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Three-way unfolding was developed by DeSarbo (1978) and reported in DeSarbo and Carroll 
(1980, 1981) as a new model to accommodate the analysis of two-mode three-way data (e.g., 
nonsymmetric proximities for stimulus objects collected over time) and three-mode, three-way 
data (e.g., subjects rendering preference judgments for various stimuli in different usage occasions 
or situations). This paper presents a revised objective function and new algorithm which attempt 
to prevent the common type of degenerate solutions encountered in typical unfolding analysis. We 
begin with an introduction of the problem and a review of three-way unfolding. The three-way 
unfolding model, weighted objective function, and new algorithm are presented. Monte Carlo 
work via a fractional factorial experimental design is described investigating the effect of several 
data and model factors on overall algorithm performance. Finally, three applications of the meth- 
odology are reported illustrating the flexibility and robustness of the procedure. 
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1. Introduction 

DeSarbo (1978) has developed three-way unfolding initially as an unfolding model 
(Coombs, 1964) for three-mode three-way preference data (DeSarbo & Carroll, 1980, 
1981). The primary objective in the development of this new method was to portray or 
scale the interrelationships and underlying dimensions for three-way arrays, assuming a 
metric ideal point distance model. Basically, a generalization of INDSCAL (Carroll & 
Chang, 1970) to both nonsymmetric proximity and dominance data was created. (Note, 
ALSCAL, developed by Takane, de Leeuw, and Young, 1977, can also handle the un- 
folding of such three-way preference data.) Consider the example where subjects render 
preferences for various stimuli (e.g., products or brands) over different situations (time, 
physical surroundings, etc.). Then individuals, represented as ideal points, and stimuli, 
represented as points, are portrayed in a T-dimensional joint space configuration, and the 
situation weights are estimated and plotted in the positive orthant of a separate "weights" 
space. These weights reflect the salience or importance of each derived dimension for each 
situation. This three-way unfolding model assumes a common stimulus space with differ- 
ential weighting of uniquely oriented axes (up to permutation or reflection) for each situ- 
ation. The situation weights or saliences on each dimension are idiosyncratic and can be 
used to estimate the respective perceptual spaces relevant to each particular situation 
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(similar to the method employed in INDSCAL for handling subjects). Thus, in the exam- 
ple discussed above, the methodology solves for both the common joint space for stimuli 
and ideal points, and the dimension weights for each situation. In addition, a "floating" 
ideal point model was developed as an option for those applications where it is assumed 
that ideal points (preferences) change or vary over situations. This situational analysis 
application will be used as an example to assist in the explanation of the model. Later, 
other applications wilt be mentioned. 

2. Three-Way Unfolding 

The  Model  

The underlying model assumption is that dispreference values, i.e. values inversely 
related (e.g., via some non-increasing monotonic function) to preference values, are mea- 
sured on interval (or ratio) scales and are linearly related to squared weighted Euclidean 
distances: 

where: 

i =  

j =  

k =  

t =  

3ijk ---- 

d~k = 

Wit 

Y jr =- 

Xkt ~--- 

T 

~ij~ --- d ,~ + ~, = Y~ wi,(yj, - x~,) 2 + ~, ; (1) 
t = l  

1 . . . . .  I (situations), 

1 . . . . .  J (judges), 

1, . . . ,  K (stimuli), and 

1 . . . . .  T (dimensions); 

the obtained dispreference value o f j u d g e j  for stimulus k in situation i; 

indicates "approximately equals" in a least-squares sense; 

squared Euclidean distance between judge j and stimulus k in situation i; 

situation salience (weights for dimension t in situation i); 

the t-th coordinate of judge j's ideal point; 

the t-th coordinate of stimulus point k; and 

an additive constant for situation L 

This model can be viewed as a direct three-way generalization of Schrnemann's (1970) 
two-way metric unfolding model. (The approach to data analysis we outline in Appendix 
A similarly generalizes the analytic procedure Schrnemann proposed to the three-way 
case.) The assumption of dispreference values being linearly related to squared Euclidean 
distances indicates that preference diminishes quickly as one deviates (in any direction) 
from the subject's ideal point. 

Also note that the model in (1) can be used to summarize two-mode (or three-mode), 
three-way nonsymmetric proximities data (rljk) where row and column objects are por- 
trayed in the joint space. Here, distances between row object yj and column object Xk for 
slice i in the T dimensional joint space are fit to 31jk via weighted least-squares. 

The Objective Function 

Originally, DeSarbo (1978) proposed the following objective or loss function which 
was to be minimized in estimating the parameters wit, Y jr, xkt, and ~ given A = II 3ij~ II 
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and T: 

where: 

I J K 

M i n Z  1= Z Z Z(6iJk--6Ok) 2, 
4=1 j = l  k = l  

(2) 

T 

6Uk = ~ W~,(yj, --  Xk,) 2 + Ct i . (3) 
t = l  

The original algorithm, presented in detail in Appendix A, consisted of a complex pro- 
cedure entailing use of the Carroll-Chang CANDECOMP procedure followed by an 
alternating least-squares procedure (Wold, 1966) which cyclically estimates w~,, y~,, Xk,,  

and ~t i (an option also existed for estimating "floating ideal points", Yo,), holding the other 
three sets of parameters fixed at their current values. In addition to being computationally 
expensive, often times the procedure would render degenerate solutions, typical of most 
unfolding schemes. For example, one set of points (e.g., the yj,'s) would be quite separate 
from the other set of points (e.g., the xk,'s) in the resulting joint space representations. At 
other times the degeneracy took the form (in two dimensions) of points in two concentric 
circles where, for example, the ideal points might be clustered in a tight small circle and 
the stimuli would be scattered in a larger circular region around the ideal points. 

There has been some research performed attempting to cure unfolding of its predis- 
position toward degenerate solutions. Heiser (1981) suggests imposing configuration re- 
strictions in the two-way case on the X = II x~, 11 and Y = II Y j, II joint space. The re- 
striction Heiser recommends is one where each stimulus is constrained to be at the cen- 
troid of the location of the subjects (ideal points) for whom it was most preferred (first 
chosen), or, more generally, among the first R ___ K most preferred stimuli. One limitation 
with the Heiser approach concerns the basic assumption regarding the reliability of the 
data. Heiser's (1981) approach tends to place most of the emphasis in estimating parame- 
ters on the first R choices (most preferred stimuli), while tending to deemphasize the 
remainder of the data. This roughly assumes that a subject can only reliably render prefer- 
ence information about the most preferred brand, or the first R preferred, while the other 
judgments may be too "noisy" or unreliable to carry any great amount of weight in 
estimating model parameters. While this weighting scheme may be viable for some partic- 
ular applications, it is not realistic for others. Depending upon such factors as the nature 
of the study, questionnaire design, number of stimuli, discriminability between stimuli, 
type of subjects, knowledge of the stimuli by subjects, etc., different assumptions may be 
appropriate concerning how much error the preference judgments contain. For example, 
in consumer research for new product concepts, a consumer may be able to render reli- 
able judgments on the first R preferred items. Or, it may be the case that the typical 
subject could provide reliable ratings for a favorite R 1 items and for a least favored R 2 
items. Thus, a subject could reliably tell the interviewer what is liked and what is disliked, 
but may have trouble in rating products that he/she is indifferent towards. Such appli- 
cations may require a quite different weighting scheme, if the aim is to weight more 
heavily the more reliable responses. 

We propose a different approach to the general degeneracy problem in unfolding, 
and to three-way unfolding as a specific case (a similar approach to two-way unfolding is 
presented in DeSarbo and Rao, 1984). Our approach involves explicitly altering the loss 
function in (2) to incorporate data weights ?Ok : 

I J K 

Min Z 2 = ~ ~, ~ ~ijk(~ijk - -  ~ijk) 2, (4) 
I = 1  J = l  k = l  
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where the 7ijk are defined by the user to weight the 60k values differentially. We believe, 
like Heiser (1981), that a possible cause for degeneracy is the error in the data, and pro- 
vide for the flexibility of the user specifying Y~jk differently. For example, one may define 
these weights as: 

= , ( 5 )  
ijk 

where p is some exponent. Assuming the 6tjk are dispreference values, such a weighting 
scheme would weight smaller values (more preferred) higher than larger values (less pre- 
ferred). 

