of 
the rows and columns of the loading matrix, then, as shown in the Appendix, they must 
have the form: 

F = K1F ~ + K 2 F 2 + K s F 3 + tO,, F .  

for some constants ~:1, /~2, ~3  and x 4 where 

'r)' F t = 2 
i r = l  

F 2 = 2 
i = 1  r 

P 

i = 1  r = l  

(8) 

(9) 

We will call this the general symmetric fami ly  of quartic criteria. Table 1 gives the choices 
of xl, x2, x3 and x ,  that lead to the criteria discussed in section 1. 

TABLE I. 

Specific Criteria in the General Symmetric Family 

Critexion K 1 K 2 K 3 K 4 n l ln /max 

Orthogonal Ouartimax 0 0 0 I max 

Varimax 0 0 -I/p I max 

Crawford-Ferguson 0 KI K2 - K  1 - K  2 mitt 

Orthomax 0 0 -7/P 1 max 

Oblique Quafdn~ 0 1 0 -1 PEru 

c o ~ .  - Vp i - Vp i .~ 

C~vfo rd -Fe r~on  0 K1 K2 - K 1 - K 2 rain 
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In the orthogonal case the terms in (8) involving xl and rc 2 are invariant under 
rotation, so these may be dropped without loss of generality. Also since the Criteria (8) 
are equivalent under (positive) scalar multiplication, what remains in the orthogonal case 
after removing terms involving ~c I and ~c 2 is a one dimensional family which is equivalent 
to both the orthomax and the Crawford-Ferguson families. In the oblique case the general 
symmetric family is three dimensional and hence generalizes the oblimin and the oblique 
Crawford-Ferguson families which are one dimensional. Note, however, that specific 
members of the oblimin family, covarimin for example, involve all four terms in the 
general symmetric family (8). 

A number of other facts are clear from Table 1. Under orthogonal rotation the 
quartimax and quartimin criteria are equivalent, as are the varimax and covarimin cri- 
teria, and the orthomax and oblimin families. While the Crawford-Ferguson and oblimin 
families are equivalent under orthogonal rotation, they differ under oblique rotation. 

Algorithms for the general symmetric family for orthogonal rotation are given in 
section 3. Those for oblique rotation are given in section 4. 

3. Orthogonal Rotation Algorithms 

As indicated, all of our algorithms will be planar rotation algorithms. In the orthog- 
onal case this means selecting pairs of columns 2, and 2~ of the loading matrix A and 
transforming them by a rotation of the form 

21~ = 2i~ cos 0 + 21~ sin 0, and 
(10) 

~.i~ = -;~i,  sin 0 + 2i~ cos 0 

that maximizes the criterion F over all such transformations. The algorithms step uni- 
formly through all possible pairs until they converge. We have, without loss of generality, 
assumed here that the maximum, rather than the minimum, of F is required. 

Let F(O) be the value of F corresponding to the Rotation (It)). Jennrich (1970) has 
shown that F(O) must have the form 

F(O) = c + a cos (40) + b sin (40). (11) 

As can be seen from Figure 1, F(O) is maximized if and only if the vector (cos 40, sin 40) 
has the same direction as the vector (a, b). It is sufficient to choose 

0 = ¼ ATAN2 (b, a), (12) 

where ATAN2 (b, a) is the angle from the vector (0, 1) to the vector (a, b). The slightly 
strange notation "ATAN2" is used because it happens to be a FORTRAN 77 function. 

Since the optimizing values of sin 40 and cos 40 are easily expressed in terms of a and 
b, one can, as observed by Nevels (1986), compute optimizing values for sin 0 and cos 0 by 
using half angle formulas. This replaces the use of trigonometric functions by the use of 
square root functions and introduces some increase in complexity. The required formulas 
are given by Nevels. 

The problem of finding an optimal rotation is thus reduced to that of finding ex- 
pressions for a and b in (11). Clearly these take the form 

a = x 3 a 3 + t¢ 4 a 4 , a n d  
(13) 

b -- x3 b3 + ~c4 b4, 

where the at and b~ are the "a" and "b" coefficients for F i in (9). Since we are considering 
orthogonal rotation we have assumed without loss of generality, that xl  = to2 = 0. Substi- 
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(a,b) 

(cos4o,sin4o) 

FIGURE 1 
Display showing values of 40 which maximize (11). 

tut ing 0 = 0,  4- ~/8 in (11), it is easy to show (see Jennrich,  1970, Equa t ion  4) that  

(91 a t = F , ~ 0 ) - ~  t ~ + F i  - ~  , and  

b,  = 2 L ' \ s / -  F ,  - . 