Where some form of preprocessing is involved (e.g., subtracting means) and negative 
fiijk'S appear as interval scale data, such a weighting function may not be meaningful. 
Here, for example, one could use: 

= - -  , (6) 

where p is an exponent and r(6~jk) represents the row ranks (from smallest = 1 to larg- 
est = K) of the t$~j k . Options also exist to define r(fiok ) over the slice instead of the row for 
matrix conditional (Takane et al., 1977) analyses. At any rate, as p ~  oo, this (row) weight- 
ing scheme in (6) resembles (but is not exactly equivalent to) Heiser's (1981) configuration 
restrictions (R = 1) since only first choices would be significantly weighted (as 7~ik = 1 for 
first choices), while the rest of the 71jk would tend to zero. 

Other weighting options are also available in three-way unfolding. For example, one 
could specify Yi~k = 1, Vi, j, k, so that the "weighted" loss function reduces to the (equally 
weighted) nonweighted one. Or, the user can specify a bimodal or step weighting function 
where, for example, the first four and last two choices would be highly weighted, while all 
others would receive low weights. 

The psychometric literature provides some discussion concerning the reliability of 
proximity judgments. Isaac (1980) states that large proximity judgments are the most 
reliable, or are at least as reliable as the other (smaller) ones. Graef and Spence (1979) 
show that the larger distances are the most important in achieving quality recovery of 
configurations. However, unfolding analysis and analyses of nonsymmetric proximities 
typically estimate two sets of points. And the relationships between these two sets of 
points are often the most important aspects of these analyses. Degeneracies that occur 
where the two sets of points are separated quite far from one another (larger distances) 
rarely offer any insight into the structure of the data. Thus, altering the loss function to 
weight smaller distances more heavily (as one option) tends to counteract typical ten- 
dencies toward degenerate solutions and wide separations between the two sets of points. 

Concerning the reliability of such judgments, our methodology offers the user the 
option of specifying a number of different types of weighting functions reflecting his belief 
concerning the reliability of the data. The choice of the "appropriate" weighting function 
depends upon such factors as preprocessing options and scale assumptions of the data, 
assumptions of the conditionality of the data, assumptions concerning the reliability of 
the different data values, and trial and error. If the data (A) were treated as interval scale 
and preprocessed accordingly (e.g., by taking out particular row, column, and/or "slice" 
means), then specifying Y~jk as in (5) may not make sense. Depending upon the assump- 
tions made concerning the conditionality of the data, it may or may not make sense to 
define 7~jk via (6) over rows (slices). For example, if 6Ok were three-way nonsymmetric 
proximities, it might make more sense to define Yok in (6) over each slice of the array 
rather than over rows within each slice. Different 7Ok could be specified depending upon 
the assumptions made concerning the reliability of the ~Ok collected. If one believes that 
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only highly preferred judgments are reliably given, one could specify a unimodal ~iik func- 
tion weighting smaller values highly. Alternatively, if one believes that the 6ok can be 
reliably given for both highly preferred and highly non-preferred judgments, then a bimo- 
dal weighting function could be specified. (Note, there may be instances where the prefer- 
ence judgments elicited for the least preferred stimuli are more reliable than those for the 
most preferred stimuli, e.g., when all stimuli are onerous or negatively toned. In such 
cases, the idea of weighting the more preferred stimulus judgments more heavily via (5) or 
(6) may prove counterproductive. Here, the user may wish to utilize equal weight s or even 
weight the least preferred judgments higher.) 

These criteria may provide insight into the 9eneral form of Y0k (e.g., unimodal vs. 
bimodal, or (5) vs. (6)), but specific decisions, such as what value p should have, can be 
made by trial and error, although as will be demonstrated in the applications that follow, 
in (6), p = 2 or 3 appears to work well. We believe that the specification of p is an empiri- 
cal issue depending upon the data. One approach is to run the analyses with a different 
sequence of p's (p = 0, 1, 2, 3, 4) and examine at what point degenerate solutions disap- 
pear. Another approach would be to attempt to estimate p itself via another stage in the 
algorithm. While this is feasible, constraints would have to be placed on p to avoid possi- 
ble "degenerate" values (large). In addition, this would add to the computational com- 
plexity of the algorithm. 

The Algorithm 
Appendix B presents the numerical details of the new cyclical weighted least-squares 

algorithm utilized to estimate wit, Y~k, (or y~j, for the floating ideal point case), x,t, and 0q, 
given 6~j k, Y~k, and T. Basically, estimates of one set of parameters occur at a particular 
stage holding the other three sets of parameters fixed at their current levels. One has the 
option of performing an external (X = fl xkt It given) or internal (estimating X) analysis; of 
accommodating interval or ratio scale A~i k ; and, of estimating fixed (Y jr) or "floating" (Yo~) 
ideal points. The new algorithm is more computationally efficient and, as mentioned, 
provides a reduction of risk of degenerate solutions. Note that unlike INDSCAL (Carroll 
& Chang, 1970), ~s= 1 w~ is not in 9eneral an indicator of goodness of fit by slice in 
three-way unfolding. One can show that ~tr= 1 w~ is a rough approximation to a sums of 
squares accounted for measure (by slice) if ytj~ = 1, Yi, j, k, and if one imposes the normal- 
ization EJ=a Er= ,  yjtxkt = 1 for fixed t. 

3. Monte Carlo Results 

In order systematically to examine the performance of the new three-way unfolding 
algorithm, a Monte Carlo analysis was performed where some ten factors, displayed in 
Table 1, were experimentally varied: T, I, J, K, type of weighting functions 7~k, error in 
Aiik, type of starting configuration, type of ideal points (fixed vs. floating), scale of Aok, 
and type of analysis (external vs. internal). These ten factors and their respective levels 
shown in Table 1 were initially hypothesized to have a potential effect on the performance 
of the new three-way unfolding algorithm. These factors were combined via an asymmet- 
ric fractional factorial (3823) design (Addelman, 1962) for main-effects only estimation. 
Twenty-seven experimental trials were devised where the ten factors were varied accord- 
ing to the fractional factorial design shown in Table 2. 

Each trial of the experimental design defined a particular level for each of the factors 
investigated in the study. Based on these stipulated levels, W, X, Y and at were generated 
randomly from a uniform distribution, and the data array A was created according to (I). 
Error was added to A, where the design stipulated such, as a function of the variance in 
the Y configuration (see bottom of Table 1). Types of solution, starting values (see Appen- 
dix B), and weighting function were also established by the particular trial in the design. 
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TABLlZ 1 

e' tm me te,  
fro. ~ W q  U~ddl~  M a ~  C.m'lo Am~ls  

I'I .............................. I I 

FkCr(m IZVm, S (CODe:S) 

1. @Dimmsiom (~  1(0) 2(1) 3(2) 
2. @Slices (I) 2(0) 3(1) 4(2) 
3, ,@Subjects (J) 10(0) 15(1) 20(2) 
4. #Stinmli OK) 10(0) 15(1) 20(2) 

5. ~/J,t W~J~tin8 Scheme None(0) 1--(1) (2) 

6. to Data* None(0) 1521) 30 (2) 

7. start Random(0) CANDeCOM (2) 

8. Ideal Poina Fixed(0) lqoalin~l) 

9. Scale Inteml(O) Ratio(l) 

10. Analysis lmemal(0) E~emal(1) 

* Error perce,~Se~ reflect the p~mS ~t the variaece in the Y oonfigumtion reed to ~ the 
variance parameter ¢' of the enifa'mly dis~beted en~ imzcduced in the amlpm. 

TAm,K 2 

3'2* ~ ~ D e l p  f ~  T/me.Ws~ 
Unt~bs M ~  C ~  t~ny~ 

Til/AL 

l:~ct~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 I 1 1 1 2 2 2 2 2 2 2 2 2 

2 0 0 0  1 1 1 2 2 2  0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 

3 0 0 0 1 1 1 2 2 2 1 I 1 2 2 2 0 0 0 2 2 2 0 0 0 1 1 1 

4 0 0 0 2 2 2 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2 1 1 1 0 0 0 

5 0 1 2 0 1 2 0 I 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

6 0 2 1 0 2 1 0 2 1 I 0 2 1 0 2 1 0 2 2 1 0 2 1 0 2 1 0 

7 0 1 2 I 2 0 2 0 1 0 1 2 1 2 0 2 0 1 0 1 2 1 2 0 2 0 1 

8 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 

9 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 

10 0 0 1 0  1 0  1 0  0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 
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The dependent (performance) measures collected were: the number of major iter- 
ations required for convergence; the average (over dimensions) sum of squares accounted 
for between W and "~¢; the average (over dimensions) variance accounted for between X 
and 3;  the average (over dimensions) variance accounted for between Y and ~'; and, the 
average (over dimensions) variance accounted for between the joint space 

L = I X  1 and L = [ ~ ] .  

Note, because of the impact of the ~'i~k on the overall goodness-of-fit measure, it was 
decided not to include the goodness-of-fit in the dependent measure group. (C.P.U. time 
would have also been a good dependent measure to examine, but was not available for 
each trial). 

Table 3 presents the dependent measure results for the twenty-seven trials designated 
by the fractional factorial design. Note that recovery of W appears to be more successful 
than of X, Y, or L over the twenty-seven trials. This is probably a result of the fact that 
the sums of squares accounted for measure may be less sensitive than the variance ac- 
counted for measures and/or the fewer number of parameters in W. Table 4 presents the 
results of the five regression analyses performed, one for each of the dependent measures. 
Table 4 presents the various main effects regression coefficients for the nonzero coded 
levels of the experimental factors (the design in Table 2 was converted to dummy vari- 
ables where factors with r levels were coded into r - 1 dummy variables), standard error, 
R 2, adjusted R 2, and F-statistics. Because dependent measures 2-5 are proportions of 
variance accounted for, ranging between 0 and 1 (analogous in some ways to probabil- 
ities), additional multiple regression analyses were performed on two transformations of 
these six measures. One transformation was the logistic transformations {log [p j (1  
- Pij)]} and the other was the arc sine transformation of [(p~)1/2] (Snedecor & Cochran, 
1981). The results of these regressions were nearly identical to those presented in Table 4 
and will thus not be presented. 

All five of these multiple regressions were no t  significant according to the associated 
F-tests. The "close" start (defined in Appendix B) significantly detracted from configura- 
tion recovery for dependent measures 3, 4, and 5. In fact, in returning to the data in Table 
3, one notes the asterisks for trials 4, 9, 10, and 18 which denote poor local minimum 
solutions (Trial 11 also uses a close start and fails to recover the joint space adequately). 
Trials 4, 9 and 18 were designated using the "close" starting option, while Trial 10 used a 
random start. These four analyses were redone using the CANDECOMP start and Table 
5 presents the improved results for these four trials. 

Returning to Table 4 and the multiple regression analyses, the external analysis vari- 
able was significantly related to the recovery of X. This trivially makes sense since one 
would expect to recover X, given that X was fixed in the external analysis. 

Thus, the Monte Carlo analysis displays positive evidence concerning the robustness 
of the three-way unfolding algorithm to variations in T, I, J, K, amount of error in A, 
type of ideal point estimation, scale type, and type of analysis. However, evidence does 
appear to suggest that the procedure is somewhat sensitive to the type of start one em- 
ploys, suggesting that the CANDECOMP start may provide the most reduction in risk 
against poor local optimum solutions. 

While the Monte Carlo analysis has provided evidence as to the robustness of the 
methodology, several limitations must be noted. The use of the fractional factorial design 
does not allow the flexibility of measuring possible interaction effects between the factors 
studied in the analysis. Clearly, assuming computational expense was not a limitation, a 
full factorial design would have been a more comprehensive design to use in order to 
estimate higher order interaction terms. In addition, the design should have been repli- 
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TABLES 

Trial 

1 
2 
3 

4" 

6 
7 
8 
9" 

10" 
11 
12 
13 
14 
15 
16 
17 
18" 
19 
20 
21 
22 
23 
24 

26 
27 

NO.C~ 
I m a m s  

9 
15 
12 
2'7 
20 
14 
17 
8 
:2. 
2 

48 
25 
18 
8 

27 
41 
28 
50 
24 
31 

3 
26 
48 

10 

W 

ID00 
1/100 
1/100 
ID01) 
ID00 
11}00 
ID00 
ID01) 

~98 
S84 

~gS 
I~00 
I~00 
1D00 
1/)00 
S03 
.951 
.989 
991 

i~oo 
931 

1D00 
i 

IIIIIIII 

I I I I I I I  

X 
JIHHll I ,  

la0~ 
.789 

l iB0 
m l  

llBO 
llXI0 
lalB0 
lalXx) 

~ 9  
llXI0 

~ 3  

~ 9  

lall~ 
1/xI0 
ltl00 

319 
~ 6  

~ 9  
l~lXI0 
~ 6  
~ 8  

~ 7  
ltXX) 

IIIIIIIIIIIIIII 

Y 

1/)00 
.758 

$15 
,tl33 

HB0 
.941 
.141 
t107 

.'/77 

,~1 

.795 

.737 
DI2 

.760 

.744 

,881 
.~1 
$34 

z,¥ 

ltllB 

.956 
$09 

.971 

-~01 

921 
soo 
997 

379 
t}05 
,828 
~33 
.781 
,981 
~56 
940 
.706 
441 
923 

" m m ~ n m  i~al n ~ / m m  mhak~ am m ,_p~__ init~ ~nmi~ ¢mf~,naom 

cated in order to improve the degrees of freedom for estimation. Finally, more levels for 
each of the factors should be investigated in future work, especially concerning the differ- 
ent types of weighting functions tested in order to obtain better guidelines as to when to 
use a particular type of weighting function. 

4. Applications 

Three different applications of three-way unfolding are presented to illustrate the 
various types of three-way data that can be analyzed. In the first application, we examine 
three-way, three-mode preference data. In the second, an analysis of three-way, three- 
mode profile data is presented with use of the floating ideal point option. Finally, an 
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TABI,g 4 