These m a y  be used together  with some work  to express the required at and b~ as 

a3 = ¼[(~,, ~,) - (&,  , L ) ]  2 - (~, ,  &)2, 

b 3 = (~,, 3.,)r(&,, A,) - (A,, A,)], (15) 

z. 2 x 2 2(2, ,  s), and  a ,  = 4(~ , ,  ~2) + 4(~, ,  X~ 2) - ~ 2 X2 

b,, = ( ~ 3 ,  ,L) - (,L, ,L3). 

Here  (x, y) = X x~ yl, and x 2 and  x 3 denote  the elementwise square  and cube of  the vector  
x = ( x i )  so, for example,  (2,, 23) = ~ i  ;ti, ;t/3, • 
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The optimal rotation (10) is defined by (12), (13), and (15). One could avoid using (15), 
and hence the need to derive it, by using (14) directly as was done by Jennrich (1970). This 
leads to an algorithm with roughly the same complexity as one based on (15), but one 
which is a little, roughly a factor of two, slower. Of greater importance to us is the fact 
that the algorithms based on (15) are very similar to the oblique algorithms in section 4. 
This makes an implementaton using (15) very simple given one intends to implement the 
oblique algorithms as well. It is', moreover, easy to verify that (15) leads to the standard 
quartimax and varimax algorithms as given, for example, by Harman (1976). 

Ten Berge (1984) has observed that maximizing the varimax criterion may be formu- 
lated as a problem'in simultaneously diagonalizing a set of symmetric matrices, and that a 
planar rotation algorithm for the latter problem is equivalent to the planar rotation 
algorithm used by Kaiser and used here. Ten Berge's observation may be extended to 
essentially the entire orthomax family (any orthomax criterion wi thy _< !). This  represents 
a reformulation of the orthogonal rotation problem considered here. It does not  extend in 
a natural way to the oblique problem, however, and no direct use of this formulation will 
be made. 

4. Oblique Rotation Algorithms 

Current planar algorithms for oblique rotation are based on ordered pairs of factors. 
Following Jennrich and Sampson (1966) the first factor in each pair is rotated in the plane 
defined by the pair. In terms of the loading matrix A this means selecting a pair of 
columns 2 r and 2~ and applying a transformation of the form 

~'~" = ~a'2i" (16) 

where 

y2 = 1 + 2~b,~c5 + 62, (17) 

and ~b,, is the rs-element in the factor correlation matrix (1). One finds a value of c5 that 
minimizes the resulting value of the criterion F. Then A is updated using (16), and the r-th 
row and column of (1) are updated using 

1 +-fi ~b,,, t ~= r, (18) 
d, ,  = = 7 

Beginning with initial values for A and q) one proceeds by stepping uniformly through all 
ordered pairs 2, and 2~ until the algorithm converges. We have, without loss of generality, 
assumed here that it is the minimum, rather than the maximum, of F that is required. 

Let F(a) be the value of F resulting from the transformation (16). Following Jennrich 
and Sampson (1966) it is easy to show that F ( 6 )  has the form 

F ( 8 )  = a + b~5 + c 6  z + de5 3 -at- eft'. (19) 

This reduces the problem of finding an optimal "rotation" (16) to the relatively simple and 
routine problem of minimizing a quartic in one variable. The main problem is expressing 
a through e in (19) in terms of the components of A and q). From (8) 

a = r c l a  I + K 2 a  2 + t~ 3 a  3 + K 4 a 4  

: : (20) 

e = x l e  1 + tc2.e 2 + K3e  3 + Kzl. e 4 ,  
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where a / t h r o u g h  e /a re  the "a" through "e" coefficients for the quart ic functions F / i n  (9). 
Since the optimal 5 in (19) does not  depend on a, all that  is really required are expressions 
for b i th rough e / for  i = 1, - . - ,  4. Let 22 denote a vector of  row sums of  squared loadings 
so (22+)/= ~ ,  2i 2. Using (9), (16), and (17) one finds after some labor  that 

b, = 4~,.:(1, 22+)(2,., 2,.) - -  4(1, ,a?+)(2,., ,a.,), 

2 c, = 4(1, 22+)(2,, 2,) + 44, , , (2, ,  , 0  2 - 8G,(2,, 2,)(2,, 2,) + 4(2, ,  2) 2, 
(21) 

dl = 8G~(L . ,  2,.) 2 - 8(L. ,  ;,,.X2,, 23, 

e I = 4(2,, 2r) 2, 

that  

that  

and that 

b z = 44~,,(22+, 22) - 4 ( 2 2 , 2 ,  2,) 