~ m  ~ far l"sme-W~ 
uerett~ r~mm c a ~  A m ~  

T=2 

T - 3  

I - 3  

1 , 4  

J - 1 5  

J =20 

E ,,15 

E - 20  
1 

~ot = r (Ate) 
( [ 1 }2 

8B 

15%~or  to A 

3 0 % ~  to A 

Start 

C & ~ ~  Sum 

Floadn8 ¥tj 

Ratio Scale 

Anab~ 

Intem~pt 

S.E. 
R 2 

adjR 2 

F 

I 
i 

[3~7 

t3,89 

- l m  

322 

-1,44 

-TD0 

0.78 

10.78 

7.78 

6A4 

-3J57 

-3.78 

-0J57 

-0A4 

03S 

-228 

- 9 ~  

133 (, 

17.11 

0 ~  

0D( 

Dependent Measures 
3 

0~93 

0.114 

-0J)59 

.0.156 

-0.106 

.0.074 

-0.083 

-0.165 

0.101 

2 

0903 

0905 

0 ~ 2  

0.022 

0.011 

0905 

~).020 

4).013 

~909 

,0.021 4).066 

-0.027 -0.024 

,0.014 0.008 

,0.019 ,0.254 

0.001 -0,005 

0906 -0.079 

-0fl00 0.019 

0.023 0218 

1/)21 lg27 

0.04 030 

0.~5 0 -59  

090 090 

0J~ 0J56 0 .76  

• p <  .10 
• *p < .05 

• **p < .01 

4 

0.132 

0.036 

0.163 

01)03 

O2O6 

0.017 

0.174 

4)~05 

0.114 

0/)41 

43.069 

C901 

' -0?34 

0g/0 

-0.210 

,0.094 

* 0995 

0964 

027 

0.74 

024 

1A8 

5 

-0.073 

0.062 

0.097 

0.071 

-0224 

-0909 

,0.157 

,0.163 

0.010 

0.056 

-0907 

0.054 

,0310"* 

0.054 

,0.155 

,0.065 

0.192 

1.018 

032 

0~6 

0.03 

195 

283 
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TABLE S 

Trials 4,9,10 and 18 ~ CANDIDCOMP Start 
I I I I I I  

I I  

Depmdent b l u m r e  

New Trial 

4 

9 

10 

18 

1 

10 

5 

15 

30 

2 

1~00 

11)00 

11100 

.986 

3 
i 

11~0 

IlXI0 

,476 

4 

1~00 

,804 

872 

/t45 

5 

978 

875 

.941 

analysis of three-way, two-mode nonsymmetric proximities is illustrated with the Miller- 
Nicely (1955) data. In all cases, only the weighting function in (6) was applied with various 
values of p. 

DeSarbo and Rao Pain Reliever Preference Data 

DeSarbo and Rao (1983) report the collection of intention to use judgments (mea- 
sured on a ten point scale) for ten brands of over-the-counter (OTC) pain relievers by 
some 61 MBA students at Fairleigh Dickenson University in Madison, New Jersey for 
three different maladies. The ten brands tested were: Anacin, Ascriptin, Bayer Aspirin, 
Bufferin, Cope, Datril, Excedrin, Hudson Aspirin, Tylenol, and Vanquish. The three 
common maladies were: headache, fever, and muscle aches. Students were given color 
photographs of each of the ten brands with corresponding information on price, ingredi- 
ents, and package remedy claims. Thus, the three-way, three-mode array of subjects (rows) 
rendering intention to use judgments for ten brands of OTC pain relievers (columns) for 
three different maladies (slices) comprised the input data. 

The data were treated as interval scale and the grand mean was removed. The analy- 
sis was conducted in 1-4 dimensions using (6) as the weighting function for various values 
of p (0, 1, 2, 3, 4). As one reviewer aptly pointed out, one could also run this application 
with a bimodal weighting function arguing that subjects could reliably render such judg- 
ments for brands that were most and least preferred. Degenerate solutions stopped arising 
with p = 2. T = 2 dimensions appeared to best describe the structure in the data (ex- 
plaining 51% of the variance) as judged by examination of the goodness-of-fit measure for 
each of the dimensionalities estimated. Figure 1 presents the two-dimensional joint space 
of brands and subjects. The numbers in the plot represent the ideal points for subjects 
1-61. The first dimension appears to separate heavily advertised, high market share 
brands (Bayer, Datril, Tylenol, Bufferin, Anacin, and Excedrin) from the less known, low 
market share brands (Ascriptin, Cope, Vanquish, and Hudson). The second dimension 
separates aspirin (Ascriptin, Cope, Vanquish, Hudson, Excedrin, Bufferin, Anacin, and 
Bayer) from aspirin substitutes (Tylenol and Datril). Note that the ideal points are more 
prevalent in Quadrants III and IV of the joint space nearer the heavily advertised brands 
for both aspirin and aspirin substitutes. Figure 2 presents a plot of W = II wit II which 
shows some similarity of the pattern of weights for each of the three maladies. In all cases, 
the second dimension possesses almost twice the salience as the first, indicating that the 
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aspirin-nonaspirin dimension is more important than the market share/advertising dimen- 
sion in all three situations for the students. 

The Grambsch, Clark, DeSarbo, and Rothkopf Reading Profile Data 
Grambsch, Clark, DeSarbo, and Rothkopf (1983) report an experiment and subse- 

quent data analysis to investigate differences among 39 subjects in horizontal eye move- 
ment patterns elicited in a variety of reading tasks. Subjects were asked to engage in six 
different reading tasks on two occasions separated by at least one week. On each oc- 
casion, readers inspected nearly 20,000 words, half drawn from relatively easy and half 
from difficult text, spending roughly 100 minutes on the total task. The collection and 
analysis of eye-movement data from such an extensive observation period was done via a 
special computer-based technique (see Fisher and Rothkopf, 1982) in order to measure 
and analyze the very large quantities of data that were so produced. Electrodes placed 
near the eyes relayed data to a computer during reading. The six reading tasks varied in 
the degree of text interpretation required for successful execution and in the number of 
text elements that had to be considered at any given time. 
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The method that was used to investigate individual differences in reading had two 
important ingredients. 

1. Reading was characterized by several dependent measures. The following reading 
characteristics were tabulated: (a) total reading time (RT), (b) number of left-right sac- 
cades (LRS), (c) number of right-left saccades other than backsweeps (RLS), (d) number of 
backsweeps (BSW), (e) duration of each fixation (FIX), (f) amplitudes of left-fight saccades 
(LRA), and (g) amplitudes of right-left saccades (RLA). Reading time was defined as the 
total recorded time in milliseconds from the first backsweep to the last backsweep per 
1000 letter spaces. Left to right saccades were defined as the number of left to right 
saccades (any left to right eye movement from first to last backsweep) per 1000 letter 
spaces. Right to left saccades are the number of right to left saccades (any right to left eye 
movement less than one-half line excursion) per 1000 letter spaces. Left to right amplitude 
is the sum of the peak velocities of left to right saccades for experimental treatment divid- 
ed by the total number of left to right saccades for that treatment. Right to left amplitude 
is the Sum of the peak velocities of right to left saccades for an experimental treatment 
divided by the total number of right to left saccades for that treatment. Peak velocity 
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values used in calculations were actually digitized voltages. These digitized voltages were 
approximately linear with saccadic excursions. Backsweeps were defined as the total 
number, per 1000 letter spaces, of right to left saccades of greater than one-half line 
excursion. Fixation time was defined as the total time that the eye exhibited no movement 
(in milliseconds) divided by the number of fixations. 

2. Several different reading tasks were used. This was done to find out (a) how 
average eye movement measures differed among tasks, and (b) whether performance dif- 
ferences among tasks tended to be the, same from reader to reader. There were four search 
tasks and two comprehension tasks. 

The Nonword Search Task (Task I) required subjects to search a slide for the pres- 
ence of a pronounceable one or two syllable nonword, such as HESH. When a nonword 
was present on a slide, it replaced a content word for the original text. 

The Verbatim Search Task (Task 2) required subjects to search a slide for the pres- 
ence of a particular one or two syllable word, such as SOFA. Special care was taken in 
order to achieve a degree of similarity between Verbatim Search target items and Syn- 
onym Search target: the class of Verbatim Search items was restricted to words that each 
had close synonyms. 

The Synonym Search Task (Task 3) required subjects to search a slide for a one or 
two syllable synonym of a particular one or two syllable word, such as SMALL 
(LITTLE). 

In the Information Task (Task 4), subjects were shown a detailed question, and were 
instructed to read the following slide in order to determine whether the information on 
that slide contained an answer to the question. One question, for example, was "What  
kinds of plants were probably the first ones to exist on land?" 

The Information Memory Task (Task 5) was similar to the Information Search task 
except that subjects began a trial by reading a single slide for comprehension. After they 
finished reading, and after the slide was out of sight, they were shown a detailed question 
and were instructed to determine whether the question could have been answered from 
the information contained on the slide. 

A final task, Learning f l ask  6), required subjects to read a passage of eight slides for 
general comprehension. These passages were approximately 1200 words t0ng, and were 
extracted in their entirety from contiguous text in the origina I source material. Each pas- 
sage had a title and dealt with a uniform topic. Subjects read these passages in an uninter- 
rupted fashion, proceeding at their own pace to the next slide when they had finished the 
previous one. At the end of a passage subjects were given an eight-item, short-answer 
comprehension test. A single Passage Comprehension task included an eight slide passage 
of easy reading material and an eight slide passage of difficult reading material. 

Thus, the three-way, three-mode profile data collected was a subject (39 rows) by 
measure (7 columns) by task (6 slices) array. The variables (measures) were standardized 
across the entire array to zero mean and unit variance prior to analysis since the variables 
were measured in different units and similar normalizations were performed in Grambsch, 
et al. (1983). These analyses also suggested considerable differences in reading style over 
reading task suggesting the need for the floating ideal point option in three way unfolding 
analysis. 

The analysis was conducted in 1-4 dimensions using the floating ideal point option 
with 70k defined in (6) for a sequence of p values (0, 1, 2, 3, 4, 5). Based upon goodness-of- 
fit values and interpretation, p = 2 and T = 1 provided a parsimonious, nondegenerate 
solution accounting for 74.4% of the variance. The 39 x 6 matrix of floating ideal points 
was clustered using Johnson's (1967) complete linkage method to examine if any groups of 
subjects were found with similar reading style. Three clusters were identified on the basis 
of the resulting dendogram and an investigation of the respective group means and stan- 



288 PSYCHOMETRIKA 

RLS 
BSW BSW'~ 

po ~ ~r  ~ 
' - . .  BS~ 

a ~ m i n 

I 2 3 4 5 6 

VARIABLE 
FIGURE 3 

Joint Space Plot with Floating Ideal Points for Reading Data. 

u 

," RLS 
BSW 

dard deviations, and their mean ideal point values are presented in Figure 3 with the 
stimuli (variable) locations for the one-dimensional solution for six reading tasks. 

The one dimension can be easily interpreted as a reading effort dimension where the 
saccadic amplitude measures (velocity) is on the upper or positive end of the dimension 
while the gaze time measures (reading time, number of saccades, number of backsweeps, 
and fixation time) are on the lower or negative end of the dimension. The mean ideal 
point scores for each of the three groups are connected by their corresponding lines for 
each of the six tasks. A group's style of reading can thus be characterized by the proximity 
of the group's mean ideal point with the stimulus/variable location. 

Group 1 appears to be the slowest reading group of the three, especially in the Verb- 
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atim and Information Search (Task 2 and 4) where they have lower velocities and higher 
gaze times and rereading. Group 3 appears to be the fastest reading group, especially in 
Synonym Search, and Information Memory Tasks (Tasks 3, 4, and 5). Their styles here 
are characterized as high velocity and low gaze times. Group 2 appears to be unaffected 
by any of the experimental tasks, displaying a relatively constant reading effort over all 
six tasks. 

Thus, the three-way unfolding results render insights into individual differences in 
reading styles providing a method for graphically examining how aspects of reading effort 
differ for different subjects over different reading tasks. 

The Miller-Nicely Data 

Miller and Nicely (1955) collected data on confusions among 16 English consonants 
under each of several conditions of noise (varying the signal-to-noise ratio), low-pass fil- 
tering (filtering out acoustical energy in the higher frequencies), and high-pass filtering 
(filtering out acoustical energy in the lower frequencies). The subjects listened to speakers 
read c-v syllables (each syllable consisted of one of the 16 consonants followed by the 
vowel a as in father), and tried to identify the consonant they heard after each syllable was 
spoken. In each of the 17 experimental conditions the speech was acoustically degraded in 
a different manner. A matrix of frequencies of stimulus-response confusions was derived 
for the data in each experimental condition. Note all 17 nonsymmetric matrices are pre- 
sented in the original Miller and Nicely paper. 

We chose to sort the 17 proximity (confusions) matrices into three general con- 
ditions: added noise, low-pass filtering, and high-pass filtering, and average the entries of 
the matrices in the three conditions producing a 3 (degradation condition) x 16 (conson- 
ants) x 16 (consonants) averaged proximity array. The scale was reversed to transform 
them into distance-like numbers and a grand mean was removed from the array. 

The analysis was conducted in 1-6 dimensions with ~o~ defined in (6) for each matrix 
slice (not over rows) for a sequence of p = (0, 1, 2, 3, 4). Based upon goodness-of-fit 
measures and interpretation, two dimensions appeared to render a parsimonious descrip- 
tion of the structure of the data with p = 3. Figure 4 presents the joint space of row and 
column consonants, where respective identical row and column consonants are connected 
by line segments. The length of the line segment indicates the degree of confusability of 
the consonant. 

Dimension 1 separates the voiced consonants (those which, when spoken, produce 
vocal cord vibration) such as d, g, dz, z, b, v, and th from their voiceless cognates t, k, sh, 
s, p, f, and 0. The nasals (m, n), which do not have voiceless cognates, are grouped with 
the other voiced consonants on this dimension. The second dimension represents a 
manner of articulation dimension where nasals (m, n), unvoiced fricatives (0, f, s, sh), 
voiced fricatives and stops (d, g, dz, z, b, v, th) and unvoiced stops (p, k, t) are separated. 
The two dimensional space is quite similar to that found by Shepard (1972) in applying a 
two-way multidimensional scaling method to a confusions matrix averaged over the first 
six conditions. 

Since our joint space represents both row and column consonants (connected by line 
segments), we can examine Figure 4 to investigate how accurately each transmitted con- 
sonant is received. We find that the nasals m and n and fricatives z and dz are least 
confused. Voiced consonants d and b appear to be the most confused. 

Finally, Figure 5 presents the plot of the condition weights for this analysis. The high 
pass filtering condition (3) weights the manner of articulation dimension slightly more 
heavily than the voiced-unvoiced dimension, while the noise (1) and low pass filtering (2) 
condition (especially) weight the voice-unvoiced dimension more heavily. 
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5. Discussion 

We have presented a detailed description of the three-way unfolding model and the 
weighted least-squares algorithm for fitting it. Monte Carlo results were also presented 
illustrating the apparent robustness of the performance of the algorithm when some 
eleven factors were experimentally varied. Finally, three applications were presented with 
parsimonious, nondegenerate, and interpretable solutions. Still, many unanswered 
questions remain as opportunities for further research. 

Perhaps the most important research question that is still left unanswered is "what 
really causes degenerate solutions in unfolding?". While the proposed approach of utiliz- 
ing a weighted loss function does appear tentatively to render nondegenerate solutions, 
additional research is required to understand how and why. Are degenerate solutions due 
to particular error structures in the data, poorly determined parameter estimates, errati- 
cally shaped loss functions, or inadequate algorithms? 
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Another related question concerns the choice of the weighting function ~i~k. Some 
guidelines can be established to rule out certain general forms of ;~iik based on con- 
ditionality, reliability assumptions, preprocessing, etc. Yet, the choice of a specific Yi~k 
(especially p) still remains a trial and error procedure. While the applications described in 
the paper suggest a p of 2 or 3 for 7ok defined in (6), more experience with the procedure 
must be obtained with more data sets before this can be a general recommendation. 
Further Monte Carlo research must also be performed to examine what the effect the 
choice of ~Uk has on configuration recovery. 

Obviously, this three-way unfolding technique can be applied to other substantive 
areas, especially in marketing. For example, this new methodology could be employed to 
examine children's preferences for various types of television shows over different situ- 
ations (time of day, which family members are present, etc.). Or the model could be uti- 
lized to analyze people's preferences for various competing retail stores/outlets over differ- 
ent situations (Christmas gifts, spouse's birthday present, etc.). Still another possible appli- 
cation involves the analysis of dyadic relationships in personal selling where one might be 
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interested in whether certain types of situations lend themselves to a particular type of 
exchange. 