2 2 c z = 4(2 2 , 22) + 4q~,.,(2,., 22) --  8Ors(Z 3 , 2,) + 4(22,  22), 

4 = 8~, , (2 ,  ~, 22) - 8(2p,  20, 

e, = 4(2 2 , 22), 

b 3 = 4q5,,(2,, 2,.) z - 4(2 , ,  2,)(2, ,  2,), 

c 3 = (2 + 4~b,Z~)(2,., 2,.) 2 + 2(2,., 2,.)(2~, 2~) + 4(2,., 2~) z, 

d a = 4~b,.,(2,., 2,.) 2 --  4(2,., 2,)(2,., 2,), 

e 3 = 2 ( 2 r ,  2r) 2, 

(22) 

(23) 

b 4 = 4q~,.,,(22,22) - 4(2,., 2,a), 

2 2 6(22, 22 c4. = (2 + 4q6,.s)(2,, 2, z) + ~), 
(24) 

d 4 = 4qb,,(22 , 22) -- 4(2, a , 2~), 

e 4 = 2(2, z , 22). 

Equat ions  (20) through (24) are used to obtain values for b, c, d, and e in (19). The 
optimal 5 is then found by minimizing the quart ic F(6) and the corresponding ), is given 
by (17) up to a choice of  sign. Either choice will give an Optimal rotat ion which is then 
defined by (16) and (18). 

In implementing the algorithms, it is more  efficient to update, rather than recompute,  
quantities such as A, O, and 22 . 

5. Summary  and Comments  

Rota t ion  is basically an expensive computat ion.  Its cost in a factor analysis p rogram 
often exceeds that of  factor extraction and can exceed that of  all other computa t ions  
required in an analysis. Motivated by this, our  initial efforts were devoted to finding a 
better algorithm. Planar  rotat ions are one dimensional optimizat ions and represent essen- 
tially the first algori thms that  come to mind. Surely we felt, one can do better. Since error  
bounds  for quadratic functions suggest that  a single steepest descent step can be as 
effective as a complete set of  coordinate  optimizat ions (see, e.g., Luenberger,  1973, p. 160) 
we tried a variety of  steepest descent and quas i -Newton algorithms. To oversimplify 
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things only slightly, the planar rotation algorithms uniformly beat our best efforts, usually 
by a factor of two or more. 

After a reasonable amount  of effort we decided to switch rather than fight and devote 
our efforts to tidying up things with regard to the planar rotation algorithms since these, 
at present at least, seem to represent the state of the art. This involved mostly straightfor- 
ward extensions of existing algorithms, some of which have already been implemented in 
factor analysis programs, and putting all the algorithms together in one place. Thus the 
extension to the general symmetric family is motivated more by a desire to put things in a 
natural framework than fulfilling an unmet need. IMSL Inc. is currently implementing the 
planar algorithms discussed here for the general symmetric family for both the or thogonal  
and oblique cases. These are to be included in the IMSL Library. 

Appendix 

We will outline a proof  for the assertion at the beginning of section 2, All that needs 
to be shown is that any homogeneous quadratic function of a two-way table (x o) which is 
row and column symmetric is a linear combination of the functions 

( /  ( / 
These are clearly homogeneous quadratic functions (i.e., quadratic functions with no 
linear or constant terms) which are row and column symmetric. Moreover,  by considering 
tables (xo) which are zero except for the following upper  left hand corners 

(: 00) ' (: _ : ) (1  : ) ( :  1) 
it is easy to see the Functions (A1) are linearly independent. 

Any homogeneous quadratic function of (x~j) can be written in the form 

~ a 0 x~ + ~. E bo, x,~ x~, + E ~ c,1~ xll xt.~ + E E duu xo ×t,. (A2) 
i j t j ~ l  i ~ k  j i ~ k  j ~ l  

Assume now that (A2) is also row and column symmetric. By considering tables which are 
zero except for the following upper left hand corners 

:)('0 '0)(, 
and permutations of such tables, it is easy to see that the a u, bob, Cok, and dou in (A2) can 
not depend on i, j,  k, and I and hence that (A2) is a linear combinat ion of 4 homogeneous 
quadratic functions of (x o) which are row and column symmetric. Thus the space of all 
such functions has dimension 4 and the functions in (A1) are a basis. 
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