In addition, this three-way unfolding method need not be restricted to merely situ- 
ational analysis. For example, the technique could be successfully employed in testing 
product-advertising congruence where subjects could evaluate the most "appropriate" ad- 
vertisement displayed for different products tested. Similarly, one may utilize such a 
model to investigate people's perception of particular celebrities advertising various prod- 
ucts (e.g., one could attempt to select which of many products tested Arnold Palmer could 
most effectively endorse). In pricing research, one could utilize such a model to examine 
evaluations/preferences of various brands of products under different pricing structures or 
rate plans. Applications to product management or product positioning involve the possi- 
ble analysis of consumer preferences for various products with various combinations of 
features/attributes. Another research application is the use of three-way unfolding as a 
dynamic mapping tool for "before and after" experimental treatments, to examine the treat- 
ments' effects on elicited preferences. One could also use three-way unfolding to examine 
the brand-switching behavior in longitudinal brand-switching matrices. 

Applications also exist outside of psychology and marketing in such other social and 
behavioral sciences as economics, sociology, political science, anthropology, etc. This 
methodology should be a rather useful approach for analyzing the data obtained from 
such applications. 

A number of interesting areas for future research appear to follow as a consequence 
of the three-way metric unfolding model: 

1. The development of a nonmetric version of this technique to handle ordinal scaled 
data. (The results reported on potential degeneracies in two-way nonmetric unfolding by 
Kruskal and Carroll, 1969, should be carefully attended to, however.) Closely related to 
this nonmetric development is the development of extensions enabling the handling of 
(row or column) conditional data in an appropriate manner. 

2. The development of three-way mixed models that could accommodate mixtures of 
vector and unfolding (ideal point) representations. 

3. Development of viable statistical inference (via distribution theory or bootstrap- 
ping) for such scaling procedures. 

4. Generalization of unfolding to N-way arrays. 
5. Development of three-way unfolding subject to constraints on any or all of the 

data modes (stimuli, subjects, and/or situations), thereby generalizing DeSarbo and Rao's 
(1983) constrained approach to unfolding. 

6. Exploration of other possible numerical procedures to fit the data in a more ef- 
ficient manner. 

7. Further empirical and numerical research into specifying a "best" ~ijk weighting 
function. We have merely suggested a number of possible different weighting schemes in 
analyzing three-way data. One particular form was successful in use with the three appli- 
cations presented. Further research is required into investigating the performance of other 
equally justifiable weighting functions. 

Appendix A 
The Candecomp Based Algorithm for Three-Way Unfolding 

Scalar Products and CANDECOMP 

The first step entails double centering each A~ matrix of raw dispreference values, and 
then converting this into scalar products by use of a nonsymmetric generalization of 
Torgerson's (1958) standard procedure: 

S i j k  = - -  ½ ( ~ i j k  - -  ~ i ' k  - -  ~ i j "  + ~ i " ) '  (A1) 
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where: 

J 

j = l  

1 x 

1 or x 

6i"-JKj= k=l 
Sqk = scalar product between subject j and stimulus k for situation i. 

It can be shown that, after that transformation, the model can be expressed in scalar 
products form as: 

T 

Sok = ~ W, Y?i, Xkt (A2) 
t = l  

(where * * wit, Y jr, and x~ will be discussed below). Equation (A2) is the form of the three-way 
CANDECOMP model (Carroll & Chang, 1970), and one may therefore analyze S = 
II Si~k I1 by such a procedure to estimate X, Y and W via the nonlinear iterative least 
squares algorithm utilized in CANDECOMP. However, because there are indetermi- 
nacies with respect to origin and allowable diagonal (scale) transformations associated 
with this three-way decomposition, one must then solve for scale parameters a,, bt, for the 
"stimulus" and "subject" parameters, and a set of parameters defining a shift of origin of 
one of the two sets of points, ct. Thus denoting w* * , Y3,, and x*, as the parameters ob- 
tained from the CANDECOMP model on the derived scalar products Sok, one obtains: 

T 

3Ok -~ d2k + ~i = ~ w,,(at(y~ -- ct) -- bt xl't) 2 + ~i, (A3) 
t = l  

where one set of points (the x*'s) is fixed at its centroid, and the origin of the remaining 
set (the y~'s) must be solved for. Note that in (A3) above, the w , ,  Y jr and xk, parameters 
are related to the wit*, y~ and x~ estimates by the following: 

Yit = a~y~ -- ct), 

xkt = bt xk*, 

w*. 
wit - at bt" (A4) 

In the initial estimation scheme for three-way unfolding, the CANDECOMP pro- 
cedure is utilized to estimate the w~, yj* and x~ parameters. Then, further numerical 
optimization methods, to be discussed below, are used to estimate the at, br, and c t pa- 
rameters thus yielding estimates of Y jr and xkt. The w{s are estimated separately by regres- 
sion techniques. (In the case in which the ~q~'s are assumed to be ratio scale estimates of 
squared distances, the e{s are set equal to zero. In the case of interval scale ~i~'s, the oh's 
are estimated by simply adding an extra term to the regression equation involved in 
estimating the wit's.) The reason for the need to estimate the at, bt, and ct parameters is 
that, in the transformation to scalar products form in (A1), the double centering operation 
arbitrarily shifts the centroids of the two sets of points (the x's and the y's) to the origin of 
the coordinate system. While the overall origin of the coordinate system is arbitrary (since 
we are dealing with a Euclidean distance model), the relative positions of these two sets of 
points vis fi vis one another are quite relevant. We can solve for this relative placement of 
the centroids by fixing one set (the x's) at the origin, and solving for that of the other set 
(the y's). This is the function of the ct parameters. The scale parameters (at, bt) are relevant 
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because in the derived scalar products model we are dealing with, after double centering 
each A~, the coordinates of each set of points are defined only up to a diagonal transfor- 
mation (as are the w*'s). The W matrix gets re-estimated, as we shall see shortly, because 
the CANDECOMP procedure uses a different loss function than does the Newton- 
Raphson procedure for estimating the translation and scale parameters. The procedures 
for the estimation of the a,, b,, and c, parameters are a three-way analogue of procedures 
used in Sch/Snemann's (1970) two-way metric unfolding for estimating both linear trans- 
formations of the stimulus and subject spaces. In the two-way case, an analytic solution 
was available as described in Sch/Snemann (1970) for estimating these transformations (an 
affine transformation of one set combined with a linear transformation of the other, the 
linear transformation components of the two transformations being linked by an "inverse- 
adjoint" relationship). In the three-way case unfortunately, no such analytic solution is 
available. Thus, we were required to rely on a less elegant numerical procedure based on 
iterative gradient procedures. However, a partially compensating advantage is afforded by 
the fact that the linear transformation in the three-way case can be restricted to diagonal 
transformations, which greatly simplifies that component of the estimation scheme. While 
the two diagonal transformations should ideally be inversely related (the inverse adjoint 
of a diagonal matrix is identical to its inverse), the procedure for estimating these parame- 
ters utilizes a different loss function and we do not explicitly constrain them to be so 
related. 

Estimation Procedure for  Translation Parameters 

In this routine, we fix all parameters (using CANDECOMP estimates) except the c:s, 
at their current estimates, and we solve for these entities via: 

T 

~Ok -- Cq~_~d2k = ~ W'*,t [(y~ -- Ct) -- X~] 2, (A5) 
t = l  

where estimates of ct minimize the following sum of squares: 

g = ~ ~ ~ [tS,j k -- ~ w~ (y~ - x~t) 2 - ~ c 2 w* + 2 ~ ct w~ (yj* -- x~'t) -- a~] 2. (A6) 
i j k t t 

Since the objective function (R) in (A6) is continuous and twice differentiable, a modified 
gradient technique, the Newton-Raphson method (Himmelblau, 1972), appears to be quite 
efficient, especially since R "resembles" a quadratic sum of squares function, and since 
such gradient estimation procedures converge in only one iteration when dealing with 
quadratic unconstrained objective functions ("quadratic convergence"). Letting 0 be the 
vector of parameters to be estimated, the transition from 0 t~) to 0 ct+l~ for the Newton- 
Raphson method is: 

O~* + 1) = 0tt)  2Ct)[V2f(0~l~)] - IVf(0~°) (A7) 
ii l_V::(0:~] :[vf(0~:;~] I1' 

where: 

OCt+ 1~ = value of 0 parameters at (l + 1)-th transition, 

0 ct~ = value of 0 parameters at l-th transition, 

)ct~ = step size parameter, 

Vf(0 v)) = gradient evaluated at O ct), 

vef(0 c')) = Hessian matrix of second derivatives evaluated at O ct). 

Because a positive definite Hessian matrix is required for convergence, the Green- 
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stadt approximation subroutine (Greenstadt, 1967) is utilized to force the Hessian to be 
positive definite at each stage of the minimization. The step size parameter 2 is obtained 
by either a standard Fibonacci (Cooper & Steinberg, 1970) line search procedure or a 
quadratic line search routine (Carroll & Pruzansky, 1980) by option of the user. Note, the 
Newton-Raphson modified gradient procedure is applied iteratively either until some con- 
vergence criterion is satisfied or a preset maximum number of iterations has been at- 
tained. Once this stage's estimates (dr) have been obtained via this procedure, we define 
new y~* by 

Y~* = Y~ -- 4 .  (A8) 

Estimation of Scale Parameters 

In this procedure, all estimates except a t and b t are kept at their current values, and 
these scale parameters are solved for so that: 

T 

= ~ *~ t yit - b,x*t) 2. (A9) 
- -  t = l  

Specifically one attempts to find scale estimates so as to minimize the following least- 
squares loss function: 

Q = E E E [6iJk + 2 E atbtw*Y~,*xft -- E a2 w/*t Y~ .2 -- ~.. b2w*x*t 2 - ~ti] 2. (gl0)  
1 j k t t t 

Again, the Newton-Raphson method is utilized iteratively, with the Greenstadt approxi- 
mation and Fibonacci or quadratic line search procedures. At the end of this stage, new 

*** an xf,** estimates Y jr d are defined as follows: 

y * * *  = a , ,** = a,(yT, - 4 ) ,  
j t  t ~,jt 

and 

x~,** = b, x*,. (A11) 

Estimation of Situation Weights and Additive Constants 

In this subroutine, all parameters except the w* are held fixed at their current values. 
To estimate the w. in (1) (assuming, for now, that ~q = 0, Vl), we first express: 

T 

~,jk ~'~ d2k = E "' t "***  * *  2 = , , , , ~ y j ,  - x * ,  ) 
t = l  

T 

= E wi, pJk,, (A12) 
t = l  

where 

= (,  * * *  _ x ~ , * * ) ~  Pjkt y jr 

Now one can estimate wlt via OLS where we let A = ]] 6.jk)]] be an I x JK  matrix and let 
P = II P(~k), I lbe a (JK) x T matrix. We then obtain: 

A ~ WP',  (A13) 

and a new estimate of W (W***) as obtained via 

W*** = AP(P'P)-  1. (A14) 

Note, if one desires to estimate an additive constant (in dealing with interval scaled prefer- 
ence values), the procedure simply appends a column of l 's onto the P matrix, thereby 
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estimating an intercept term corresponding to an estimate of the additive constant (~) for 
a given J × K (e.g., subjects by stimuli) matrix. 

Terminat ion  Criterion 

At the end of the previous estimation phase (one "major" iteration completed), we 
return to the phase for estimating translation parameters (replacing the w*, x* and y* 
values with w***, x*** and y*** as defined above) and start the cycle over, solving first 
for d t with all parameters fixed at current values, etcetera, continuing the iterative reesti- 
mation until either: (a). the maximum number of preset iterations has been attained; or 
(b). we have obtained convergence with respect to our variance accounted-for measure 
(V.A.F.): 

E E E - 
, j k (A15) V.A.F. = 1 -- E E )-', (30k -- 3,-.) 2 

J 

for interval scale data, or sums of squares.accounted for (S.S.A.F.) 

S.S.A.F. = 1 - '  ~ k (A16) 
E E E  

, j k 

for ratio scale data, where: 

6~jk = input data, 

5,.. = grand mean of input data for slice i, and 

d,~k = ~ wit(yit -- xgt) 2 = predicted squared distances. 
Z 

(An earlier version of the procedure utilized (SQ) 2 as a sums-of-squares accounted-for 
measure, where: 

i.),j (A17) SQ = ( y  ~ Y d~k) 1,2 
i , j ,k  , , j , k  

SQ, as defined above, can be viewed as the uncentered correlation function. S.S.A.F., as 
defined above, = (SQ) 2, just as V.A.F. = r 2, where r is the (centered) produce moment 
correlation). 

Note, since the objective function to be minimized at each stage (of the gradient 
procedure) is the same sum of squared differences between observed and estimated values 
from the model, this least squares fit measure must be monotonically decreasing. We 
would therefore expect our variance accounted for (or sum of squares accounted for) 
measure to be monotonically increasing, being an inverse monotonic function of the re- 
sidual sum of squares, thereby assuming convergence (for formal proof, see Courant,  i965, 
p. 61). 

Normal i za t ion  

At this point, after convergence, if the user had selected the "fixed" ideal point option, 
where ideal points do not change by situation but rather are stretched or shrunk by 
situation weights (w~,'s) then X, Y, and W matrices are normalized and plotted. Normal- 
ization here amounts to normalizing to unit sum of squares the composite matrix defined 
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by stacking X and Y into a single ( J  + K) x T matrix and then redefining the matrix of 
situation weights W so that the differential slice variance is reflected in these weights. 

Float ing Ideal  Poin t  Option 

If the floating ideal point option had been selected, a generalization in which ideal 
points are assumed to vary over situations, an additional stage is required to estimate a 
set of ideal points for each situation. In effect, this treats the fixed ideal point model as a 
special case where the ideal points are the same for each situation. The development of 
this part of the algorithm parallels that of Carroll (1972) PREFMA P two-way unfolding 
model. We again assume that preference values are linearly related to squared distances: 

where: 

~ijk = alj d2k 4- blj "q- eijk, (A18) 

60'k = preference value, 

T 

d2k = squared weighted distance = ~ w,(ytojt - xkt) 2, 
t = l  

Y0~t = the t-th coordinate of ideal point for subject j in situation i, 

a 0 = scale parameter for subject j in situation i, 

blj = intercept parameter for subject j in situation i, and 

eij k = error term. 

Note, wit and Xkt are as previously defined for the fixed ideal point case. Substituting for 
d2k in (A18) (dropping the error term and substituting " ~ "  for "=" ) ,  one obtains: 

T 

cSij ~- a 0 ~ Wit(Y(i)jt --  Xkt) 2 -]- bij , 
t = l  

aij E 2 witYti)j t --  2aij ~ witYti)jtxkt q- alj E wit X2t + bij" ( A 1 9 )  
t t t 

Defining a constant term z o as: 

ZiJ = aij E wit Y(i)jt -{- bij ,  (A20) 
t 

we are left with 

where: 

~ijk "~ aij E (Wit X2t) -I- E qiJt(Wit Xkt) d- Zij, 
t t 

(A21) 

qijt = -- 2aij Y(ojt, (A22) 

which is now in the form of a quadratic regression of the x's scaled by the w's to estimate 
the floating ideal points via: 

Y(i)jt = -- 1/2(qij,/aij). (A23) 

Again, we can consider the fixed ideal point model as a special case of the floating ideal 
point case where the ideal points are the same for each situation (i.e., Yt0jt -- Y jr for all/). 
Also, because we are dealing with considerably more parameters in the floa-~g case com- 
pared to the fixed case, we would expect the floating ideal point model to account for an 
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equal or greater amount of variance (than the fixed case). Similarly, after the estimation 
procedure, normalizations and subsequent plotting comprise the final stages. 

Appendix B 
The Weighted Least Squares Algorithm for Three-Way Unfolding 

1. Starting estimates of W, X, Y, and 0t are obtained randomly, user-given, via use of the 
CANDECOMP based algorithm described in Appendix A, or via a "close" start which 
averages the three-way arra__y A into a two-way array and performs two-way unfolding 
(an unrotated PREFMAP2 model 3 analysis with internally generated stimulus config- 
uration) on it to obtain X and Y, with W = II 1 II. Let IT (initially = 0) = IT + 1; 

2. Estimate X (for internal analyses) holding all other parameter values fixed via a conju- 
gate gradient method (Fletcher & Reeves, I964) where the partial derivatives of the 
weighted loss function with respect to xkt are: 

dZ2 
dx~--~t = 4 ~ ~, ?,jk Wit(Jijk - -  ~i j k ) (Y j t  - Xkt), (B1) 

i j 

where we shall use VX as the partial derivative in (B1) above, whose elements are 
strung out in a large K T  = 1 vector. Then, the conjugate gradient method used in this 
phase can be summarized as follows: 

a. Set MIT = 1. 
b. Set the final search direction S tl~ = - VX tl~ in this first "minor" iteration. 
c. Find X ~2) according to: 

X ~2~ = X (1~ + utl)S ~1~, (B2) 

where u t~) is the optimal step length in the direction S t~) obtained by a quadratic 
interpolation line search procedure (Carroll & Pruzansky, 1980). Set MIT = 2. 

d. Calculate VX ~u~x) and set: 

e. 

(vx(MIT))'(vx(MIT)) s(MIT- 1). (B3) 
s(MIT) = --vx(MIT) + (vx(MIT- 1))'(vx(MIT- 1)) 

Compute the optimal step length u tMm in the direction S eMiT), and find 

x(MIT+ 1) ~ x(MIT) ~ u(MIT)s(MIT)" 

If X ~Mm is optimal, stop. Otherwise set MIT = MIT + 1 and go to step (d) above 
(i.e., undertake another minor iteration). Note that one would stop at this stage (f) if 
either: 

1). MIT > maximum number of minor iterations stipulated by the user, 
2). 11 V ~  M~r~ tl < gradient convergence tolerance TOL, or 
3). (Z~ M'T-I~ -- Z~ M'T)) < TOL. 

It has been demonstrated empiric~illy that conjugate gradient procedures can 
avoid the typical "cycling" often encountered with steepest descent algorithms. In 
addition, these procedures demonstrate valuable quadratic termination (Himmel- 
blau, 1972) properites--i.e., conjugate gradient procedures will find the globally op- 
timum solution for a quadratic loss function in n steps, where n is the number of 
parameters to be estimated. 

3. Estimate Y via a similar conjugate gradient scheme holding values of all other parame- 
ters fixed. 
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4. Estimate W and ~t as in Phase 4 of the algorithm in Appendix A using weighted 
least-squares to accommodate the Vijk" 

5. Termination criterion--we go to Step 6 if either: 

(a) (z(J T- 1~ _ Z~T)) < TOL, or 
(b) IT > maximum number of major iterations stipulated by the user. 
Otherwise, set IT = IT + 1 and go to Step 2. 

6. Normalization--same as Step 6 in Appendix A. 
7. Option for estimating floating ideal points--similar to Phase 7 of Appendix A but here 

using weighted least-squares to accommodate the ?Ok" 

References 

Addelman, S. (1962). Orthogonal main-effect plans "for asymmetrical factorial experiments. Technometrics, 4, 
21-46. 

Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an N-way 
generalization of Eckart-Young decomposition. Psychometrika, 35, 283-319. 

Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. 
Nerlove (Eds.), Multidimensional Scaling: Theory and Applications in the Behavioral Sciences (Vol. I). New 
York: Academic Press. 

Carroll, J. D., & Pruzansky, S. (1980). Discrete and hybrid scaling models. In E. D. Lantermann & H. Feger 
(Eds.), Similarity and choice. Bern: Hans Huber. 

Coombs, C. H. (1964). A Theory of Data. New York: Wiley. 
Cooper, L., & Steinberg, D. (1970). Introduction to Methods of Optimization. Philadelphia, PA: W. B. Saunders 

Co. 
Courant, R. (1965). Differential and Integral Calculus (2nd ed., Vol. I), New York: Wiley. 
DeSarbo, W. S. (1978). Three-way unfolding and situational dependence in consumer preference analysis. Unpub- 

lished doctoral dissertation, University of Pennsylvania, Philadelphia. 
DeSarbo, W. S., & Carroll, J. D. (1980). Three-way unfolding and situational dependence in consumer prefer- 

ence analysis. In K. Bernhardt, I. Dolich, M. Etzel, T. Kinnear, W. Perreault, & K. Roering (Eds.), The 
changing marketing environment: New theories and applications (pp. 321-325). Chicago: American Mar- 
keting Association. 

DeSarbo, W. S., & Carroll, J. D. (1981). Three-way metric unfolding. Proceedings of the ORSA/TIMS Market 
Measurement Conference. New York, NY. 

DeSarbo, W. S., & Rao, V. R. (1983). A constrained unfolding model for product positioning. Unpublished manu- 
script, Bell Laboratories, Murray Hill, NJ. 

DeSarbo, W. S., & Rao, V. R. (1984). GENFOLD2: A Set of Models and Algorithms for the GENeral Un- 
FOLDing Analysis of Preference/Dominance Data. Journal of Classification, 1, 147-186. 

Fisher, D. G., & Rothkopf, E. Z. (1982). An automated eye movement laboratory for on-line electro- 
oculography. Behavior Research Methods and Instrumentation, 14, 113-120. 

Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. Computer Journal, 7, 
149-154. 

Grad, J., & Spence, I. (1979). Using distance information in the design of large multidimensional scaling experi- 
ments, Psychological Bulletin, 86, 60-66. 

Grambsch, P., Clark, L., DeSarbo, W. S., & Rothkopf, E. (1983). An analysis of individual differences in reading. 
Unpublished manuscript, Bell Laboratories, Murray Hill, NJ. 

Greenstadt, J. (1967). Eigenvalue analysis for gradient procedures. Mathematical Computation, 21, 360. 
Heiser, W. J. (1981). Unfolding Analysis of Proximity Data. Leiden, The Netherlands: Reprodienst Psychologic 

RUL. 
Himmelblau, D. M. (1972). Applied Nonlinear Programming. New York: McGraw-Hill. 
Isaac, P. D. (1980). Considerations in selection of stimulus pairs for data collection in MDS. In R, B. Golledge 

& J. N. Rayner (Eds.), Multidimensional Analysis of Large Data Sets (pp. 326-341). Columbus: Ohio State 
University Press. 

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241-254. 
Kruskal, J. B., & Carroll, J. D. (1969). Geometrical models and badness-of-fit functions. In P. R. Krishnaiah 

(Ed.), Multivariate Analysis (Vol. 2, pp. 639-671). New York: Academic Press. 
Miller, G. A., & Nicely, P. E. (1955). An analysis of perceptual confusion among some English consonants. 

Journal of the Acoustical Society of America, 27, 338-352. 



300 PSYCHOMETRIKA 

Sch6nemann, P. H. (1970). On metric multidimensional unfolding. Psychometrika, 35, 349-366. 
Shepard, R. N. (1972). Psychological representation of speech sounds. In E. E. David & P. B. Denes (Eds.), 

Human Communication: A Unified View. New York: McGraw Hill. 
Snedecor, G. W., & Cochran, W. G. (1981). Statistical Methods (7th ed.). Ames: Iowa State University Press. 
Takane, Y., Young, F. W., & de Leeuw, J. (1977). Nonmetric individual differences multidimensional scaling: An 

alternating least squares method with optimal scaling features. Pspchometrika, 42, 7-67. 
Torgerson, W. S. (1958). Theory and methods of scaling. New York: Wiley. 
Wold, H. (1966). Estimation of principal components and related models by iterative least squares. In P. R. 

Krishnaiah (Ed.), Multivariate analysis. New York: Academic Press. 

Manuscript received 12/14/83 
Revision received 6/1/84 
Final version received 12/1/84 


